跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2025/01/17 09:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張簡奕甫
研究生(外文):Chang Chien, I-Fu
論文名稱:基於隨機森林的LoRa網路配置與佈署之評估
論文名稱(外文):Evaluation of LoRa Network Configuration and Deployment Based on Random Forest
指導教授:鐘國家鐘國家引用關係
指導教授(外文):JONG, GWO-JIA
口試委員:施松村王在德彭鵬亮鐘國家
口試委員(外文):SHIH, SUNG-TSUNWANG, TZAI-DERPENG, PENG-LIANGJONG, GWO-JIA
口試日期:2020-06-24
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:72
中文關鍵詞:物聯網LoRa隨機森林
外文關鍵詞:Internet of ThingsLoRaRandom Forest
相關次數:
  • 被引用被引用:1
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  物聯網技術發展蓬勃,但大部分使用的都是短距離的傳輸協定,不適用於低功耗遠距離傳輸,本研究使用的LoRa是屬於一種低功耗長距離專為物聯網而生的通訊方式,適用於資料量小且不需頻繁傳輸的需求。但LoRa有眾多的傳輸參數會影響傳輸效果,應用於不同的地點時,最適合的參數都不盡相同,為了找出最適合的參數需要花費大量的測試時間,需把全部參數測試後,才能夠從中挑選最適合的參數部署。
  本論文使用隨機森林分析後,於不同需要部署LoRa設備的地點時,僅需要輸入限制條件,並調整對傳輸結果的數據權重,就能夠自動挑選最適合的參數使用,達成快速部署的功能。

  The Internet of Things (IoT) technology is booming, but most of IoT applications is applied by use short-distance transmission protocols and are not suitable for low-power and long-distance transmission. The LoRa used in this study is a low-power and long-distance communication technology specially developed for the Internet of Things. This application is applied to the requirements needs of small data volume and frequent transmission. However, LoRa has many transmission parameters that affect the transmission effect. When applied to different locations, the optimal parameters are different. In order to find the optimal parameters, it takes a lot of testing time, and it is necessary to test all the parameters before selecting the most suitable parameter for deployment.
  In this thesis, after using random forest analysis, when deploying LoRa devices in different locations, only need to enter the constraints and adjust the data weightings for the transmission results, and you can automatically select the most suitable parameters to use and achieve rapid deployment.
中文摘要 I
Abstract II
Content III
List of Figure V
List of Table VII
List of Abbreviations VIII
Chapter 1 Introduction 1
1.1 Background 1
1.2 Aim and Objective 4
1.3 Thesis Organization 5
Chapter 2 Literature Review 6
2.1 Introduction of IoT 6
2.2 LoRaWAN and LoRa Technology Overview 10
2.3 Typical applications of LoRa network 13
2.4 Random Forest 19
Chapter 3 Methodology 22
3.1 Proposed Architecture 22
3.2 Description of LoRa Parameters 24
3.3 Experimental Network 26
3.3.1 LPWAN and Internet 26
3.3.2 Hardware Design 27
3.4 Parameter Decision Algorithm 29
3.5 Proposed Random Forest Model 30
3.6 Network performance evaluation indicators 31
3.7 Experimental Procedure 32
Chapter 4 Results and Discussion 33
4.1 Node Installation 33
4.2 Configuration of Dataset 35
4.3 Prediction of Random Forest 38
4.4 Predicted Parameters Testing 49
4.5 Discussion 50
Chapter 5 Conclusions and Future Works 52
5.1 Conclusions 52
5.2 Future Works 53
References 54
List of Publications 58
Acknowledgments 59
Biography 60
[1] Jyun-Ji Su, "The evolution of mobile communications," in Developed of Science, no. 513, pp. 58-63, 2015.
[2] Yi-Shih Li (2017) Analysis of key IoT technologies LPWAN, 6 major technologies, various advantages and industrial development, business models and smart city applications Retrieved from https://reurl.cc/Y12Yal
[3] You-He Siao (2018) The Internet of Everything, Talking about the Trend of IoT Low-Power Wide Area Network Retrieved from https://reurl.cc/X6dAng
[4] J. Kim et al., "Standard-based IoT platforms interworking: Implementation experiences and lessons learned", IEEE Wireless Commun., vol. 54, no. 7, pp. 48-54, Jul. 2016.
[5] G. Xie, K. Ota, M. Dong, F. Pan, A. Liu, "Energy-efficient routing for mobile data collectors in wireless sensor networks with obstacles", Peer-to-Peer Netw. Appl., vol. 10, no. 3, pp. 472-483, May 2017.
[6] Z. Qin, J. Fan, Y. Liu, Y. Gao, G. Y. Li, "Sparse representation for wireless communications: A compressive sensing approach", IEEE Signal Process. Mag., vol. 35, no. 3, pp. 40-58, May 2018.
[7] M. Tao, K. Ota, M. Dong, "Locating compromised data sources in IoT-enabled smart cities: A great-alternative-region-based approach", IEEE Trans. Ind. Informat., vol. 14, no. 6, pp. 2579-2587, Jun. 2018.
[8] Z. Qin, H. Ye, G. Y. Li, B. F. Juang, "Deep learning in physical layer communications", IEEE Wireless Commun., vol. 26, no. 2, pp. 93-99, Apr. 2019.
[9] S. K. Sharma, X. Wang, "Towards massive machine type communications in ultra-dense cellular IoT networks: Current issues and machine learning-assisted solutions", IEEE Commun. Surveys Tut.
[10] H. Li, K. Ota, M. Dong, "Eccn: Orchestration of edge-centric computing and content-centric networking in the 5G radio access network", IEEE Wireless Commun., vol. 25, no. 3, pp. 88-93, Jun. 2018.
[11] X. Xiong, K. Zheng, R. Xu, W. Xiang, P. Chatzimisios, "Low power wide area machine-to-machine networks: key techniques and prototype", IEEE Commun. Mag., vol. 53, no. 9, pp. 64-71, Sep. 2015.
[12] M. R. Palattella et al., "Internet of Things in the 5G era: Enablers architecture and business models", IEEE J. Sel. Areas Commun., vol. 34, no. 3, pp. 510-527, Mar. 2016.
[13] M. Centenaro, L. Vangelista, A. Zanella, M. Zorzi, "Long-range communications in unlicensed bands: The rising stars in the IoT and smart city scenarios", IEEE Wireless Commun., vol. 23, no. 5, pp. 60-67, Oct. 2016.
[14] Z. Qin, F. Y. Li, G. Y. Li, J. A. McCann, Q. Ni, "Low-power wide-area networks for sustainable IoT", IEEE Wireless Commun., vol. 26, no. 3, pp. 140-145, Jun. 2019.
[15] "Sigfox", [online] Available: https://www.sigfox.com/.
[16] N. Sornin, M. Luis, T. Eirich, T. Kramp, O. Hersent, "LoRaWAN specification", Jan. 2015, [online] Available: https://www.lora-alliance.org/portals/0/specs/LoRaWAN%20Specification%201R0.pdf.
[17] L. Alliance, "White Paper: A Technical Overview of LoRa and Lorawan", 2015, [online]Available:https://www.tuv.com/media/corporate/products_1/electronic_components_and_lasers/TUeV_Rheinland_Overview_LoRa_and_LoRaWANtmp.pdf
[18] S. R. Sharan, W. Y. Qiao, H. Seung-Hoon, "A survey on LPWA technology: LoRa and NB-IoT", ICT Express, vol. 3, no. 1, 2017, [online] Available:
[19] A. Zourmand, A. L. Kun Hing, C. Wai Hung and M. AbdulRehman, "Internet of Things (IoT) using LoRa technology," 2019 IEEE International Conference on Automatic 1
[20] U. Raza P. Kulkarni M. Sooriyabandara "Low power wide area networks: An overview" IEEE Commun. Surveys Tuts. vol. 19 no. 2 pp. 855-873 2nd Quart. 2017.
[21] Q. Zhou, K. Zheng, L. Hou, J. Xing and R. Xu, "Design and Implementation of Open LoRa for IoT," IEEE Access, vol. 7, pp. 100649-100657, 2019.1
[22] Retrieved from https://www.intellias.com/why-lora-is-the-best-option-for-smart-city-and-smart-building-applications/
[23] Retrieved from https://www.semtech.com/company/press/Semtech-LoRa-Technology-Used-by-Trimble-for-IoT-Water-Monitoring-Sensor-Series
[24] Retrieved from https://www.electronicsweekly.com/news/wireless-healthcare-2019-05/
[25] Retrieved from https://www.thethingsnetwork.org/marketplace/solution/the-things-industries-agriculture-precision-farming
[26] Ho-Min Lin, " Research of Marine Engine Failure Prediction Based on Random Forest Algorithm ", Master Thesis, National Defense University Department of Operations Research, 2019
[27] Kamiński B, Jakubczyk M, Szufel P, "A framework for sensitivity analysis of decision trees". Central European Journal of Operations Research. 26 (1): 135–159.
[28] Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Vol. 1): Springer series in statistics New York, NY, USA:.
[29] Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
[30] O. Georgiou, U. Raza, "Low power wide area network analysis: Can LoRa scale", IEEE Wireless Commun. Lett., vol. 6, no. 2, pp. 162-165, Apr. 2017.
[31] M. Bor, J. Vidler, U. Roedig, "LoRa for the Internet of Things", Proc. Int. Conf. Embedded Wireless Systems Netw., pp. 361-366, Feb. 2016.
[32] Huang-Chen Lee, Kai-Hsiang Ke, "Monitoring of Large-Area IoT Sensors Using a LoRa Wireless Mesh Network System: Design and Evaluation" IEEE Trans. Instrum. Meas. vol. 67, no. 9, pp. 2177 – 2187, Sept. 2018
[33] Zhijin Qin, Yuanwei Liu , Geoffrey Ye Li, Julie A. McCann, "Performance Analysis of Clustered LoRa Networks" IEEE Trans. Veh. Technol vol. 68, no. 8, pp. 7616 – 7629, Aug. 2019
[34] Arliones Hoeller, Richard Demo Souza, Onel L. Alcaraz López, Hirley Alves, Mario de Noronha Neto, Glauber Brante, "Analysis and Performance Optimization of LoRa Networks With Time and Antenna Diversity" IEEE Access, vol. 6, pp. 32820 – 32829, June 2018
[35] Mattia Rizzi, Paolo Ferrari, Alessandra Flammini, Emiliano Sisinni, "Evaluation of the IoT LoRaWAN Solution for Distributed Measurement Applications" IEEE Trans. Instrum. Meas. Vol. 66, no. 12, pp. 3340 – 3349, Dec 2017
[36] S. Popli, R. K. Jha and S. Jain, "A Survey on Energy Efficient Narrowband Internet of Things (NBIoT): Architecture, Application and Challenges" IEEE Access, vol. 7, pp. 16739-16776, 2019.
[37] H. H. R. Sherazi, M. A. Imran, G. Boggia and L. A. Grieco, "Energy Harvesting in LoRaWAN: A Cost Analysis for the Industry 4.0" IEEE Communications Letters, vol. 22, no. 11, pp. 2358-2361, Nov. 2018.
[38] T. Elshabrawy and J. Robert, "Capacity Planning of LoRa Networks With Joint Noise-Limited and Interference-Limited Coverage Considerations" IEEE Sensors Journal, vol. 19, no. 11, pp. 4340-4348, 1 June1, 2019.
[39] Q. Zhou, K. Zheng, L. Hou, J. Xing and R. Xu, "Design and Implementation of Open LoRa for IoT" IEEE Access, vol. 7, pp. 100649-100657, 2019.
[40] L. Shi, Y. He, B. Li, T. Cheng, Y. Huang and Y. Sui, "Transmission Tower Tilt Angle On-Line Prognosis by Using Solar-Powered LoRa Sensor Node and Sliding XGBoost Predictor" IEEE Access, vol. 7, pp. 86168-86176, 2019.
[41] C. Liao, G. Zhu, D. Kuwabara, M. Suzuki and H. Morikawa, "Multi-Hop LoRa Networks Enabled by Concurrent Transmission" IEEE Access, vol. 5, pp. 21430-21446, 2017.
[42] N. El Rachkidy, A. Guitton and M. Kaneko, "Collision Resolution Protocol for Delay and Energy Efficient LoRa Networks" IEEE Transactions on Green Communications and Networking, vol. 3, no. 2, pp. 535-551, June 2019.
[43] X. Zhang, M. Zhang, F. Meng, Y. Qiao, S. Xu and S. Hour, "A Low-Power Wide-Area Network Information Monitoring System by Combining NB-IoT and LoRa" IEEE Internet of Things Journal, vol. 6, no. 1, pp. 590-598, Feb. 2019.
[44] S. Benaissa et al., "Internet of animals: characterisation of LoRa sub-GHz off-body wireless channel in dairy barns" Electronics Letters, vol. 53, no. 18, pp. 1281-1283, 31 8 2017.
[45] H. H. R. Sherazi, G. Piro, L. A. Grieco and G. Boggia, "When Renewable Energy Meets LoRa: A Feasibility Analysis on Cable-Less Deployments" IEEE Internet of Things Journal, vol. 5, no. 6, pp. 5097-5108, Dec. 2018.
[46] O. Georgiou and U. Raza, "Low Power Wide Area Network Analysis: Can LoRa Scale?" IEEE Wireless Communications Letters, vol. 6, no. 2, pp. 162-165, April 2017.
[47] C. Ebi, F. Schaltegger, A. Rüst and F. Blumensaat, "Synchronous LoRa Mesh Network to Monitor Processes in Underground Infrastructure" IEEE Access, vol. 7, pp. 57663-57677, 2019.
[48] Frank Rayal(2016), "Mobile and Wide-Area IoT: LPWA and LTE connectivity",
Produced by Mobile Experts in collaboration with XONA Partners [49] Short Range Devices (SRD) Operating in the Frequency Range 25 MHz to 1000 MHz |Part 1: Technical Characteristics and Methods of Measurement, Aug. 2018
[50] Retrieved from https://www.espressif.com/en/products/socs/esp32/resources
電子全文 電子全文(網際網路公開日期:20250724)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊