跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 16:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林翰廷
研究生(外文):LIN, HAN-TING
論文名稱:利用電泳沉積法製作具抗菌性之含銀生物活性玻璃/殼聚醣複合塗層於鈦表面
論文名稱(外文):Fabrication of silver-contanining bioactive glass/chitosan composite coatings on Ti for antibacterial applications by electrophoretic deposition
指導教授:林明宏林明宏引用關係
指導教授(外文):LIN, MING-HONG
口試委員:林明宏謝世峯陳順隆歐士輔
口試委員(外文):LIN, MING-HONGHSIEH, SHIH-FENGCHEN, SHUEN-LUNGOu, SHIH-FU
口試日期:2020-07-27
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:111
中文關鍵詞:電泳沉積鹼處理幾丁聚醣生物活性玻璃
外文關鍵詞:Electrophoretic depositionAlkali treatmentChitosanBioactive glass
相關次數:
  • 被引用被引用:0
  • 點閱點閱:48
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本研究利用鹼處理對純鈦進行表面改質,並利用電泳沉積方法,沉積幾丁聚醣與含銀生物活性玻璃複合薄膜至鈦上,並探討斯托伯法(Stöber)與溶膠-凝膠法(sol-gel)製作之生物活性玻璃對薄膜性質之影響。利用掃描式電子顯微鏡( SEM)、穿透式電子顯微鏡(TEM)、能量散射光譜儀(EDS)、X光繞射儀(XRD)、傅里葉紅外線光譜(FTIR)及X光電子光譜(XPS)分析其表面形貌、元素含量、薄膜晶體結構以及薄膜微結構。量測薄膜附著性與親疏水性,最後培養大腸桿菌以及浸泡人體模擬液測定樣品抗菌性及生物活性。
結果顯示出經鹼處理鈦試片形成多孔氧化鈦表面,電泳沉積使幾丁聚醣與含銀活性玻璃皆成功沉積至鈦上,該多孔狀能增加附著能力,抗菌測試結果顯示高電壓下能獲得較多沉積使得銀離子釋放增加並提高抗菌能力表現,溶膠-凝膠法製作之生物活性玻璃相較於斯托伯製作之生物玻璃造成較高幾丁聚醣沉積率,含斯托伯生物活性玻璃之薄膜具有較高抗菌能力,且因其生物玻璃露出面積較高,故表現出親水性與良好生物活性。

In this research uses alkali treatment to modify the surface of pure titanium, and uses electrophoretic deposition to deposit a composite film of chitosan and silver-containing bioactive glass on the titanium, and discussing the influence of the Stöber method and sol-gel method on the properties of the film. Using scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analysis it’s surface morphology, element content, film crystal structure and film structure. Measured film adhesion and hydrophilicity, Finally, cultured E. coli and immersed the human body simulation fluid to determine the antibacterial and biological activity of the sample.
The results showed that the titanium was treated with alkali to form a porous titanium oxide surface, both chitosan and silver-containing bioactive glass were successfully deposited on the titanium by electrophoretic deposition, and the adhesion ability was increased through the porous shape. The antibacterial test results have shown that more deposited under high voltage can increase the release of silver ions and improve the antibacterial performance. The bioactive glass produced by the sol-gel method result in a higher deposition rate of chitosan than the bioactive produced by Stöber, the film containing Stöber bioactive glass has higher antibacterial ability, and because of it’s exposed area is relatively high, so it shown hydrophilicity and good biological activity.

摘要
目錄
圖目錄
表目錄
第一章 緒論
1.1前言
第二章 基礎理論與文獻回顧
2.1生醫材料
2.1.1 生物應用金屬材料
2.1.2 生醫高分子
2.1.3 複合材料
2.1.4 陶瓷材料
2.2 生物活性玻璃
2.2.1 生物活性玻璃材料特性
2.2.2 生物活性及組成
2.3 生物活性玻璃合成
2.3.1 熔融法
2.3.2溶膠-凝膠法
2.3.3 斯托伯法
2.4 幾丁聚醣
2.4.1幾丁聚醣的抗菌性
2.4.2幾丁聚醣生物相容性
2.4.3幾丁聚醣生物醫學應用
2.5銀之抗菌機制
2.5.1合成含銀生物活性玻璃
2.6 鹼處理
2.7 電泳沉積
2.7.1電壓、電流對電泳沉積之影響
第三章 實驗步驟與方法
3.1 實驗架構
3.1.1 實驗步驟
3.1.2 實驗基材
3.1.3 實驗藥品
3.2 實驗方法
3.2.1 前處理
3.2.2 粉末製備
3.2.3電泳沉積
3.3 實驗分析儀
3.3.1 掃描式電子顯微鏡(SEM)與能量光譜儀(EDS)分析
3.3.2 雙束型聚焦離子束顯微鏡(FIB)
3.3.3 高解析場發射掃描穿透式電子顯微鏡(TEM)
3.3.4 黏附力百格試驗(Adhesion test)
3.3.5 傅里葉轉換紅外線光譜儀(FTIR)
3.3.6 X-ray 繞射儀(XRD)
3.3.7 X光光電子光譜(XPS)
3.3.8 感應偶合電漿質譜儀(ICP-MS)
3.3.9 接觸角量測儀(Contact Angle Analyzer)
3.3.10 電化學量測耐腐蝕
3.4 抗菌試驗
3.4.1 培養菌液
3.4.2 微量分光分析儀
3.4.3 抑菌圈
3.5 體外生物活性
第四章 結果與討論
4.1 試片表面形貌觀察
4.2 SEM、EDS微結構成分分析
4.3 橫截面TEM分析
4.4 鍍膜附著性百格試驗
4.6 XRD分析
4.7 FTIR分析
4.8 XPS分析
4.9 抗菌能力
4.9.1 抗菌機制表面形貌
4.10 銀離子之釋放量
4.10 生物活性
4.10 接觸角量測
4.11 極化曲線
第五張 結論
參考文獻


[1]V.-H. Leung, B. Darvell, Artificial salivas for in vitro studies of dental materials. Journal of dentistry 25, 475-484 (1997).
[2]S.V.Dorozhkin, Calcium orthophosphate bioceramics. Ceramics International41,13913-13966(2015)
[3]Hule, Rohan A., and Darrin J. Pochan. "Nanocomposites for Biomedical Applications." MRS bulletin 32 (2007).
[4]D.F. Williams, On the mechanisms of biocompatibility. Biomaterials , 29 2941–2953 (2008)
[5]Blasier, R. D., et al. "Bioresorbable implants: applications in orthopaedic surgery." Instructional course lectures 46: 531-546. (1997)
[6]Wiskott HW, Belser UC, Lack of integration of smooth titanium surfaces: a working hypothesis based on strains generated in the surrounding bone. Clin Oral Implants Res, Dec;10(6):429-44. (1999)
[7]Carlos Oldani and Alejandro Dominguez , Titanium as a Biomaterial for Implants. Recent Advances in Arthroplasty, InTech(2012).
[8]Ronald F. Gibson, “Principles of Composite Material Mechanics”, CRC Press, Boca Raton. (1994)
[9]Constantin Edi Tanasea, IulianaSpiridonb, PLA/chitosan/keratin composites for biomedical applications. Materials Science and Engineering: C Volume 40, Pages 242-247,1 July (2014)
[10]S. F. Hulbert, “Ceramics: Past, Present and Future”, Elsevier, Amsterdam, pp189 213. (1987)
[11]Feng-Huei, Lin, et al. "Sintered porous DP-bioactive glass and hydroxyapatite as bone substitute." Biomaterials 15.13: 1087-1098. (1994)
[12]L.L. Hench, Bioceramics: From concept to clinic, Journal of the American Ceramic Society 74 (7) 1487-1510. (1991)
[13]L.L Hench, Bioceramic. Journal of the American Ceramic Society .81:1708-1728. (1998)
[14]G.Kaura, V.Kumar, F.Baino, J C.Mauro, G.Pickrell, I.Evans, O.Bretcanu, Mechanical properties of bioactive glasses, ceramics, glass-ceramics and
composites: State-of-the-art review and future challenges, Materials Science & Engineering C 104 (2019)
[15]P. Sepulveda,J. R. Jones,L. L. Hench, In vitro dissolution of melt‐derived 45S5 and sol‐gel derived 58S bioactive glasses, Journal of Biomedical Materials Research,(2002)
[16]McLachlan, D. R. C., Farnell, B., Galin, H., “Aluminum in human brain disease”, Ravon Press, New York.(1983)
[17]L. L. Hench, H. A. Paschall, Direct Chemical Bond of Bioactive Glass-Ceramic Materials to Bone and Muscle, Journal of Biomedical Materials Research , NO. 4, pp. 25-42 (1973)
[18]N.F.Ibrahim H.Mohamad ,S.N.Fazliah M.Noor. N.Ahmad, Apatite formation on melt-derived bioactive glass powder basedon SiO2-CaO-Na2O-P2O5system, Ceramics Internationa,11676-11685(2017)
[19]A.Chlanda, P.Oberbek, M.Heljak, E.kijenska-Gawronska, T.Bolek, M.Gloc, L.John, M.Janeta, M.J.Wozniak, Fabrication, multi-scale characterization and in-vitro evaluation of porous hybrid bioactive glass polymer-coated scaffolds for bone tissue engineering." Materials Science and Engineering: C 94 516-523. (2019):
[20]Hong, Y., Chen, X., Jing, X., Fan, H., Gu, Z., & Zhang, X. Fabrication and drug delivery of ultrathin mesoporous bioactive glass hollow fibers. Advanced Functional Materials, 20(9), 1503-1510.(2010)
[21]Jones, J. R.. Review of bioactive glass: from Hench to hybrids. Acta biomaterialia, 9(1), 4457-4486. (2013)
[22]Sepulveda, P., Jones, J. R., & Hench, L. L.. Characterization of melt‐derived 45S5 and sol‐gel–derived 58S bioactive glasses. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 58(6), 734-740. (2001)
[23]Lopes, João Henrique, et al. "Investigation of citric acid-assisted sol-gel synthesis coupled to the self-propagating combustion method for preparing bioactive glass with high structural homogeneity." Materials Science and Engineering: C 97: 669-678. (2019)
[24]Stöber, Werner; Fink, Arthur; Bohn, Ernst. "Controlled growth of monodisperse silica spheres in the micron size range". Journal of Colloid and Interface Science. 26 (1): 62–69. (January 1968)
[25]Vichery, Charlotte, and Jean-Marie Nedelec. "Bioactive glass nanoparticles: from synthesis to materials design for biomedical applications." Materials 9.4: 288. (2016)
[26]Van Blaaderen, A., J. Van Geest, and A. Vrij. "Monodisperse colloidal silica spheres from tetraalkoxysilanes: particle formation and growth mechanism." Journal of Colioid and Interface Science 154.2: 481-501. (1992)
[27]Van Helden, A. K., J. W. Jansen, and A. Vrij. "Preparation and characterization of spherical monodisperse silica dispersions in nonaqueous solvents." Journal of Colloid and Interface Science 81.2: 354-368. (1981)
[28]https://en.wikipedia.org/wiki/St%C3%B6ber_process
[29]Bogush, G. H., M. A. Tracy, and C. F. Zukoski Iv. "Preparation of monodisperse silica particles: control of size and mass fraction." Journal of non-crystalline solids 104.1: 95-106. (1988)
[30]M. Dash, F. Chiellini, R.M. Ottenbrite, E. Chiellini, Chitosan – a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci36,981-1014(2011)
[31]E.Vunain, A.K.Mishra, B.B.Mamba, Fundamentals of chitosan for biomedical applications. Chitosan Based Biomaterials1,3-30(2017)
[32]Şenel, Sevda, and Susan J. McClure. "Potential applications of chitosan in veterinary medicine." Advanced drug delivery reviews 56.10: 1467-1480. (2004)
[33]Avilez, HV Ramos, et al. "Production of chitosan coatings on metal and ceramic biomaterials." Chitosan Based Biomaterials Volume 1. Woodhead Publishing,. 255-293. (2017)
[34]P.M.R Muraleedaran, V.M. Mujeeb, Applications of chitosan powder with in situ synthesized nano ZnO particles as an antimicrobial agent. International Journal of Biological Macromolecules77,266-272(2015)
[35]X.Zhao, Antibacterial bioactive materials. Bioactive Materials in Medicine,97-123(2011)
[36]Sudarshan, N. R., D. G. Hoover, and D. Knorr. "Antibacterial action of chitosan." Food Biotechnology 6.3: 257-272. (1992)
[37]Wang, Guang-Hua. "Inhibition and inactivation of five species of foodborne pathogens by chitosan." Journal of Food Protection 55.11: 916-919. (1992)
[38]J. Y. Kim, J. K. Lee , T. S. Lee , W. H. Park, Synthesis of chitooligosaccharide derivative with quaternary ammonium group and its antimicrobial activity against Streptococcus mutans. International Journal of Biological Macromolecules 32,23-27(2003)
[39]S.H. Chang, H.T. Victor Lin, G.J. Wu, G. J. Tsaia, pH Effects on solubility, zeta potential, and correlation betweenantibacterial activity and molecular weight of chitosan. Carbohydrate Polymers134,74-81(2015)
[40]L.Y. Zheng, J.F. Zhu, Study on antimicrobial activity of chitosan with different
molecular weights. ScienceDirect54,527-530(2003)
[41]S. Saravanan, R.S. Leena, N. Selvamurugan, Chitosan based biocomposite scaffolds for bone tissue engineeringS. International Journal of Biological Macromolecules93,1354-1365(2016)
[42]A. Fakhrya, G. B. Schneider, R. Zahariasc, S.Senel, Chitosan supports the initial attachment and spreading of osteoblasts preferentially over fibroblasts. Biomaterials25,2075-2079(2004)
[43]Seeherman, Howard, Rebecca Li, and John Wozney. "A review of preclinical program development for evaluating injectable carriers for osteogenic factors." JBJS 85.suppl_3: 96-108. (2003)
[44]Zhang, Yong, and Miqin Zhang. "Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering." Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 55.3: 304-312. (2001)
[45]Zhang, Yong, and Miqin Zhang. "Calcium phosphate/chitosan composite scaffolds for controlled in vitro antibiotic drug release." Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 62.3: 378-386. (2002)
[46]Lian, Qin, et al. "Fabrication and in vitro evaluation of calcium phosphate combined with chitosan fibers for scaffold structures." Journal of Bioactive and Compatible Polymers 24.1_suppl: 113-124. (2009)
[47]T. Tanabe, N. Okitsu, A. Tachibana, K. Yamauchi, Preparation and characterization of keratin–chitosan composite film. Biomaterials23,817-825(2002)
[48]H. Zhang, M. Wu, A. Sen, Silver nanoparticle antimicrobials and related materials, in: N. Cioffi, M. Rai (Eds.) Nano-antimicrobials, Springer Berlin Heidelberg, pp. 3-45. ,2012
[49]Q.L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim, J.O. Kim, A mechanistic study of the antibacterial effect of silver ions on escherichia coli and staphylococcus aureus, Journal of Biomedical Materials Research 52 (4) (2000) 662-668.
[50]R. Shrestha, D.R. Joshi, J. Gopali, S. Piya, Oligodynamic action of silver, copper and brass on enteric bacteria isolated from water of kathmandu valley, 2010.
[51]Leonor, Isabel B., et al. "Surface potential change in bioactive polymer during the process of biomimetic apatite formation in a simulated body fluid." Journal of Materials Chemistry 17.38: 4057-4063. (2007)
[52]Jung, Woo Kyung, et al. "Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli." Applied and environmental microbiology 74.7: 2171-2178. (2008)
[53]M. Bellantone, N.J. Coleman, L.L. Hench, Bacteriostatic action of a novel fourcomponent bioactive glass, Journal of Biomedical Materials Research 51 (3) 484-490. (2000)
[54]A.M. El-Kady, A.F. Ali, R.A. Rizk, M.M. Ahmed, Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles, Ceramics International 38 (1) 177-188. (2012)
[55]T.N. Kim, Q.L. Feng, J.O. Kim, J. Wu, H. Wang, G.C. Chen, F.Z. Cui, Antimicrobial effects of metal ions (ag+, cu2+, zn2+) in hydroxyapatite, Journal of Materials Science: Materials in Medicine 9 (3) 129-134. (1998)
[56]H. Lin, J. Zhang, F. Qu, J. Jiang, P. Jiang, In vitro hydroxyapatite-forming ability and antimicrobial properties of mesoporous bioactive glasses doped with ti/ag,Journal of Nanomaterials 2013 (2013) .
[57]M. Catauro, M.G. Raucci, F. de Gaetano, A. Marotta, Antibacterial and bioactive silver-containing na2o·cao·2sio2 glass prepared by sol–gel method, Journal of Materials Science: Materials in Medicine 15 (7) 831-837. (2004)
[58]S.H.An, T.Matsumoto, H.Miyajima, J.I.Sasaki, R. Narayanan, K.H.Kim, Surface characterizati on of alkali-and heat-treated Ti with or without prior acid etching. AppliedSurfaceScience258,4377-7382 (2012)
[59]Y. Yao, S. Liu, M. V. Swain, X. Zhang, K. Zhao , Y.Jian, Effects of acid-alkali treatment on bioactivity and osteoinduction of poroustitanium: An in vitro study. Materials Science & Engineering C94,200-210 (2019)
[60]S. Yamaguchi, H. Takadama, T. Matsushita , T. Nakamura, ceramic layer developed on Ti metal by NaOH-heat treatment and soaking in SBF. Journal- Ceramic Society Japan117,1126-1130 (2009)
[61]Chen, C-Y., S-Y. Chen, and D-M. Liu. "Electrophoretic deposition forming of porous alumina membranes." Acta materialia 47.9: 2717-2726. (1999)
[62]Besra, Laxmidhar, and Meilin Liu. "A review on fundamentals and applications of electrophoretic deposition (EPD)." Progress in materials science 52.1: 1-61. (2007)
[63]Hamaker, H. C. "Formation of a deposit by electrophoresis." Transactions of the Faraday Society 35: 279-287. (1940)
[64]El-Kady, Abeer M., et al. "Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles." Ceramics International 38.1: 177-188. (2012)
[65]D. Kozon, K. Zheng, E. Boccardi, Y. Liu, L. Liverani, A.R. Boccaccini, Synthesis of monodispersed Ag-doped bioactive glass nanoparticles via surface modification, Materials (Basel). 9 225, (2016)
[66]https://www.microban.com/tw/blog/zone-inhibition-test-bigger-not-always-better

電子全文 電子全文(網際網路公開日期:20240101)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top