跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/26 14:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施尚逸
研究生(外文):Shih, Shang-I
論文名稱:適用於太陽能平滑化控制之新型直流耦合混合式儲能系統之研究
論文名稱(外文):New DC Coupling Hybrid Energy Storage System for Smoothing Output Power of Photovoltaic Generation System
指導教授:周宏亮
指導教授(外文):Jou, Hurng-Liahng
口試委員:李宗璘周宏亮吳晉昌
口試委員(外文):Lee, Tzung-LinJou, Hurng-LiahngWu, Jinn-Chang
口試日期:2020-07-22
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:137
中文關鍵詞:太陽能發電系統混合式儲能系統電池超級電容平滑化
外文關鍵詞:photovoltaic power generation systemhybrid energy storage systembatterysupercapacitorsmoothing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:59
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一適用於太陽能平滑化控制之新型直流耦合混合式儲能系統。該混合式儲能包含一電池組與一超級電容模組應用於太陽能發電系統輸出功率平滑化,而此架構與傳統直流耦合式電能轉換介面相比,其混合式儲能系統之充/放電僅需經一級電能轉換器,可減少充/放電時之能量損失,此電路架構具有架構簡單,硬體成本低且效率高等優點。此外,本論文亦發展適用於太陽能發電系統輸出功率平滑化之控制策略,此控制策略下,電池儲能系統僅須使用較少之充/放電量便可避免太陽能發電系統輸出功率變動量超出限定值,更因優先使用超級電容進行補償,僅於超出超級電容之補償容量時才啟動電池進行補償,可進一步的減少電池之裝設容量與充/放電次數,並可延長電池之使用年限。為驗證本論文之電路架構與控制策略之可行性,先進行電腦模擬並建立一硬體雛型進行實測,實測結果證明其可達預期功效。
This paper proposes a new DC coupling circuit topology for hybrid energy storage system (HESS). This HESS consists of the battery set and the supercapacitor set for smoothing the output power of photovoltaic power generation system. This circuit topology uses only one power converter stage to charge/discharge the battery set and supercapacitor set for reducing energy loss. It has the advantages of low hardware cost and high efficiency. In addition, this paper also proposes a control strategy for smoothing the output power of photovoltaic power generation system. Under this control strategy, the HESS only needs to use a small amount of energy to avoid the output power fluctuation of the photovoltaic power generation system exceeding the limit value. Moreover, the use of supercapacitor for compensation has a high priority. Thus, the battery set is only used when the compensation capacity of the supercapacitor is exceeded. Hence, it can further reduce the installed capacity of battery set and the charging/ discharging times, as well as it can extend the service life of battery set. To verify the feasibility of the proposed circuit topology and control strategy, the computer simulation is carried out and a prototype is established for experiments. Both the simulation the experimental results verify that it can achieve the expected performance.
摘要
ABSTRACT
致謝
目錄
圖目錄
表目錄
符號說明
第一章 緒論
1.1前言
1.2 研究動機與目的
1.3 論文大綱
第二章 太陽能發電與混合式儲能系統
2.1 太陽能電池陣列
2.1.1 太陽能電池陣列結構與原理[20,21]
2.1.2 太陽能電池陣列模型與特性簡介[22]
2.2 混合式儲能系統
2.2.1 電池儲能模型及應用
2.2.2 超級電容
2.2.2.1 超級電容原理與結構[27,28]
2.2.2.2 超級電容模型與特性簡介[29]
2.3 太陽能發電與混合式儲能系統之電能轉換介面
2.3.1 傳統電能轉換介面
2.3.1.1 交流耦合式電能轉換介面[31,32]
2.3.1.2 直流耦合式電能轉換介面[31-33]
2.3.2 新型直流耦合式電能轉換介面
第三章 太陽能輸出功率平滑化
3.1傳統平滑化控制方法
3.1.1 濾波器法[1,5,34]
3.1.2 移動平均和指數平滑化法[1,5,35]
3.1.3 斜率控制法[1,5,31]
3.2 新型平滑化控制策略
3.3 新型平滑化控制策略模擬結果
第四章 系統架構與控制方塊
4.1 三相四線式T-型雙向多階直流-交流電能轉換器
4.2 三埠式直流-直流電能轉換器
4.2.1 降壓模式
4.2.2 升壓模式
4.3 升壓直流-直流電能轉換器
4.4 控制方塊
4.4.1 三相四線式T-型雙向多階直流-交流電能轉換器之控制方塊
4.4.2 第一三埠式直流-直流電能轉換器之控制方塊
4.4.3 第二三埠式直流-直流電能轉換器之控制方塊
4.5 工作模式
4.6 運轉模式判斷流程圖
第五章 實驗結果
5.1 三相四線式T-型雙向多階直流-交流電能轉換器之實驗結果
5.1.1 交流轉直流
5.1.2 直流轉交流
5.2 最大功率點追蹤
5.3電能轉換介面對電池組充/放電之實測結果
5.4電能轉換介面對超級電容模組充/放電之實測結果
5.5電能轉換介面之工作模式實測結果
第六章 結論
6.1總結
6.2未來研究方向
參考資料

[1]S. Sukumara, M. Marsadeka, K.R. Agileswarib, H. Mokhlisc, “Ramp-rate control smoothing methods to control output power fluctuations from solar photovoltaic (PV) sources—A review,” J. Energy Storage, vol. 20, pp. 218–229, 2018.
[2]S. Shivashankar, S. Mekhilef, H. Mokhlis, M. Karimi, “Mitigating methods of power fluctuation of photovoltaic (PV) sources–a review,” J. Energy Storage, vol. 59, pp. 1170–1184, 2016.
[3]D. Cheng, B.A. Mather, R. Seguin, J. Hambrick, R.P. Broadwater, “Photovoltaic (PV) impact assessment for very high penetration levels,” IEEE J. Photovoltaics, vol. 6, no. 1, pp. 295–300, 2016.
[4]Y.S. Lim, J.H. Tang, “Experimental study on flicker emissions by photovoltaic systems on highly cloudy region: a case study in Malaysia,” J. Energy Storage, vol. 64, pp. 61–70, 2014.
[5]Dimitar Nikolov Nikolov, 2017, “Power ramp rate reduction in photovoltaic power plants using energy storage”, Aalborg University, Master Thesis.
[6]M. Saleh, L. Meek, M.A. Masoum, M. Abshar, “Battery-less short-term smoothing of photovoltaic generation using sky camera”, IEEE Trans. Industrial Informatics, vol. 14, no. 2, pp. 403–414, 2018.
[7]N. Jabalameli, S. Deilami, M.A. Masoum, F. Shahnia, “Rooftop PV with battery storage for constant output power production considering load characteristics,” 8th International Conference on Electrical and Electronics Engineering (ELECO), Nov. 2013.
[8]Walid A. Omran, M. Kazerani, M. M. A. Salama, “Investigation of Methods for Reduction of Power Fluctuations Generated From Large Grid-Connected Photovoltaic Systems,” IEEE Trans. Energy Conversion, vol. 26, no. 1, pp. 318–327, 2011.
[9]R. Yan, T.K. Saha, “Power ramp rate control for grid connected photovoltaic system”, Conference Proceedings IPEC, pp. 83–88, 2010.
[10]N. Ina, S. Yanagawa, T. Kato, Y. Suzuoki, “Smoothing PV system’s output by tuning MPPT control,” IEEJ Trans. Power and Energy, vol. 124, no. 3, pp. 455–461, 2004.
[11]L. Meng, T. Dragicevic, J. M. Guerrero, “Adaptive Control Design for Autonomous Operation of Multiple Energy Storage Systems in Power Smoothing Applications,” IEEE Trans. Industrial Electronics, vol. 65, no. 8, pp. 6612–6624, 2018.
[12]C. J. Hanley, G. H. Peek, J. D. Boyes, “Solar Energy Grid Integration Systems–Energy Storage (SEGIS-ES),” SANDIA REPORT, 2008.
[13]T. M. Masaud, K. Lee, P. K. Sen, “An overview of energy storage technologies in electric power systems: What is the future?,” North American Power Symposium (NAPS), pp. 1–6, 2010.
[14]K. C. Divya, J. Ostergaard, “Battery energy storage technology for power systems—An overview,” Electric Power System Research, vol. 79, no. 4, pp. 511–520, 2009.
[15]M. T. Lawder, B. Suthar, P. W. C. Northrop, S. De, C. M. Hoff, O. Leitermann, M. L. Crow, S. Santhanagopalan, V. R. Subramanian, “Battery Energy Storage System (BESS) and Battery Management System (BMS) for Grid-Scale Applications,” Proceedings of the IEEE, vol. 102, no. 6, pp. 1014–1030, 2014.
[16]S. Fan, J. Duan, L. Sun, K. Zhang, “A Fast Modularized Multiwinding Transformer Balancing Topology for Series-Connected Super Capacitors,” IEEE Trans. Power Electronics, vol. 34, no. 4, pp. 3255–3268, 2019.
[17]K. Bi, L. Sun, Q. An, J. Duan, “Active SOC Balancing Control Strategy for Modular Multilevel Super Capacitor Energy Storage System,” IEEE Trans. Power Electronics, vol. 34, no. 5, pp. 4981–4992, 2019.
[18]D. B. Murray, J. G. Hayes, “Cycle Testing of Supercapacitors for Long-Life Robust Applications,” IEEE Trans. Power Electronics, vol. 30, no. 5, pp. 2505–2516, 2015.
[19]L. Bai, F. Li, Q. Hu, H. Cui, X. Fang, “Application of battery-supercapacitor energy storage system for smoothing wind power output: An optimal coordinated control strategy,” IEEE Power and Energy Society General Meeting (PESGM), 2016.
[20]齋藤勝裕,2012,3小時讀通太陽能電池,世茂出版有限公司。
[21]小西正暉、鈴木竜宏、蒲谷昌生,2014,一讀就懂!太陽能發電系統詳解,泰電電業股份有限公司。
[22]吳財福、張健軒、陳裕凱,2000,太陽能供電與照明系統綜論,全華科技圖書股份有限公司。
[23]R. Espino, E. Yoiti, M. Gomes, M. Villalva, “A Review of the Main Methods to trace the I-V Characteristic Curve of PV Sources,” 13th IEEE Int. Conf. Industry Applications (INDUSCON), pp. 24–30, 2018.
[24]經濟部,2017,區域性儲能設備技術示範驗證計畫。
[25]劉玉章、曾育貞、呂永方、沈錦昌、鍾人傑。電網級儲能技術研發現況與進展。臺灣能源期刊,第二卷,第二期,第169-190頁,June 2015。
[26]X. Wu, Z. Mei, C. Hu, C. Zhu, J. Sun, “Temperature Performance Comparative Analysis of Different Power Batteries,” IEEE Vehicle Power and Propulsion Conference (VPPC), 2016.
[27]M.I. Fahmi, R Rajkumar, R Arelhi, R Rajkumar, D. Isa, “The performance of a solar PV system using supercapacitor and varying loads”, IEEE Stu. Conf. on Research and Development, 2014.
[28]何嘉瑋,2012,以中間相微碳球製備複合式電極應用於超級電容器之研究,國立中山大學,碩士論文。
[29]M.E. Glavin, P. K.W. Chan, S. Armstrong, W.G. Hurley, “A stand-alone photovoltaic supercapacitor battery hybrid energy storage system,” 13th International Power Electronics and Motion Control Conference, 2008.
[30]吳佳芳,2013,電化學陰極沉積法製備氫氧化鎳與鎳磷化物應用於超級電容器與染料敏化太陽能電池電極材料,國立高雄應用科技大學,碩士論文。
[31]M. J. E. Alam, K. M. Muttaqi, D. Sutanto, “A Novel Approach for Ramp-Rate Control of Solar PV Using Energy Storage to Mitigate Output Fluctuations Caused by Cloud Passing,” IEEE Trans. Energy Convers., vol. 29, no. 2, pp. 507–518, 2014.
[32]Y. Furusho1, Y. Noto, K. Fujii, “1MW Power Conditioning System with Multiple DC Inputs for PVs and Batteries,” Int. Power Electron. Conf. (IPEC-Niigata 2018 -ECCE Asia), May 2018.
[33]Y.M. Chen, C.S. Cheng, H.C. Wu, “Grid-Connected Hybrid PV/Wind Power Generation System with Improved DC Bus Voltage Regulation Strategy,” Int. Power Electron. Conf. (IPEC-Niigata 2018 - ECCE Asia), May 2018.
[34]H. Liu, J. Peng, Q. Zang, K. Yang, “Control Strategy of Energy Storage for
Smoothing Photovoltaic Power Fluctuations,” IFAC-PapersOnLine, vol. 48, no. 28, pp. 162–165, 2015.
[35]Y. Yoshida, A. Takahashi, J. Imai, S. FUNABIKI, “Power Smoothing Control Methods Using Moving Average and FIR Filters in Distributed Generation Systems,” Journal of the Japan Institute of Energy, vol. 94, no. 48, pp. 1051–1056, 2015.
[36]M. Beye, M. Elsied, A. M. Mabwe, C. Onambele, “Grid interconnectionof renewable energy sources based on advanced multi-level inverter,” IEEE Int.l Conf. on Environment and Electrical Engineering and IEEE Ind. and Com. Power Systems Europe, pp. 1–6, 2017.
[37]N. Saxena, B. Singh, A. L. Vyas, “Single-phase solar PV system with battery and exchange of power in grid-connected and standalone modes,” IET Renewable Power Generation, vol. 11, no.2, pp. 325–333, 2017.
[38]A. H. Niasar, Z. Zare, F. R. Far, “A low-cost P&O based maximum power point tracking, combined with two-degree sun tracker,” The 6th Power Electronics, Drive Systems & Technologies Conference (PEDSTC2015), pp. 119–124, 2015.

電子全文 電子全文(網際網路公開日期:20250825)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top