跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 08:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇俐文
研究生(外文):Su, Li-Wen
論文名稱:多調變策略之非對稱T型雙向交流-直流電能轉換器之研製
論文名稱(外文):Study and Implementation of Multi Modulation Strategies for Bidirectional Asymmetrical T-type AC-DC Power Converter
指導教授:周宏亮
指導教授(外文):Jou, Hurng-Liahng
口試委員:周宏亮吳晉昌李宗璘
口試委員(外文):Jou, Hurng-LiahngWu, Jinn-ChangLee, Tzung-Lin
口試日期:2020-07-22
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:109
中文關鍵詞:調變策略交流-直流電網到車輛車輛到電網車載充電器
外文關鍵詞:modulation strategyAC-DCgrid to vehiclevehicle to gridon-board charger
相關次數:
  • 被引用被引用:0
  • 點閱點閱:36
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文發展一多調變策略之非對稱T型雙向交流-直流電能轉換器;此雙向交流-直流電能轉換器於不同交流電壓振幅採用不同調變策略,其具有雙向功率潮流與可用於寬範圍之交流電壓。操作於交流-直流電能轉換器時,交流埠電壓有效值為85V~130V時,其採用新式全橋三階調變,於交流埠電壓130V~180V時,其採用全橋單極性調變,而於交流埠電壓180V~265V時,其採用非對稱T型五階調變;操作於直流-交流電能轉換器時,交流埠電壓有效值為85V~130V時,其採用新式全橋三階調變,於交流埠電壓130V~160V時,其採用全橋單極性調變,而於交流埠電壓160V~265V時,其採用非對稱T型五階調變。本論文之特點有: 因可用於寬範圍之交流電壓,可滿足國際汽車工程師學會(SAE International) 交流第1級 (Level 1)與第2級(Level 2) 之充電範圍要求﹔因具有雙向功率潮流,可應用於車輛到電網(vehicle to grid,V2G)和電網到車輛(grid to vehicle, G2V)﹔因而,此電能轉換器可用於車載充電器。為驗證本論文所提出之多調變策略之非對稱T型雙向交流-直流電能轉換器之可行性,除進行電腦模擬外,並建立一3.2kW硬體雛型進行實驗。實驗結果證明本論文所發提出之多調變策略之非對稱T型雙向交流-直流電能轉換器可達到預期之性能。
This paper proposes a multi-modulation strategy for asymmetric T-type bidirectional AC-DC power converter. This bidirectional AC-DC power converter uses different modulation strategy for different AC voltage range. For the AC-DC application, the new full-bridge three-level modulation is adopted in AC voltage 85V~130V, the full-bridge unipolar modulation is adopted in AC voltage 130V~180V and the asymmetric T-type five-level modulation is adopted in AC voltage 180V~265V. For the DC-AC application, the new full-bridge three-level modulation is adopted in AC voltage 85V~130V, the full-bridge unipolar modulation is adopted in AC voltage 130V~160V and the asymmetric T-type five-level modulation is adopted in AC voltage 160V~265V. In addition, it has a bidirectional power flow and can be used for wide range of AC voltage. Therefore, this paper has the features of using in a wide range of AC voltage, meeting the SAE charging range requirements of AC Level 1 and Level 2, applying to vehicle to grid (V2G) and grid to vehicle (G2V) because of the bidirectional power. Hence, the proposed bidirectional AC-DC power converter can be used in the application of on-board charger. In order to verify the feasibility of the proposed multi-modulation strategy for asymmetric T-type bidirectional AC-DC power converter, computer simulation is carried out and a 3.2kW hardware prototype is established for experiments. Both simulation and experimental results prove that the proposed multi-modulation strategy for asymmetric T-type bidirectional AC-DC power converter can achieve the expected performance.
目錄

摘要 i
ABSTRACT ii
目錄 iii
圖目錄 v
表目錄 xi
符號說明 xii
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 2
1.3論文大綱 4
第二章 車載充電器 5
2.1電動車概況 5
2.2充電等級及建設[16] 6
2.3電動車及油電混合車之充電器 11
第三章 電能轉換器 12
3.1傳統電能轉換器 12
3.2三階電能轉換器 14
3.3五階電能轉換器 21
第四章 系統架構及控制原理 43
4.1電路架構 43
4.2控制原理 55
第五章 實驗結果 60
5.1.雙向交流-直流電能轉換器於新式全橋三階調變之實測結果 61
5.2.雙向交流-直流電能轉換器於全橋單極性調變之實測結果 67
5.3雙向交流-直流電能轉換器於新式對稱T型五階調變之實測結果 74
5.4模式轉換暫態之實測結果 81
5.6轉換器效率之量測結果 86
第六章 結論 88
6.1總結 88
6.2未來研究方向 88


[1]United Nations Framework Convention on Climate Change, 1992
[2]胡家勝、薛博文,電動車,2017,滄海圖書資訊股份有限公司。
[3]Y. Ma, T. Houghton, A. Cruden and D. Infield, "Modeling the Benefits of Vehicle-to-Grid Technology to a Power System," in IEEE Transactions on Power Systems, vol. 27, no. 2, pp. 1012-1020, May 2012.
[4]C. H. Dharmakeerthi, N. Mithulananthan and T. K. Saha, "Overview of the impacts of plug-in electric vehicles on the power grid," 2011 IEEE PES Innovative Smart Grid Technologies, Perth, WA, 2011, pp. 1-8.
[5]M. Yilmaz and P. T. Krein, "Review of benefits and challenges of vehicle-to-grid technology," 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, 2012, pp. 3082-3089.
[6]C. D. Anderson and J. Anderson, Electric and Hybrid Cars: A History, McFarland and Company, 2012.
[7]R. Zgheib, K. Al-Haddad and I. Kamwa, "V2G, G2V and active filter operation of a bidirectional battery charger for electric vehicles," 2016 IEEE International Conference on Industrial Technology (ICIT), Taipei, 2016, pp. 1260-1265.
[8]S. Sharma, M. Aware and A. Bhowate, "Control algorithm for G2V/V2G operation under unbalanced grid condition," 2017 7th International Conference on Power Systems (ICPS), Pune, 2017, pp. 188-193.
[9]Hurng-Liahng Jou, Jinn-Chang Wu, Kuen-Der Wu, Ting-Feng Huang, Szu-Hsiang Wei, “New Single-Phase Power Converter Topology for Frequency Changing of AC Voltage,” , Journal of Power Electronics, vol. 18, no. 3, pp. 694-701, May 2018
[10]M. Chen, S. Chakraborty and D. J. Perreault, "Multitrack power factor correction architecture," 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, 2018, pp. 737-745.
[11]J. Y. Yong, V. K. Ramachandaramurthy, K. M. Tan, N.Mithulananthan, “A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects,” Renewable and Sustainable Energy Reviews, vol. 49, pp. 365–385, Sep. 2015.
[12]H. Wang, A. Hasanzadeh, A. Khaligh, “Transportation Electrification: Conductive charging of electrified vehicles,” in IEEE Electrification Magazine, vol. 1, no. 2, pp. 46-58, Dec. 2013.
[13]K. Fahem, D. E. Chariag, L. Sbita, “On-board bidirectional battery chargers topologies for plug-in hybrid electric vehicles,” 2017 International Conference on Green Energy Conversion Systems (GECS), Hammamet, pp. 1-6, 2017.
[14]B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, D. P. Kothari, “A review of three-phase improved power quality AC-DC converters,” in IEEE Transactions on Industrial Electronics, vol. 51, no. 3, pp. 641-660, Jun. 2004.
[15]M. A. Fasugba, P. T. Krein, “Gaining vehicle-to-grid benefits with unidirectional electric and plug-in hybrid vehicle chargers,” 2011 IEEE Vehicle Power and Propulsion Conference, Chicago, IL, pp. 1-6, 2011.
[16]M. Yilmaz, P. T. Krein, “Review of Battery Charger Topologies, Charging Power Levels, and Infrastructure for Plug-In Electric and Hybrid Vehicles,” in IEEE Transactions on Power Electronics, vol. 28, no. 5, pp. 2151-2169, May 2013.
[17]SAE Electric Vehicle and Plug-in Hybrid Electric Vehicle Conductive Charge Coupler, SAE Standard J1772, Jan. 2010.
[18]CHAdeMO Association, “Technical specifications of quick charger for the electric vehicle,” CHAdeMO Protoc. Rev. 1.0 Rev. 2.0, 2010.
[19]www.teslamotors.com, “Tesla EV charging and supercharger technology.”
[20]Hydro Quebec, “ELECTRIC VEHICLE CHARGING STATIONS Technical Installation Guide,” 2nd edition, pp. 10-21, Aug. 2015.
[21]SAE Electric Vehicle Inductive Coupling Recommended Practice, SAE 5-1773, Feb. 1, 1995
[22]M. Rawson, S. Kateley, “Electric vehicle charging equipment design and health and safety codes,” California Energy Commission Rep,” Aug. 31, 1998.
[23]Vehicle Technologies Program, U.S. Dept. Energy, Office of Energy and Renewable Energy and the National Renewable Energy Lab, 2011
[24]IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems, IEEE Standard 1547, 2003.
[25]Power Quality Requirements for Plug-in Vehicle Chargers—Part 1: Requirements, SAE International Standard J2894, 2011.
[26]Electromagnetic Compatibility (EMC)—Part 3: Limits—Section 2: Limits for Harmonic Current Emissions, IEC1000-3-2 Doc., 1995.
[27]National Electric Code, National Fire Protection Association, Inc., Quincy, MA, 2002.
[28]K. Koshti, M. N. Rao, “A brief review on multilevel inverter topologies,” 2017 International Conference on Data Management, Analytics and Innovation (ICDMAI), Pune, pp. 187-193, 2017.
[29]A. Kahwa, H. Obara, Y. Fujimoto, “Design of 5-level reduced switches count Η-bridge multilevel inverter,” 2018 IEEE 15th International Workshop on Advanced Motion Control (AMC), Tokyo, pp. 41-46, 2018.
[30]O. Ibrahim, N. Z. Yahaya, N. Saad, K. Y. Ahmed, “Design and simulation of phase-shifted full bridge converter for hybrid energy systems,” 2016 6th International Conference on Intelligent and Advanced Systems (ICIAS), Kuala Lumpur, pp. 1-6, 2016.
[31]S. Xu, J. Zhang, J. Hang, “Investigation of a Fault-Tolerant Three-Level T-Type Inverter System,” in IEEE Transactions on Industry Applications, vol. 53, no. 5, pp. 4613-4623, Sept.-Oct. 2017.
[32]A. Chen, W. Wang, C. Du, C. Zhang, “Single-phase hybrid clamped three-level inverter based photovoltaic generation system,” The 2nd International Symposium on Power Electronics for Distributed Generation Systems, Hefei, pp. 635-638, 2010.
[33]M. S. Tahir, Jialong Xu, Y. Wang, “Novel CoolMosfet clamping three-level neutral-point-clamping inverter for low and medium power applications,” 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia), Kaohsiung, pp. 1949-1953, 2017.
[34]S. K. Chattopadhyay, C. Chakraborty, “A new technique for capacitor balancing of three-level flying-capacitor multilevel inverter,” IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, pp. 6357-6362, 2017.
[35]H. Wang, H. Li, C. Yan, D. Xu, “A Short-Circuit Fault-Tolerant Strategy for Three-Phase Four-Wire Flying Capacitor Three-Level Inverters,” 2019 IEEE 10th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Xi'an, China, 2019, pp. 781-786.
[36]A. Singh and R. N. Mahanty, "Simulation of simplified SVM technique for three phase five-level cascaded H-bridge inverter," 2017 International Conference on Information, Communication, Instrumentation and Control (ICICIC), Indore, pp. 1-6, 2017.
[37]A. Kahwa, H. Obara and Y. Fujimoto, "Design of 5-level reduced switches count Η-bridge multilevel inverter," 2018 IEEE 15th International Workshop on Advanced Motion Control (AMC), Tokyo, 2018, pp. 41-46, 2018.
[38]B. Sirisha and P. S. Kumar, "Implementation of FPGA based space vector PWM method for five level cascaded inverter," 2016 IEEE 7th Power India International Conference (PIICON), Bikaner, pp. 1-6, 2016.
[39]B. Zhang, Q. Ge, X. Wang, Z. Li and Y. Li, "Power Loss Evaluation and Control for Five-Level NPC H-Bridge Converter with Low-Switching-Frequency," 2018 21st International Conference on Electrical Machines and Systems (ICEMS), Jeju, 2018, pp. 2369-2372.
[40]F. Becker, P. Poure, E. Jamshidpour and S. Saadate, "Five-level H-bridge NPC converter control with minimum commutation," 2016 IEEE International Energy Conference (ENERGYCON), Leuven, 2016, pp. 1-6.
[41]U. V. Patil, H. M. Suryawanshi and M. M. Renge, "Multicarrier SVPWM controlled diode clamped multilevel inverter based DTC induction motor drive using DSP," 2012 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Bengaluru, 2012, pp. 1-5.
[42]Ahmad Radan, Zahra Daneshi Far, “Optimization Opportunities in Carrier-Based Multilevel PWM Using Degrees of Freedom of Modulation,”, pp.1-6, Jan 2007.
[43]N. F. Mailah, Mohamad Suhairy Saidin and Sharifah Sakinah Tuan Othman, "Simulation and construction of single phase Flying Capacitor Multilevel Inverter," 2010 IEEE Student Conference on Research and Development (SCOReD), Putrajaya, 2010, pp. 401-404.
[44]D. Park, N. Ku and R. Kim, "A novel switching loss minimization method for single-phase flying-capacitor multilevel inverter," 2015 IEEE 2nd International Future Energy Electronics Conference (IFEEC), Taipei, 2015, pp. 1-6.
[45]B. S. Kumar and A. Kirubakaran, "A Complete Fault-Tolerant Solution For A Single-Phase Five-Level Hybrid Flying Capacitor Inverter," 2019 Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, India, pp. 1-5, 2019.
[46]R. G. d. Almeida Cacau, R. P. Torrico-Bascopé, J. A. F. Neto and G. V. Torrico-Bascopé, "Five-Level T-Type Inverter Based on Multistate Switching Cell," in IEEE Transactions on Industry Applications, vol. 50, no. 6, pp. 3857-3866, Nov.-Dec. 2014.
[47]G. E. Valderrama, G. V. Guzman, E. I. Pool-Mazún, P. R. Martinez-Rodriguez, M. J. Lopez-Sanchez and J. M. S. Zuñiga, "A Single-Phase Asymmetrical T-Type Five-Level Transformerless PV Inverter," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 1, pp. 140-150, March 2018.
[48]G. E. Valderrama, G. V. Guzman, E. I. Pool-Mazún, P. R. Martinez-Rodriguez, M. J. Lopez-Sanchez and J. M. S. Zuñiga, “A Single-Phase Asymmetrical T-Type Five-Level Transformerless PV Inverter,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 1, pp. 140-150, March 2018.
[49]江旻哲, “以新型非對稱多階電能轉換器為基礎之新型低電池儲能系統,” 國立高雄科技大學, 2019.
[50]M. Yang, W. Choi, “Single-phase bidirectional three-level T-type inverter,” 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, pp. 2405-2408, 2018.



電子全文 電子全文(網際網路公開日期:20250825)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top