(3.236.175.108) 您好!臺灣時間:2021/02/28 02:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王靜雯
研究生(外文):WANG, CHING-WEN
論文名稱:科技接受模式於健身App使用意願之探討-以騎行運動為對象
論文名稱(外文):A TAM-Based Study on the Intentions to Use of Fitness App with a Focus on Cycling
指導教授:徐偉智徐偉智引用關係
指導教授(外文):HSU, WEI-CHIH
口試委員:宗靜萍陳朝烈汪桓生徐偉智
口試委員(外文):TZUNG, CHING-PINGCHEN, CHAO-LIEHWANG, HUAN-SHENGHSU, WEI-CHIH
口試日期:2020-07-22
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:78
中文關鍵詞:行動應用程式健身App科技接受
外文關鍵詞:Mobile ApplicationFitness AppTAM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:87
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
現今隨著年科技進步的發展,健康管理的服務設計逐漸融入創新商業模式,透過手機或平板電腦的多媒體應用程式,結合物聯網、行動App、穿戴式裝置等,消費者享受更多的服務。政府積極帶動全民健身以促進民眾健康,近年以行動裝置加載各種行動應用程式(APP)的增加,成為大眾日常生活不可或缺的工具,隨時隨地提供使用者跟著雲教練健身、記錄運動履歷、參與社群活動等,達成健康管理。這些健身科技透過行動裝置的應用程式App,為健康生活帶來許多便利,本研究探討影響健身App使用意願之因素,有助於健康與健身產業未來產品開發設計之策略依據。

以科技接受理論之知覺有用性、知覺易用性為基礎,加上知覺有趣性及網紅教練(或稱CycleTuber),來探討健身App使用意願,本研究從五個構面設計問卷,以騎行運動為對象,共蒐集117份問卷,有效問卷106份、無效問卷11份,依據普遍應用之Cronbach’s α 係數進行問卷評量的信度檢驗,並使用SPSS軟體之多種分析進行檢定。研究結果顯示:「知覺有用性」、「知覺易用性」、「知覺有趣性」均與健身App之使用意願達到顯著正向影響,其中「知覺有趣性」的影響程度最高,而網紅健身教練(CycleTuber)對健身App使用意願沒有顯著影響。最後,再依研究結果,對健身產業未來產品發展與進一步研究,提出參考建議。


關鍵字:行動應用程式、健身App、科技接受
ABSTRACT
Nowadays, along with the rapid development of technological advancements, more innovate business models are changing the world, including design and implementation of health management services. Customers enjoy a greater selection based on the multimedia application program of mobiles and pads connecting with cloud computing services, IoT and wearable devices.

The government takes action to launch extensive mass fitness programs to provide many benefits to citizens. Mobile Application becomes the main tool for everyday use due to increase on mobile devices in recent years, providing more functions as cloud training, workout records and social network to achieve health management, anytime and anywhere you want. Fitness technology through a mobile-based application provides more convenience to people’s health lives. This study focuses on investigating the factors that influence users’ intentions on fitness apps. Also, it is helpful for the health and fitness industry to develop their products, design-making and business strategy.

This research uses the Technology Acceptance Model. With a focus on cycling, the survey is conducted by five aspects. There were 117 questionnaires received with 106 valid and 11 invalid numbers. Cronbach's alpha coefficient is used primarily as a measurement of the internal consistency and the reliability of the questionnaire. Using SPSS software and statistical analysis methods to verify research hypothesis. The research shows that perceived usefulness, perceived ease of use and perceived playfulness all have a positive impact on the Intentions to Use of Fitness App. Perceived playfulness especially has the greatest influence on the intentions to Use among them. Internet celebrity (CycleTuber) doesn’t significantly affect the Intentions to Use. Finally, making recommendations to fitness industry in further design and product development in the future.

Key words:Mobile Application, Fitness App, TAM

目 錄

中文摘要 --------------------------------------------------------i
英文摘要 (Abstract) ---------------------------------------------ii
誌謝 --------------------------------------------------------iii
目錄 --------------------------------------------------------iv
表目錄 --------------------------------------------------------vi
圖目錄 --------------------------------------------------------vii

一、 緒論--------------------------------------------------- 1
1.1 研究背景------------------------------------------------ 1
1.2 研究動機------------------------------------------------ 10
1.3 論文架構----------------------------------------------- 13
二、 文獻探討----------------------------------------------- 14
2.1 科技接受模式-------------------------------------------- 14
2.2 信度分析探討-------------------------------------------- 21
2.3 騎行運動------------------------------------------------ 27
2.4 運動市場的App現況--------------------------------------- 29
2.5 騎行健身的應用程式(APP)發展世代特色----------------------- 39
2.6 從Youtuber到Cycletuber之影音創作者---------------------- 40
三、 研究方法----------------------------------------------- 42
3.1 研究假設----------------------------------------------- 42
3.2 操作性定義--------------------------------------------- 44
3.3 研究對象----------------------------------------------- 47
3.4 問卷調查與專家效度-------------------------------------- 49
3.5 研究資料分析方法---------------------------------------- 53
四、 研究結果與討論------------------------------------------ 55
4.1 敘述性統計--------------------------------------------- 55
4.2 Cronbach’s α係數信度----------------------------------- 59
4.3 效度與因素分析----------------------------------------- 60
4.4 相關性分析--------------------------------------------- 61
4.5 多元迴歸分析------------------------------------------- 62
五、 結論與建議--------------------------------------------- 65
5.1 研究結論----------------------------------------------- 65
5.2 研究建議與產業商機-------------------------------------- 66
5.3 研究限制----------------------------------------------- 67
5.4 未來探討領域之建議-------------------------------------- 68

六、 參考文獻----------------------------------------------- 69
附錄一 問卷調查表--------------------------------------------- 75

一、英文部分:
1.World Health Organization (2015), World report on ageing and health. Chapter 5, long-term-care system, 128.
2.World Health Organization (2010), Global recommendations on physical activity for health. Overview.
3.Global Wellness Institute (2019, October), Move to be Well: The Global Economy of Physical Activity, Executive Summary, iii-xxi & 51-52
4.Apple Annie Company (2019), State of Mobile 2019, P9-12. 1901_State_of_Mobile_Main_EN_PDF.
5.Apple Annie Company (2020), State of Mobile 2020, P5-06. 2001_State_of_Mobile_Main_EN_PDF
6.Davis, Fred D., Bagozzi, Richard P. and Warshaw, Paul R. (1989) User acceptance of computer technology: a comparison of two theoretical models. Management Science. 35(8), p.985.
7.Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and U ser Acceptance of Information Technology. MIS Quarterly, 13(3), 3 19-340.
8.Adams, D.A., Nelson, R.R. and Todd, P.A. (1992) ,“Perceived usefulness, ease of use , and usage of information technology: a replication” , MIS Quarterly 16(2), pp.227-247
9.Ji-Won Moon, Young-Gul Kim (2001), Extending the TAM for a World-Wide-Web context, Graduate School of Management, KAIST, 207-43 Cheongryangri-Dong, Dongdaemoon-Gu, Seoul, 130-012, South Korea.
10.Agarwal, R. and Prasad, J.(1999), “Are individual differences germane to the acceptance of new information technologies”, Decision Science 30(2), Spring pp.361-391
11.Ajzen, I. and Fishbein, M.(1980), Understanding Attitudes and Predicting Social Behavior, Prentice-Hall, Englewood Chiffs, New York
12.Ajzen, I. and Madden, T.J.(1986), “Prediction of goal-directed behavior: attitudes, intentions, and perceived behavioral control”, Journal of Experimental Social Pshychology 22, pp.453-474
13.Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211
https://doi.org/10.1016/0749-5978(91)90020-T
14.Al-Qeisi, K., Dennis, C., Alamanos, E., & Jayawardhena, C. (2014). Web site design quality and usage behavior: Unified Theory of Accepta nce and Use of Technology. Journal of Business Research, 67(11), 2282-2290
https://doi.org/10.1016/j.jbusres.2014.06.016
15.Aliyar, S., & Mutambala, C. (2015). Consumers' online purchase intention in cosmetic products. (Bachelor, Linnaeus University),
Retrieved from http://lnu.diva-portal.org/smash/record.jsf?pid=diva2%3A824130 &dswid=-7401 (urn:nbn:se:lnu:diva-44876;oai:DiVA.org:lnu-44876;div a2:824130)
16.Cakır, R., & Solak, E. (2015). Attitude of Turkish EFL Learners towards e-Learning through Tam Model. Procedia - Social and Behavioral Sciences, 176, 596-601. https://doi.org/10.1016/j.sbspro.2015.01.515
17.Trust and TAM in online shopping: An integrated model David Gefen; Elena Karahanna; Detmar W Straub MIS Quarterly; Mar 2003; 27, 1; ABI/INFORM Global pg. 51
18.Hsu, C.L. and Lu, H.P. (2004) Why Do People Play On-Line Games? An Extended TAM with Social Influences and Flow Experience. Information & Management, 41, 853-868.
19.Wu, Jen-Her and Wang, Shu-Ching, What Drives Mobile Commerce? : An Empirical Evaluation of the Revised Technology Acceptance Model, Information & Management, Vol. 42 (5), 2005, pp. 719-729 (SSCI).
20.Ozok, A. A. and Wei, J. (2010): An Empirical Comparison of Consumer Usability Preferences in Online Shopping Using Stationary and Mobile Devices. Electronic Commerce Research, Vol. 10(2), pp. 112-137.
21.Prata, W., de Moraes, A., Quaresma, M.: User’s demography and expectation regarding search, purchase and evaluation in mobile application store. Work: A Journal of Prevention, Assessment and Rehabilitation 41, 1124–1131 (2012)
22.Zeithaml, V. A., & bitner, M.J.(2000). Service marketing: Integrating customer focus across the firm. McGraw-Hill.
23.Nunnally, J.C. (1978) Psychometric theory. 2nd Edition, Cross-cultural psychometric assessment of the parent-teen sexual risk communication (PTSRC-III) scale in Jamaica
24.Nunnally, J.C. and Bernstein, I.R. (1994) Psychometric Theory. McGraw-Hill, New York. Psychometric Evaluation of the Japanese Wijma Delivery Expectancy/Experience Questionnaire
25. Kuder, G. F., & Richardson, M. W. (1937). The theory of the estimation of test reliability. Psychometrika, 2(3), 151–160. https://doi.org/10.1007/BF02288391
26.Robert A. Peterson (1994) A Meta-Analysis of Cronbach's Coefficient Alpha, Journal of Consumer Research 21(2):381-91 · February 1994 University of Texas at Austin
27.Nicola L. Ritter (2010), Understanding a Widely Misunderstood Statistic: Cronbach’s α, Texas A&M University, Paper presented at the annual meeting of the Southwest Educational Research Association, New Orleans, February 18, 2010
28.George, D., & Mallery, P., (2003). Using SPSS for Windows step by step: A simple guide and reference. London: Pearson Education
29.Joseph A. Gliem Rosemary R. Gliem (2003), Calculating, Interpreting, and Reporting Cronbach’s Alpha Reliability Coefficient for Likert-Type Scales. Presented at the Midwest Research-to-Practice Conference in Adult, Continuing, and Community Education, The Ohio State University, Columbus, OH, October 8-10, 2003.
30.Systematic review: Work-related stress and the HSE Management Standards
K. Brookes, C. Limbert, C. Deacy, A. O’Reilly, S. Scott, K. Thirlaway
Occupational Medicine, Volume 63, Issue 7, October 2013, Pages 463–472
31.Keith S. Taber (2017), Science Education Centre, Faculty of Education, University of Cambridge, The Use of Cronbach’s Alpha When Developing and Reporting Research Instruments in Science Education. Res Sci Educ 48, 1273–1296 (2018). https://doi.org/10.1007/s11165-016-9602-2

< 中文部分 >
32.盧昱璇, 2013, 探討行動應用程式開發流程之行動研究, 國立中山大學,博士
論文
33.楊忠民, 2017, 行動科技應用:科技使用意圖與現上購買意圖之整合性觀點,
 國立中興大學,博士論文
34.吳統雄,1985, 態度與行為研究的信度與效度:理論、應用、反省。民意學
術專刊,民74夏,29-53。
35.張書勳/錢玉芬/林于新, 2009,”以科技接受整合模式探討消費者使用購物網站之行為意圖”,台北市, 2009數位創世紀學術實務國際研討會,5月15日.
36.蔡豐州, 2010, 以一個整合性科技接受模式探討行動加值服務之採用意向,崑山科技大學,碩士論文.
37.戴瑩, 2011, 以科技接受模式探討線上旅遊網站之使用意圖 :以易遊網為例 ,國立成功大學,碩士論文.
38.葉賀勤, 2012, 以科技接受模型探討消費者之網路銀行使用意圖 ,國立成功大學,碩士論文.
39.王帝欽,2012, 科技接受認知與個人創新特性對行動服務再使用意願影響之研究,淡江大學,碩士論文.
40.陳智維, 2012, 3D顯示電視之科技接受模型分析-以創新擴散觀點, 長庚大學,碩士論文.
41.葉仲哲/林靜儀/陳秀慧,2013,”影響消費者使用APPs意圖之因素”,2013服務業國際化研討會,台南市,11月22日
42.高乾育,2014, 科技接受理論(TAM)與計畫行為理論(TPB)對消費者使用雲端服務行為意圖之影響以行動辦公室為例,國立成功大學,碩士論文.
43.詹曜澤,2014, 以聯合分析方法探討消費者對APP 遊戲之屬性偏好,國立高雄應用科技大學,碩士論文
44.吳智鴻/蔡依錞,2014,”以科技接受模式來探討社群網站Facebook的使用意圖”,台灣科技大學人文社會學報,103年,10(1),29-44
45.李振主, 2014,以科技接受模式探討智慧型手機使用者對手機應用程式(App)之付費意願 :以Google Play商店為例,義守大學,碩士論文
46.蔣明璋, 2014,科技接受模型在智慧型手機App使用意向研究—以神魔之塔為例, 義守大學,碩士論文
47.楊東山,2016, 以科技接受模式探討旅遊者使用行動裝置行為意圖之研究,國立台東師範大學,碩士論文.
48.葉振賢,2016,整合科技接受模式與計畫行為理論於虛擬實境與飛輪運動之行為,國立屏東科技大學,碩士論文.
49.許力云,2018,以科技接受模式、創新特性探討Nike+ Running App的使用意圖,國立體育大學,碩士論文.
50.劉康平,2018,行動裝置App遊戲持續使用意圖之探討,明新科技大學,碩士論文
51.岳皓雯,2019,運動App持續使用意圖之研究:以Mini Soccer為例,台北市立大學,碩士論文
52.李彥甫,2019, 從科技接受模型探討虛擬實境購物之行為,國立屏東大學,碩士
論文
53黃麒文,2019, 以資訊接受模式探討科技信任對消費者網路口碑採用意圖與
購買意願之影響:以YouTube為例,國立台北科技大學,碩士論文
54.陳亭妤,2020, 應用科技接受模式以探討線上看房使用意願之研究,國立台北
科技大學,碩士論文

三、網站:
55.行政院網/首頁/政策與計畫/長照2.0,照顧的長路上更安心(109/02/03)
擷取日期:2020/05/09 取自
https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/dd4675bb-b78d-4bd8-
8be5-e3d6a6558d8d
56.衛生福利部國民健康署官網/新聞/103年/推廣全民運動,健康是財富之本-
一個被人忽略的努力方向. 擷取日期:2020/05/09取自
https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=1134&pid=2752
57.財團法人資訊工業策進會官網/ 首頁/ 本會新聞(108/02/21).
擷取日期:2020/05/09 取自:
https://www.iii.org.tw/Press/NewsDtl.aspx?fm_sqno=14&nsp_sqno=2081
58.東森新聞雲(2016)/ETtoday新聞/ 破紀錄!Google:台灣智慧型手機滲透
率達82% | 擷取日期: 2020/05/10 原文網址:
https://www.ettoday.net/news/20160823/760867.htm#ixzz6M29SvE24
59. Mary Meeker 2019年6月發表《網路趨勢報告》(Internet Trends Report),
擷取日期: 2020/05/13 擷取自:
https://www.inside.com.tw/article/16610-2019-Internet-Trends-Report
60. Introduction to SAS. UCLA: Statistical Consulting Group.
擷取日期: 2020/07/22 擷取自:
https://stats.idre.ucla.edu/spss/faq/what-does-cronbachs-alpha-mean/
61.Mediakix 官方網站/ What is a Youtuber?
擷取日期: 2020/05/20 擷取自:
https://mediakix.com/blog/what-is-a-youtuber
62. 紐約時報中文網 2018年4月23日, 擷取日期: 2020/05/20 擷取自:
https://cn.nytimes.com/technology/20180423/back-story-youtube/zh-hant/dual/

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔