(3.237.97.64) 您好!臺灣時間:2021/03/03 00:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃明順
研究生(外文):HUANG, MING-SHUN
論文名稱:應用AHP探討石化業構建雲端運算服務之重要成功因素
論文名稱(外文):Applying the AHP to Discuss the Important Success Factors for the Petrochemical Industry to Build Cloud Computing Services
指導教授:陳世智陳世智引用關係
指導教授(外文):CHEN, SHIH-CHIH
口試委員:洪崇文周棟祥陳世智
口試委員(外文):HUNG, CHUNG-WENCHOU, TUNG-HSIANGCHEN, SHIH-CHIH
口試日期:109/07/30
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:資訊管理系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:105
中文關鍵詞:雲端運算資訊系統層級分析法 (AHP)石化業
外文關鍵詞:Cloud ComputingInformation SystemAHPPetrochemical Industry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:78
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
雲端運算服務是當前資訊技術發展的趨勢,國際級公司已普遍使用雲端運算服務。可是,國內屬於傳統製造業的石化業仍然對雲端運算服務懷有疑惑。因此,找出石化業構建雲端運算服務的重要成功因素非常重要。本研究透過過去資訊系統相關文獻探討,建構雲端運算服務的特點和石化業在資訊技術中相關應用之重要因素,並使用AHP作為研究方法,探討石化業構建雲端運算服務的重要成功因素,透過國內外相關文獻的討論以及與專家的問卷訪談,構建框架、6個主要構面和26個因子指標。本研究主要構面的分析結果在“資訊技術”層面最為重要,其次依序是“用戶”、“組織結構”、“專案管理”、“企業管理”以及“產業特徵”。在各種因素指標中,“員工教育培訓”是最重要的,其次是“用戶參與設計階段”和“正確的施工過程和使用方法”。希望通過本研究成果,提供石化業在構建雲端運算服務時,可以作為依據和借鑒。
Cloud computing services are the current development trend of information technology, and international companies have generally used cloud computing services. However, the domestic petrochemical industry, which is a traditional manufacturing industry, still has doubts about cloud computing services. Therefore, it is very important to find out the important success factors for the petrochemical industry to build cloud computing services. This study explores the characteristics of cloud computing services and the important factors related to the application of information technology in the petrochemical industry based on past information system related documents, and uses AHP as a research method to explore important success factors for the petrochemical industry to build cloud computing services. Discussion of relevant foreign literature and questionnaire interviews with experts to construct a framework, 6 main dimensions and 26 factor indicators. The analysis results of the main aspects of this research are the most important at the "Information Technology" level, followed by "Users", "Organizational Structure", "Project Management", "Enterprise Management" and "Industry Characteristics" in order. Among various factor indicators, "Employee Education and Training" is the most important, followed by "User Participation in the Design Phase" and "Correct Construction Process and Usage Method". It is hoped that the results of this research can be used as a basis and reference for the petrochemical industry in building cloud computing services.
Table of Contents
中文摘要 i
Abstract ii
誌 謝 iii
Table of Contents iv
List of Tables vii
List of Figures ix
Chapter 1 Introduction 1
1.1 Research Background and Motivation 1
1.2 Research Purposes 3
1.3 Research Scope and limitations 4
1.4 Research Process 4
1.5 Thesis Architecture 5
Chapter 2 Literature Review 7
2.1 IT-related applications in the petrochemical industry 7
2.2 Cloud computing service 9
2.2.1 Definition of cloud computing services 9
2.2.2 Cloud service Characteristics 11
2.2.3 Considerations and considerations for building cloud computing services 15
2.3 Important success factors 19
2.3.1 Definition of important success factors 19
2.3.2 The role of important success factors 20
2.3.3 How to evaluate important success factors 22
2.3.4 Important success factors affecting the construction of information systems 26
2.4 AHP (Analytic Hierarchy Process) 32
2.4.1 Definition of AHP 32
2.4.2 Analytic Hierarchy Process Program 35
2.4.3 Application of AHP 38
Chapter 3 Research Methods 39
3.1 Research Framework 39
3.2 Summarize the important success factors for building cloud computing services 40
3.3 Research Design 42
3.3.1 Establish a hierarchy of selection factors 44
3.3.2 Establish a pairwise comparison matrix 44
3.3.3 Calculate characteristic value 45
3.3.4 Consistency test 45
Chapter 4 Outcome of Practice 47
4.1 The verification results of AHP 47
4.1.1 Questionnaire analysis 47
4.1.2 Analysis and discussion of weighting results of various facets 48
4.1.3 Consistency verification and eigenvalues of each facet index 54
4.2 Holistic analysis 56
4.2.1 Analysis of the main aspects of the whole 56
4.2.2 Analysis of the overall main factor evaluation indicators 58
4.2.3 The cascading analysis of the overall main structure and main factors 62
4.3 Difference analysis 65
4.3.1 The main facet analysis of the differences in various fields 65
4.3.2 Analysis of the main evaluation indicators in the two areas 67
4.3.3 The cascading analysis of the main aspects and important factors of the two fields 70
Chapter 5 Conclusions and Suggestions 74
5.1 Analysis conclusion 74
5.1.1 Holistic 74
5.1.2 Difference 75
5.2 Future research and suggestions 76
References 77
Appendix 「Applying the AHP to discuss the important success factors for the petrochemical industry to build cloud computing services」questionnaire 82


List of Tables
Table 2 1 Impact of e-commerce on petrochemical industry and network logistics solutions 9
Table 2 2 Definitions related to cloud computing 13
Table 2 3 Related Literature of Cloud Service Characteristics 14
Table 2 4 related literature on considerations and challenges in building cloud services 18
Table 2 5 Definition of important success factors 21
Table 2 6 Evaluation methods of important success factors in petrochemical and information-related industries 25
Table 2 7 important success factors for building an information system 31
Table 3 1 important success factors for building cloud computing 41
Table 3 2 APH selection criteria and definition description 43
Table 3 3 Questionnaire format 44
Table 4 1 Questionnaire recovery situation 48
Table 4 2 Comparison table of each facet 49
Table 4 3 Comparison Table of Organizational Structure and Facets 50
Table 4 4 Paired comparison table of enterprise management aspects 50
Table 4 5 Paired comparison table of information technology facets 51
Table 4 6 Paired comparison table of project management aspects 52
Table 4 7 Paired comparison table of user facets 52
Table 4 8 Comparison of pairings of industrial characteristics and facets 53
Table 4 9 Maximum eigenvalues of main facets 54
Table 4 10 Stochastics table 55
Table 4 11 Consistency verification value table 56
Table 4 12 Overall main facet weights and ranking 57
Table 4 13 the weight of the overall factor evaluation index 59
Table 4 14 Relative weight and overall ranking of various evaluation indicators 63
Table 4 15 Comparison of facet weights and rankings in the two fields 66
Table 4 16 Comparison of weights of evaluation indicators in the two fields 68
Table 4 17 Relative weight and overall ranking of various indicators in the two fields 71


List of Figures
Figure 1 1 Paper Structure 6
Figure 2 1 AHP complete class structure 34
Figure 2 2 AHP incomplete class structure 34
Figure 2 3 Flow chart of applying AHP 37
Figure 3 1 Research architecture 40
Figure 4 1 The overall principal face weight value square diagram 58
Figure 4 2 Histogram of the relative weight values of the overall estimated indicators 64
Figure 4 3 Histogram of facet weights in two fields 67
Figure 4 4 Histogram of the weight of each indicator in the two fields 72


References
[1].DeLone, W. H., & McLean, E. R. (2016). Information systems success measurement. Foundations and Trends® in Information Systems, 2(1), 1-116.
[2].Oztaysi, B. (2014). A decision model for information technology selection using AHP integrated TOPSIS-Grey: The case of content management systems. Knowledge-Based Systems, 70, 44-54.
[3].Dhar, S. (2012). From outsourcing to Cloud computing: evolution of IT services. Management Research Review.
[4].Singhal, Z., & Gujral, R. K. (2012). Anytime anywhere-remote monitoring of attendance system based on RFID using GSM network. International Journal of Computer Applications, 39(3), 37-41.
[5].Bevilacqua, M., Ciarapica, F. E., & Marchetti, B. (2011). Integration of BPR and RFId technology in a process industry: Spare parts warehouse management analysis. International Journal of RF Technologies, 2(3, 4), 205-223.
[6].Jiang, J., & Yang, D. (2011, May). A research on commercial bank information systems based on cloud computing. In 2011 IEEE 3rd International Conference on Communication Software and Networks (pp. 363-366). IEEE.37
[7].Li, C., & Deng, Z. (2011, May). Value of cloud computing by the view of information resources. In 2011 International Conference on Network Computing and Information Security (Vol. 1, pp. 108-112). IEEE.
[8].Liu, P. L. (2011). Empirical study on influence of critical success factors on ERP knowledge management on management performance in high-tech industries in Taiwan. Expert Systems with Applications, 38(8), 10696-10704.
[9].Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., & Ghalsasi, A. (2011). Cloud computing—The business perspective. Decision support systems, 51(1), 176-189.
[10].Rajan, S., & Jairath, A. (2011, June). Cloud computing: The fifth generation of computing. In 2011 International Conference on Communication Systems and Network Technologies (pp. 665-667). IEEE.
[11].Thun, J. H., & Hoenig, D. (2011). An empirical analysis of supply chain risk management in the German automotive industry. International journal of production economics, 131(1), 242-249.
[12].Wang, X., Wang, B., & Huang, J. (2011, June). Cloud computing and its key techniques. In 2011 IEEE International Conference on Computer Science and Automation Engineering (Vol. 2, pp. 404-410). IEEE.
[13].Zhao, K., & Yu, X. (2011). A case based reasoning approach on supplier selection in petroleum enterprises. Expert Systems with Applications, 38(6), 6839-6847.
[14].Kshetri, N. (2010). Cloud computing in developing economies. Computer, 43(10), 47-55.
[15].Tsai, M. C., Lee, W., & Wu, H. C. (2010). Determinants of RFID adoption intention: Evidence from Taiwanese retail chains. Information & Management, 47(5-6), 255-261.
[16].Sheth, A., & Ranabahu, A. (2010). Semantic modeling for cloud computing, part 2. IEEE Internet Computing, 14(4), 81-84.
[17].Sultan, N. (2010). Cloud computing for education: A new dawn?. International Journal of Information Management, 30(2), 109-116.
[18].Aaker, D. A., & McLoughlin, D. (2009). Strategic market management: global perspectives. John Wiley & Sons.
[19].Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation computer systems, 25(6), 599-616.
[20].Erdogmus, H. (2009). Cloud computing: Does nirvana hide behind the nebula?. IEEE software, 26(2), 4-6.
[21].Grossman, R. L. (2009). The case for cloud computing. IT professional, 11(2), 23-27.
[22].Kim, W. (2009). Cloud computing: Today and tomorrow. J. Object Technol., 8(1), 65-72.
[23].Leavitt, N. (2009). Is cloud computing really ready for prime time?. Computer, (1), 15-20.
[24].Miller, H. G., & Veiga, J. (2009). Cloud computing: Will commodity services benefit users long term?. IT professional, 11(6), 57-59.
[25].Chunyan, S. (2008). Evaluation of Customer Value Based on AHP [J]. Value Engineering, 2.
[26].Pan, M. J., & Jang, W. Y. (2008). Determinants of the adoption of enterprise resource planning within the technology-organization-environment framework: Taiwan's communications industry. Journal of Computer information systems, 48(3), 94-102.
[27].Finney, S., & Corbett, M. (2007). ERP implementation: a compilation and analysis of critical success factors. Business process management journal.
[28].Bhatti, T. R. (2005, September). Critical success factors for the implementation of enterprise resource planning (ERP): empirical validation. In the second international conference on innovation in information technology (Vol. 110, pp. 1-10).
[29].Ngai, E. W., & Chan, E. W. C. (2005). Evaluation of knowledge management tools using AHP. Expert systems with applications, 29(4), 889-899.
[30].Salmeron, J. L., & Herrero, I. (2005). An AHP-based methodology to rank critical success factors of executive information systems. Computer Standards & Interfaces, 28(1), 1-12.
[31].Al-Gahtani, S. S. (2004). Computer technology acceptance success factors in Saudi Arabia: an exploratory study. Journal of Global Information Technology Management, 7(1), 5-29.
[32].Barnard, C. I. (2003). Organization and management: Selected papers (Vol. 7). Psychology Press.
[33].Ernst, H. (2002). Success factors of new product development: a review of the empirical literature. International journal of management reviews, 4(1), 1-40.
[34].Thong, J. Y. (2001). Resource constraints and information systems implementation in Singaporean small businesses. Omega, 29(2), 143-156.
[35].Bone, S., & Saxon, T. (2000). Developing effective technology strategies. Research-Technology Management, 43(4), 50-58.
[36].Bingi, P., Sharma, M. K., & Godla, J. K. (1999). Critical issues affecting an ERP implementation. IS Management, 16(3), 7-14.
[37].Li, C. (1999). ERP packages: what's next?. Information Systems Management, 16, 31-35.
[38].Lozinsky, S. (1998). Enterprise-wide software solutions: integration strategies and practices. Addison-Wesley Longman Ltd.
[39].Iacovou, C. L., Benbasat, I., & Dexter, A. S. (1995). Electronic data interchange and small organizations: Adoption and impact of technology. MIS quarterly, 465-485.
[40].Saaty, T. L., & Vargas, L. G. (1991). The Logic of Priorities, The Analytic Hierarchy Process Series. Vol. III.
[41].Weill, P., & Olson, M. H. (1989). Managing investment in information technology: mini case examples and implications. MIS quarterly, 3-17.
[42].Marsh, H. W. (1987). The hierarchical structure of self‐concept and the application of hierarchical confirmatory factor analysis. Journal of educational measurement, 24(1), 17-39.
[43].Schultz, R. L., Slevin, D. P., & Pinto, J. K. (1987). Strategy and tactics in a process model of project implementation. Interfaces, 17(3), 34-46.
[44].Boynton, A. C., & Zmud, R. W. (1984). An assessment of critical success factors. Sloan management review, 25(4), 17-27.
[45].Leidecker, J. K., & Bruno, A. V. (1984). Identifying and using critical success factors. Long range planning, 17(1), 23-32.
[46].DeSanctis, G., & Courtney, J. F. (1983). Toward friendly user MIS implementation. Communications of the ACM, 26(10), 732-738.
[47].Bullen, C. V., & Rockart, J. F. (1981). A primer on critical success factors.
[48].Hofer, C. W., & Schendel, D. (1978). Strategy formulation: Analytical concepts. West Publ.
[49].Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of mathematical psychology, 15(3), 234-281.
[50].Daniel, D. R. (1961). Management information crisis. Harvard business review, 111-121.
[51].Commons, J. R. (1934). Institutional economics: Its place in political economy. Macmillan.

電子全文 電子全文(網際網路公開日期:20250826)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔