跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/05 20:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴唐鈺
研究生(外文):LAI, TANG-YU
論文名稱:碲化鉍奈米薄膜的熱導率和機械性能
論文名稱(外文):Thermal conductivity and mechanical properties of bismuth telluride nanofilms
指導教授:方得華方得華引用關係陳道星
指導教授(外文):FANG, TE-HUACHEN, TAO-HSING
口試委員:陳鐵城傅耀賢郭振坤蕭育仁方得華陳道星林明宏
口試委員(外文):CHEN, TEI-CHENFUH, YAW-SHYANKUO, JENN-KUNHSIAO, YU-JENFANG, TE-HUACHEN, TAO-HSINGLIN, MING-HORNG
口試日期:2020-06-29
學位類別:博士
校院名稱:國立高雄科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:122
中文關鍵詞:碲化鉍熱傳導機械特性非平衡態分子動力學奈米壓痕即時動態壓縮
外文關鍵詞:bismuth telluridemechanical propertiesthermal conductivitynon-equilibriummolecular dynamics,nano-indentationdynamic compression
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
碲化鉍(Bi2Te3)是一種在室溫環境下具有良好熱電性能熱電材料,並且在發電的過程不會造成污染。熱電效率由熱電優值(Thermoelectric figure of merit) ZT 來評估,透過開發優質熱電元件增加ZT值是有效提來高轉換效率的方法之一。在本研究中,我們使用分子動力學來研究具有不同效應的Bi2Te3和BixSb2-xTe3化合物五重層奈米薄膜的機械和熱導率特性。結果表明,Bi2Te3奈米薄膜在機械特性在完美無缺陷結構的奈米薄膜具有理想的楊氏模數,並且表現出很強的溫度依賴性,而具有界面缺陷時,原子排列的結構紊亂影響了機械性能;在熱傳導特性,聲子遇到晶格無序的原子區會產生散射而降低熱傳導,具有Te界面會引起強聲子散射,並驗證奈米尺度下具有結構自我修復機制,傳遞熱通量時會經歷自我修復過程提高熱導率,奈米膜中的界面缺陷會影響熱導率和界面熱阻。此外,摻雜不同比例Sb元素的BixSb2-xTe3化合物奈米膜影響其機械和熱導率特性,並與純Bi2Te3奈米膜有很大差異,BixSb2-xTe3化合物奈米膜比純Bi2Te3奈米膜表現出更好的機械拉伸強度,熱傳導時產生SbTe反位缺陷並改變熱導率。最後,我們使用區熔法製備了Bi2Te3奈米結構,並透過奈米壓痕和即時動態穿透式電子顯微鏡研究壓縮載荷下的機械性能,結果表明,在高載荷條件下,材料結構中存在多種錯位和相變,力-位移曲線會觀察到明顯的“突進”現象,而彈性模數分別透過奈米壓痕系統與即時動態壓縮系統測量為42.7±2.56 GPa與12.3±0.1 GPa。這項研究的成果,有助於Bi2Te3和BixSb2-xTe3化合物的熱電元件開發的優化與應用。
Bismuth telluride (Bi2Te3) is a type of thermoelectric (TE) material used for energy generation that does not cause pollution. Increasing the thermoelectric figure of merit (ZT) which can represent the conversion efficiency of TE materials is one of the most important steps in the development of thermoelectric components. In this study, we use molecular dynamics to investigate the thermal conductivity and mechanical properties of quintuple layers of Bi2Te3 and BixSb2-xTe3 nanofilms with different effects. The results indicate that the Bi2Te3 nanofilm perfect substrate has the ideal Young’s modulus and thermal conductivity and show a strong temperature dependence of the thermal conductivity for Bi2Te3 nanofilms with an ideal structure. As the interface changed, the structural disorder of atomic arrangement affected the mechanical properties; moreover, the phonons encounter lattice disordered atomic region will produce scattering reduce heat conduction. We also verified the self-assembly mechanism for nanoscale Bi2Te3 and found that the Bi2Te3–Te interface induces strong phonon scattering. Thus, interfacial defects in Bi2Te3 nanofilms affect the thermal conductivity and the thermal boundary resistance (TBR). In addition, BixSb2-xTe3 nanofilms are significantly affected by Sb content and differ greatly from those of pure Bi2Te3 nanofilms. Furthermore, BixSb2-xTe3 nanofilms exhibit better tensile strength than pure Bi2Te3 nanofilms. Changes in Sb content strongly affect the concentration of SbTe antisite defects and alter thermal conductivity. Finally, we prepared Bi2Te3 nanostructures via zone melting (ZM) and characterized their mechanical properties by nanoindentation and in situ transmission electron microscopy (TEM). The nanoindentation results revealed that a significant ‘pop-in’ phenomenon occurs under high-loading conditions with multiple dislocations and phase transitions in the material structure. Young’s modulus of the nanostructures was found to be 42.7 ± 2.56 GPa from nanoindentation measurements and 12.3 ± 0.1 GPa from in situ TEM measurements. The results of this study may be useful for optimizing Bi2Te3 and BixSb2-xTe3 thermoelectric devices in the future.
摘 要 i
Abstract ii
誌 謝 iv
Contents v
List of table captions vii
List of figure captions viii
Symbol table xii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Thermoelectric materials 3
1.3 Motivation 6
1.4 Thesis organization 8
Chapter 2 Literature review 9
2.1 Literature review of Molecular Dynamics 9
2.1.1 Basic theory of Molecular Dynamics 9
2.1.2 Interatomic force and Potential energy function 11
2.1.3 Thermal characteristic simulation 15
2.2 Literature review of Bismuth telluride 17
2.2.1 Materials and potential energy function 19
2.2.2 Determination of thermal and mechanical properties 22
Chapter 3 Materials and method 25
3.1 Simulation method 25
3.2 Experimental method 31
3.2.1 Preparation of the material 32
3.2.2 Measurement devices 34
Chapter 4 Results and Discussion 43
4.1 Prediction of thermal conductivity and mechanical properties of Bi2Te3 nanofilms 43
4.1.1 Effects of interfacial defect on thermal conduction 44
4.1.2 Effects of atomic arrangement structure on mechanical property 58
4.2 Prediction of thermal conductivity and mechanical properties of Bi-Sb-Te nanofilms 67
4.3 In situ deformation and mechanical properties of Bi2Te3 prepared via zone melting 80
4.3.1 Morphology and surface microstructure 81
4.3.2 Mechanical properties measured 83
Chapter 5 Conclusions 88
Acknowledgements 91
References 92
Curriculum vitae 102
Publication list 103


[1]Ovik, R., Long, B.D., Barma, M.C., Riaz, M., Sabri, M.F.M., Said, S.M. and Saidur, R., 2016. A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery. Renewable and Sustainable Energy Reviews, 64, pp.635-659.
[2]Elsheikh, M.H., Shnawah, D.A., Sabri, M.F.M., Said, S.B.M., Hassan, M.H., Bashir, M.B.A. and Mohamad, M., 2014. A review on thermoelectric renewable energy: Principle parameters that affect their performance. Renewable and Sustainable Energy Reviews, 30, pp.337-355.
[3]Zeb, K., Ali, S.M., Khan, B., Mehmood, C.A., Tareen, N., Din, W., Farid, U. and Haider, A., 2017. A survey on waste heat recovery: Electric power generation and potential prospects within Pakistan. Renewable and Sustainable Energy Reviews, 75, pp.1142-1155.
[4]Riffat, S.B. and Ma, X., 2004. Improving the coefficient of performance of thermoelectric cooling systems: a review. International Journal of Energy Research, 28(9), pp.753-768.
[5]Huang, M.J., Chang, T.M., Chong, W.Y., Liu, C.K. and Yu, C.K., 2007. A new lattice thermal conductivity model of a thin-film semiconductor. International Journal of Heat and Mass Transfer, 50(1-2), pp.67-74.
[6]Zhang, X. and Zhao, L.D., 2015. Thermoelectric materials: Energy conversion between heat and electricity. Journal of Materiomics, 1(2), pp.92-105.
[7]Shi, X. and Chen, L., 2016. Thermoelectric materials step up. Nature Materials, 15(7), pp.691-692.
[8]Ge, Z.H., Zhao, L.D., Wu, D., Liu, X., Zhang, B.P., Li, J.F. and He, J., 2016. Low-cost, abundant binary sulfides as promising thermoelectric materials. Materials Today, 19(4), pp.227-239.
[9]Zhang, Y., Wang, X., Cleary, M., Schoensee, L., Kempf, N. and Richardson, J., 2016. High-performance nanostructured thermoelectric generators for micro combined heat and power systems. Applied Thermal Engineering, 96, pp.83-87.
[10]Wu, H.J., Chen, B.Y. and Cheng, H.Y., 2017. The pn conduction type transition in Ge-incorporated Bi2Te3 thermoelectric materials. Acta Materialia, 122, pp.120-129.
[11]Chen, Z.G., Han, G., Yang, L., Cheng, L. and Zou, J., 2012. Nanostructured thermoelectric materials: Current research and future challenge. Progress in Natural Science: Materials International, 22(6), pp.535-549.
[12]Zheng, G., Su, X., Xie, H., Shu, Y., Liang, T., She, X., Liu, W., Yan, Y., Zhang, Q., Uher, C. and Kanatzidis, M.G., 2017. High thermoelectric performance of p-BiSbTe compounds prepared by ultra-fast thermally induced reaction. Energy & Environmental Science, 10(12), pp.2638-2652.
[13]Shao, C. and Bao, H., 2016. Thermal transport in bismuth telluride quintuple layer: mode-resolved phonon properties and substrate effects. Scientific Reports, 6, p.27492.
[14]DiSalvo, F.J., 1999. Thermoelectric cooling and power generation. Science, 285(5428), pp.703-706.
[15]Dresselhaus, M.S., Chen, G., Tang, M.Y., Yang, R.G., Lee, H., Wang, D.Z., Ren, Z.F., Fleurial, J.P. and Gogna, P., 2007. New directions for low‐dimensional thermoelectric materials. Advanced Materials, 19(8), pp.1043-1053.
[16]Hicks, L.D. and Dresselhaus, M.S., 1993. Thermoelectric figure of merit of a one-dimensional conductor. Physical Review B, 47(24), p.16631.
[17]Hicks, L.D. and Dresselhaus, M.S., 1993. Effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B, 47(19), p.12727.
[18]Venkatasubramanian, R., Siivola, E., Colpitts, T. and O'quinn, B., 2001. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 413(6856), pp.597-602.
[19]Snyder, G.J. and Toberer, E.S., 2008. Structure change, layer sliding, and metallization in high-pressure MoS2. Nature materials, 7, pp.105-114.
[20]Vineis, C.J., Shakouri, A., Majumdar, A. and Kanatzidis, M.G., 2010. Nanostructured thermoelectrics: big efficiency gains from small features. Advanced Materials, 22(36), pp.3970-3980.
[21]Shakouri, A., 2011. Recent developments in semiconductor thermoelectric physics and materials. Annual Review of Materials Research, 41, pp.399-431.
[22]Zhao, D. and Tan, G., 2014. A review of thermoelectric cooling: materials, modeling and applications. Applied Thermal Engineering, 66(1-2), pp.15-24.
[23]Wang, Y., Qiu, B., JH McGaughey, A., Ruan, X. and Xu, X., 2013. Mode-wise thermal conductivity of bismuth telluride. Journal of Heat Transfer, 135(9).
[24]Yu, C., Zhang, G., Zhang, Y.W. and Peng, L.M., 2015. Strain engineering on the thermal conductivity and heat flux of thermoelectric Bi2Te3 nanofilm. Nano Energy, 17, pp.104-110.
[25]Fang, T.H., Chang, W.J., Wang, K.Y. and Huang, C.C., 2018. Strain effect on the heat transport properties of bismuth telluride nanofilms with a hole. Solid State Communications, 274, pp.1-4.
[26]Lai, T.Y., Fang, T.H. and Huang, C.C., 2019. Thermal conductivity variation of Bi2Te3 nanofilm with interfacial defects using molecular dynamics. AIP Advances, 9(7), p.075210.
[27]Lai, T.Y., Wang, K.Y., Fang, T.H. and Huang, C.C., 2018. Effect of the interface on the mechanical properties and thermal conductivity of bismuth telluride films. Materials Research Express, 5(2), p.026408.
[28]Hsieh, I.T. and Huang, M.J., 2019. An Investigation into the Thermal Boundary Resistance Associated with the Twin Boundary in Bismuth Telluride. Nanoscale and Microscale Thermophysical Engineering, 23(1), pp.36-47.
[29]Danine, A., Termentzidis, K., Schaefer, S., Li, S., Ensinger, W., Boulanger, C., Lacroix, D. and Stein, N., 2018. Synthesis of bismuth telluride nanotubes and their simulated thermal properties. Superlattices and Microstructures, 122, pp.587-595.
[30]Irving, J.H. and Kirkwood, J.G., 1950. The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. The Journal of Chemical Physics, 18(6), pp.817-829.
[31]Smith, R. ed., 2005. Atomic and ion collisions in solids and at surfaces: theory, simulation and applications. Cambridge University Press, New York.
[32]Arsenault, R.J., Beeler, J.R. and Esterling, D.M., 1988. Computer simulation in materials science. Conference: ASM materials seminar on computer simulation in materials science, Lake Buena Vista, Florida, 4-5 Oct 1986.
[33]Callister Jr, W.D. and Rethwisch, D.G., 2020. Callister's Materials Science and Engineering. John Wiley & Sons, New York.
[34]ERKOÇ, Ş., 2001. Empirical potential energy functions used in the simulations of materials properties. In Annual Reviews Of Computational PhysicsIX, pp. 1-103.
[35]Schelling, P.K., Phillpot, S.R. and Keblinski, P., 2002. Comparison of atomic-level simulation methods for computing thermal conductivity. Physical Review B, 65(14), p.144306.
[36]Allen, M.P. and Tildesley, D.J., 2017. Computer simulation of liquids. Oxford university press, New York.
[37]Lukes, J.R., Li, D.Y., Liang, X.G. and Tien, C.L., 2000. Molecular dynamics study of solid thin-film thermal conductivity. J. Heat Transfer, 122(3), pp.536-543.
[38]Chen, Y., Li, D., Lukes, J.R., Ni, Z. and Chen, M., 2005. Minimum superlattice thermal conductivity from molecular dynamics. Physical Review B, 72(17), p.174302.
[39]Huang, B.L. and Kaviany, M., 2008. Ab initio and molecular dynamics predictions for electron and phonon transport in bismuth telluride. Physical Review B, 77(12), p.125209.
[40]Qiu, B. and Ruan, X., 2009. Molecular dynamics simulations of lattice thermal conductivity of bismuth telluride using two-body interatomic potentials. Physical Review B, 80(16), p.165203.
[41]Francombe, M.H., 1958. Structure-cell data and expansion coefficients of bismuth telluride. British Journal of Applied Physics, 9(10), p.415.
[42]Wiese, J.R. and Muldawer, L., 1960. Lattice constants of Bi2Te3-Bi2Se3 solid solution alloys. Journal of Physics and Chemistry of Solids, 15(1-2), pp.13-16.
[43]Haynes, W.M., 2011. CRC Handbook of Chemistry and Physics. Taylor Francis Group: Boca Raton, Florida.
[44]Morse, P.M., 1929. Diatomic molecules according to the wave mechanics. II. Vibrational levels. Physical Review, 34(1), p.57.
[45]Qiu, B. and Ruan, X., 2010. Thermal conductivity prediction and analysis of few-quintuple Bi2Te3 thin films: A molecular dynamics study. Applied Physics Letters, 97(18), p.183107.
[46]Qiu, B., Sun, L. and Ruan, X., 2011. Lattice thermal conductivity reduction in Bi2Te3 quantum wires with smooth and rough surfaces: A molecular dynamics study. Physical Review B, 83(3), p.035312.
[47]Termentzidis, K., Pokropivny, A., Woda, M., Xiong, S.Y., Chumakov, Y., Cortona, P. and Volz, S., 2012. Structure impact on the thermal and electronic properties of bismuth telluride by ab-initio and molecular dynamics calculations. Journal of Physics: Conference Series, 395, p. 012114.
[48]Termentzidis, K., Pokropyvnyy, O., Woda, M., Xiong, S., Chumakov, Y., Cortona, P. and Volz, S., 2013. Large thermal conductivity decrease in point defective Bi2Te3 bulk materials and superlattices. Journal of Applied Physics, 113(1), p.013506.
[49]Li, S., Chaput, L., Stein, N., Frantz, C., Lacroix, D. and Termentzidis, K., 2015. Thermal conductivity of Bi2Te3 tilted nanowires, a molecular dynamics study. Applied Physics Letters, 106(23), p.233108.
[50]Tong, Y., Yi, F., Liu, L., Zhai, P. and Zhang, Q., 2010. Molecular dynamics study on thermo-mechanical properties of bismuth telluride bulk. Computational Materials Science, 48(2), pp.343-348.
[51]Huang, B., Yang, X., Liu, L. and Zhai, P., 2015. Effects of van der Waals bonding on the compressive mechanical behavior of bulk Bi2Te3: A molecular dynamics study. Journal of Electronic Materials, 44(6), pp.1668-1673.
[52]Bedoya‐Martínez, O.N., Hashibon, A. and Elsässer, C., 2016. Influence of point defects on the phonon thermal conductivity and phonon density of states of Bi2Te3. Physica Status Solidi (a), 213(3), pp.684-693.
[53]Cheng, L., Chen, Z.G., Yang, L., Han, G., Xu, H.Y., Snyder, G.J., Lu, G.Q. and Zou, J., 2013. T-shaped Bi2Te3–Te heteronanojunctions: epitaxial growth, structural modeling, and thermoelectric properties. The Journal of Physical Chemistry C, 117(24), pp.12458-12464.
[54]Choi, H., Jeong, K., Chae, J., Park, H., Baeck, J., Kim, T.H., Song, J.Y., Park, J., Jeong, K.H. and Cho, M.H., 2018. Enhancement in thermoelectric properties of Te-embedded Bi2Te3 by preferential phonon scattering in heterostructure interface. Nano Energy, 47, pp.374-384.
[55]Xie, W., Tang, X., Yan, Y., Zhang, Q. and Tritt, T.M., 2009. High thermoelectric performance BiSbTe alloy with unique low-dimensional structure. Journal of Applied Physics, 105(11), p.113713.
[56]Stackhouse, S. and Stixrude, L., 2010. Theoretical methods for calculating the lattice thermal conductivity of minerals. Reviews in Mineralogy and Geochemistry, 71(1), pp.253-269.
[57]Hu, L.P., Zhu, T.J., Wang, Y.G., Xie, H.H., Xu, Z.J. and Zhao, X.B., 2014. Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction. NPG Asia Materials, 6(2), pp.e88-e88.
[58]Zhang, J., Liu, H.J., Cheng, L., Wei, J., Shi, J., Tang, X.F. and Uher, C., 2014. Enhanced thermoelectric performance of a quintuple layer of Bi2Te3. Journal of Applied Physics, 116(2), p.023706.
[59]Jund, P. and Jullien, R., 1999. Molecular-dynamics calculation of the thermal conductivity of vitreous silica. Physical Review B, 59(21), p.13707.
[60]Orrill, M. and LeBlanc, S., 2017. Printed thermoelectric materials and devices: Fabrication techniques, advantages, and challenges. Journal of Applied Polymer Science, 134(3).
[61]Chen, Y.R., Hwang, W.S., Hsieh, H.L., Huang, J.Y., Huang, T.K. and Hwang, J.D., 2014. Thermal and microstructure simulation of thermoelectric material Bi2Te3 grown by zone-melting technique. Journal of Crystal Growth, 402, pp.273-284.
[62]Zheng, Y., Xie, H., Shu, S., Yan, Y., Li, H. and Tang, X., 2014. High-temperature mechanical and thermoelectric properties of p-type Bi0.5Sb1.5Te3 commercial zone melting ingots. Journal of Electronic Materials, 43(6), pp.2017-2022.
[63]Smith, R.L. and Sandly, G.E., 1922. An accurate method of determining the hardness of metals, with particular reference to those of a high degree of hardness. Proceedings of the Institution of Mechanical Engineers, 102(1), pp.623-641.
[64]Wang, T.H., Fang, T.H. and Lin, Y.C., 2007. A numerical study of factors affecting the characterization of nanoindentation on silicon. Materials Science and Engineering: A, 447(1-2), pp.244-253.
[65]Fang, T.H. and Kang, S.H., 2008. Effect of indium dopant on surface and mechanical characteristics of ZnO: In nanostructured films. Journal of Physics D: Applied Physics, 41(24), p.245303.
[66]Fang, T.H. and Chang, W.J., 2006. Nanomechanical characterization of amorphous hydrogenated carbon thin films. Applied Surface Science, 252(18), pp.6243-6248.
[67]Fang, T.H., Wang, T.H. and Kang, S.H., 2009. Nanomechanical and surface behavior of polydimethylsiloxane-filled nanoporous anodic alumina. Journal of Materials Science, 44(6), pp.1588-1593.
[68]Tong, Y., Yi, F., Liu, L., Zhai, P. and Zhang, Q., 2010. Molecular dynamics study of mechanical properties of bismuth telluride nanofilm. Physica B: Condensed Matter, 405(15), pp.3190-3194.
[69]Yu, C., Zhang, G., Peng, L.M., Duan, W. and Zhang, Y.W., 2014. Thermal transport along Bi2Te3 topological insulator nanowires. Applied Physics Letters, 105(2), p.023903.
[70]Kothari, K. and Maldovan, M., 2017. Phonon surface scattering and thermal energy distribution in superlattices. Scientific Reports, 7(1), pp.1-15.
[71]Guo, L., Yan, H., Moore, Q., Buettner, M., Song, J., Li, L., Araujo, P.T. and Wang, H.T., 2015. Elastic properties of van der Waals epitaxy grown bismuth telluride 2D nanosheets. Nanoscale, 7(28), pp.11915-11921.
[72]Dun, C., Hewitt, C.A., Jiang, Q., Guo, Y., Xu, J., Li, Y., Li, Q., Wang, H. and Carroll, D.L., 2018. Bi2Te3 plates with single nanopore: the formation of surface defects and self-repair growth. Chemistry of Materials, 30(6), pp.1965-1970.
[73]Lai, T.Y., Fang, T.H. and Chen, T.H., 2020. Mechanical and thermal conductivity properties of BiSbTe nanofilms using molecular dynamics. Physica E: Low-dimensional Systems and Nanostructures, p.114300.
[74]Jenkins, J.O., Rayne, J.A. and Ure Jr, R.W., 1972. Elastic modulus and phonon properties of Bi2Te3. Physical Review B, 5(8), p.3171.
[75]Lamuta, C., Campi, D., Cupolillo, A., Aliev, Z.S., Babanly, M.B., Chulkov, E.V., Politano, A. and Pagnotta, L., 2016. Mechanical properties of Bi2Te3 topological insulator investigated by density functional theory and nanoindentation. Scripta Materialia, 121, pp.50-55.
[76]Li, G., Gadelrab, K.R., Souier, T., Potapov, P.L., Chen, G. and Chiesa, M., 2012. Mechanical properties of BixSb2-xTe3 nanostructured thermoelectric material. Nanotechnology, 23(6), p.065703.
[77]Li, Z., Peng, L., Li, J., Zhou, J. and Sun, Z., 2019. Mechanical and transport properties of BixSb2-xTe3 single quintuple layers. Computational Materials Science, 170, p.109182.
[78]Wang, Z.L., Akao, T., Onda, T. and Chen, Z.C., 2017. Microstructure and thermoelectric properties of Bi-Sb-Te bulk materials fabricated from rapidly solidified powders. Scripta Materialia, 136, pp.111-114.
[79]Madavali, B., Kim, H.S., Lee, K.H., Isoda, Y., Gascoin, F. and Hong, S.J., 2016. Large scale production of high efficient and robust p-type Bi-Sb-Te based thermoelectric materials by powder metallurgy. Materials & Design, 112, pp.485-494.
[80]Tritt, T.M. ed., 2005. Thermal conductivity: theory, properties, and applications. Springer Science & Business Media, New York.
[81]Shi, L.P. and Xiong, S.J., 2009. Phonon thermal conductance of disordered graphene strips with armchair edges. Physics Letters A, 373(5), pp.563-569.
[82]Zhao, Y., Dyck, J.S., Hernandez, B.M. and Burda, C., 2010. Enhancing thermoelectric performance of ternary nanocrystals through adjusting carrier concentration. Journal of the American Chemical Society, 132(14), pp.4982-4983.
[83]Guo, F., Liu, Z., Zhu, M. and Zheng, Y., 2019. Electron–phonon scattering limited hole mobility at room temperature in a MoS2 monolayer: first-principles calculations. Physical Chemistry Chemical Physics, 21(41), pp.22879-22887.
[84]Murmu, P.P., Kennedy, J., Suman, S., Chong, S.V., Leveneur, J., Storey, J., Rubanov, S. and Ramanath, G., 2019. Multifold improvement of thermoelectric power factor by tuning bismuth and antimony in nanostructured n-type bismuth antimony telluride thin films. Materials & Design, 163, p.107549.
[85]Kim, H.S., Heinz, N.A., Gibbs, Z.M., Tang, Y., Kang, S.D. and Snyder, G.J., 2017. High thermoelectric performance in (Bi0.25Sb0.75)2Te3 due to band convergence and improved by carrier concentration control. Materials Today, 20(8), pp.452-459.
[86]Lai, T.Y., Hsiao, Y.J. and Fang, T.H., 2018. In situ deformation and mechanical properties of bismuth telluride prepared via zone melting. Materials Research Express, 5(3), p.035010.
[87]Chang, H.C. and Chen, C.H., 2011. Self-assembled bismuth telluride films with well-aligned zero-to three-dimensional nanoblocks for thermoelectric applications. CrystEngComm, 13(19), pp.5956-5962.
[88]Lorenz, D., Zeckzer, A., Hilpert, U., Grau, P., Johansen, H. and Leipner, H.S., 2003. Pop-in effect as homogeneous nucleation of dislocations during nanoindentation. Physical Review B, 67(17), p.172101.
[89]Jian, S.R., Tasi, C.H., Huang, S.Y. and Luo, C.W., 2015. Nanoindentation pop-in effects of Bi2Te3 thermoelectric thin films. Journal of Alloys and Compounds, 622, pp.601-605.
[90]Nowak, R., Sekino, T., Maruno, S. and Niihara, K., 1996. Deformation of sapphire induced by a spherical indentation on the (1010) plane. Applied physics letters, 68(8), pp.1063-1065.
[91]Tsai, C.H., Jian, S.R. and Juang, J.Y., 2008. Berkovich nanoindentation and deformation mechanisms in GaN thin films. Applied Surface Science, 254(7), pp.1997-2002.
[92]Jian, S.R., Chen, G.J. and Juang, J.Y., 2010. Nanoindentation-induced phase transformation in (1 1 0)-oriented Si single-crystals. Current Opinion in Solid State and Materials Science, 14(3-4), pp.69-74.
[93]Jian, S.R. and Lee, Y.H., 2014. Nanoindentation-induced interfacial fracture of ZnO thin films deposited on Si (1 1 1) substrates by atomic layer deposition. Journal of Alloys and Compounds, 587, pp.313-317.
[94]Jian, S.R., Tseng, Y.C., Teng, I.J. and Juang, J.Y., 2013. Dislocation energetics and Pop-ins in AlN thin films by Berkovich nanoindentation. Materials, 6(9), pp.4259-4267.
[95]Fang, T.H., Hsiao, Y.J. and Kang, S.H., 2015. Mechanical characteristics of copper indium gallium diselenide compound nanopillars using in situ transmission electron microscopy compression. Scripta Materialia, 108, pp.130-135.
[96]Lai, T.Y., Hsiao, Y.J. and Fang, T.H., 2017. Mechanical properties of CIGS film with different metallic composition by co-evaporation method. Materials Research Express, 4(11), p.115006.
[97]Srivastava, P. and Singh, K., 2013. Morphological evolution in single-crystalline Bi2Te3 nanoparticles, nanosheets and nanotubes with different synthesis temperatures. Bulletin of Materials Science, 36(5), pp.765-770.
[98]Haslach Jr, H.W. and Armstrong, R.W., 2004. Deformable bodies and their material behavior. John Wiley & Sons Incorporated, New Jersey.
[99]Lin, K.P., Fang, T.H., Stachiv, I. and Cheng, T.C., 2016. Mechanical response and deformation of Ni3Al7 alloys using in-situ transmission electron microscopy compression and nanoindentation. Science of Advanced Materials, 8(8), pp.1571-1578.
[100]Singkaselit, K., Sakulkalavek, A. and Sakdanuphab, R., 2017. Effects of annealing temperature on the structural, mechanical and electrical properties of flexible bismuth telluride thin films prepared by high-pressure RF magnetron sputtering. Advances in Natural Sciences: Nanoscience and Nanotechnology, 8(3), p.035002.
[101]Lamuta, C., Cupolillo, A., Politano, A., Aliev, Z.S., Babanly, M.B., Chulkov, E.V., Alfano, M. and Pagnotta, L., 2016. Nanoindentation of single‐crystal Bi2Te3 topological insulators grown with the Bridgman–Stockbarger method. Physica Status Solidi (b), 253(6), pp.1082-1086.
[102]Zhao, L.D., Zhang, B.P., Li, J.F., Zhou, M., Liu, W.S. and Liu, J., 2008. Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. Journal of Alloys and Compounds, 455(1-2), pp.259-264.
[103]Han, S.W., Hasan, M.A., Cho, K.H., Lee, H.J., Kim, D.H. and Lee, H.W., 2006. Characterization of Bi2Te3 Thin Films for Application in Micro-Thermo Electric Coolers. International Journal of Modern Physics B, 20(25n27), pp.4063-4068.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊