(54.236.58.220) 您好!臺灣時間:2021/02/28 08:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李冠億
研究生(外文):Lee,Kuan-I
論文名稱:探討奈米磁性流體包覆傾斜布拉格光纖光柵應用於平面磁場感測
論文名稱(外文):Characteristic of the planar magnetic field investigated through embedded nano-magnetic fluid tilted fiber Bragg gratings
指導教授:江家慶江家慶引用關係
指導教授(外文):CHIANG,CHIA-CHIN
口試委員:王俊達傅明宇溫新宜江家慶
口試委員(外文):WANG,CHUN-TAFU,MING-YUEWEN,HSIN-YICHIANG,CHIA-CHIN
口試日期:2020-07-08
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:309
中文關鍵詞:傾斜式布拉格光纖光柵磁性流體光纖感測器載氫液晶
外文關鍵詞:Tilted fiber Bragg gratingsMagnetic fluidFiber optic sensorHydrogen loadingLiquid crystal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:19
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出使用載氫及雷射加工製程來製作傾斜式布拉格光纖光柵 ( Tilted fiber Bragg gratings;TFBG ) 感測器。應用於磁場及電場量測,其中TFBG感測器的感測原理是光透過纖芯與纖殼模態之間的相互耦合來產生對應頻譜飄移,纖芯模態有量測應力及溫度變化的能力;纖殼模態具有量測外界折射率變化的能力。
第一部分使用單模、多模及光敏單模光纖來製造TFBG,在不同TFBG感測器及不同直徑下,搭配磁流體進行磁場量測。第二部分使用TFBG串接光子晶體光纖 ( Photonic crystal fiber;PCF ) 做為感測器。並利用PCF內的液晶 ( Liquid crystal;LC )來感測電場變化,再加上極化偏光進入PCF內進行探討,隨著電場增加液晶慢慢成順向角度排列。
磁場實驗結果顯示,多模光纖在不同直徑下靈敏度都優越於其他兩種,75μm下多模光纖靈敏度達0.0313 dB/mT、平均線性度0.929最佳,多模光纖在75μm之傳輸損靈敏度是125μm之傳輸損靈敏度的5.4倍,也證實了直徑越小靈敏度越高。電場實驗結果顯示在H極化控制下其纖殼模態與纖芯模態之共振波長及傳輸損耗靈敏度最佳。
由上述實驗可以證明本感測器可量測磁流體之磁場及液晶之電場控制,未來可將兩材料混合在一起,利用電場去控制磁場大小及液晶,量測不同物理量,成為新的複合式感測器。

關鍵字: 傾斜式布拉格光纖光柵、磁性流體、光纖感測器、載氫、液晶

In this paper, we propose to use the hydrogen-carrying process to make tilted Bragg fiber gratings for magnetic field measurement and electric field measurement. The principle of the tilted Bragg fiber grating sensors (TFBG) is that light passes through the core. The mutual coupling with the fiber cladding mode produces the corresponding spectrum drift. The core mode can measure the change of stress and temperature; the fiber cladding mode can measure the change of the external refractive index, which in turn produces the spectrum drift.
First part uses the hydrogen-carrying process (single-mode fiber, multimode fiber) and photosensitive single-mode fiber to manufacture a tilted Bragg fiber grating sensor. Under different TFBG sensors and different diameters, magnetic field measurement is performed with magnetic fluid. The second part uses a tilted Bragg fiber grating sensor connected in series with a photonic crystal fiber as the sensor. And use the liquid crystal (LC) in the PCF to sense the electric field changes. The polarized light from different angles of the polarization controller was discussed. As the electric field increases, the liquid crystals gradually arrange in a forward angle, and the spectrum shifts to change.
The magnetic field experimental results show that the sensitivity of multimode fiber is better than the other two at different diameters. The sensitivity of multimode fiber is 0.0313 dB/mT, and the average linearity is 0.929 at 75μm. Multimode, the transmission loss sensitivity of the optical fiber at 75 μm is 5.4 times that of 125 μm. It is also confirmed that the smaller the diameter, the higher the sensitivity. The electric field experimental results show that the cladding mode and core mode under the control of H polarization The resonance wavelength and transmission loss sensitivity of the state.
The above experiments can prove that the sensor can measure the magnetic field of the magnetic fluid and the electric field control of the liquid crystal. In the future, the two materials can be mixed. The electric field can be used to control the size of the magnetic field and the liquid crystal to measure different physical quantities and become a new composite type.

Keywords: Tilted fiber Bragg gratings、Magnetic fluid、Fiber optic sensor、 Hydrogen loading、Liquid crystal

摘要 I
ABSTRACT III
致謝 V
目錄 VI
圖目錄 X
表目錄 XX
第一章 序論 1
1.1 研究動機 1
1.2 研究背景 2
1.2-1 布拉格光纖光柵之製作方法 2
1.2-2 載氫對傾斜式布拉格光纖光柵之影響 5
1.2-3 光纖感測器直徑對靈敏度之影響 8
1.2-4 傾斜式布拉個光纖光柵對折射率影響 9
1.2-5 傾斜式布拉個光纖光柵塗覆金對折射率之影響 10
1.2-6 傾斜式布拉個光纖光柵對磁場之影響 13
1.2-7 傾斜式布拉個光纖光柵對電場之影響 16
1.3 研究目的 19
第二章 基礎理論 20
2.1 傾斜布拉格光纖光柵基本原理 20
2.2 耦合模態理論 23
2.3 耦合模態理論分析 30
2.4 傾斜光纖光柵之共振波長位置 35
2.5 傾斜光纖光柵外界折射率靈敏度分析 36
第三章 研究方法與步驟 37
3.1 光纖製程-傾斜式布拉格光纖光柵製程 37
3.2 光纖製程-掃描傾斜式布拉格光纖光柵製程 40
3.3 實驗製程-載氫 42
3.4 蝕刻製程-光纖濕蝕刻製程 43
3.5 液晶封裝-液晶灌入光子晶體光纖內製程 45
3.6 磁流體封裝-感測器封裝至玻璃管內製程 47
3.7 塗覆製程-奈米金 49
3.8 實驗架構-球型塗覆金屬層製程 50
3.8-1 球型端塗覆奈米銀 50
3.8-2 球型端塗覆電鑄鎳 51
3.9 實驗架構-磁場感測 52
3.10 實驗架構-液晶感測 53
3.11實驗架構-葡萄糖感測 55
3.11-1球型傾斜式布拉格光纖光柵塗覆銀 55
3.11-2球型傾斜式布拉格光纖光柵塗覆鎳 56
第四章 實驗結果與討論 57
4.1 傾斜式布拉格光纖光柵寫入在不同種光纖 58
4.2反射傾斜式布拉格光纖光柵結合球型塗覆金屬層量測葡萄糖 59
4.2-1 球型傾斜式布拉格光纖光柵塗覆銀 60
4.2-2 球型傾斜式布拉格光纖光柵塗覆鎳 65
4.2-3 球型傾斜式布拉格光纖光柵 70
4.4 傾斜式布拉格光纖光柵SPR效應 76
4.5 傾斜式布拉格光纖光柵應用於磁流體量測 88
4.5-1 傾斜式布拉格光纖光柵應用於磁流體量測-光敏光纖直徑125 μm 90
4.5-2 傾斜式布拉格光纖光柵應用於磁流體量測-載氫單模光纖直徑125 μm 102
4.5-3 傾斜式布拉格光纖光柵應用於磁流體量測-載氫多模光纖直徑125 μm 113
4.5-4 傾斜式布拉格光纖光柵應用於磁流體量測-光敏光纖直徑100 μm 129
4.5-5 傾斜式布拉格光纖光柵應用於磁流體量測-載氫單模光纖直徑100 μm 141
4.5-6 傾斜式布拉格光纖光柵應用於磁流體量測-載氫多模光纖直徑100 μm 152
4.5-7 傾斜式布拉格光纖光柵應用於磁流體量測-光敏光纖直徑75 μm 168
4.5-8 傾斜式布拉格光纖光柵應用於磁流體量測-載氫單模光纖直徑75 μm 180
4.5-9 傾斜式布拉格光纖光柵應用於磁流體量測-載氫多模光纖直徑75 μm 191
4.5-10 傾斜式布拉格光纖光柵應用於磁流體量測-光敏光纖直徑50 μm 207
4.5-11 傾斜式布拉格光纖光柵應用於磁流體量測-載氫單模光纖直徑50 μm 219
4.5-12 傾斜式布拉格光纖光柵應用於磁流體量測-載氫多模光纖直徑50 μm 231
4.6 光子晶體光纖結合傾斜布拉格光纖光柵應用於液晶量測 249
4.6-1 證實液晶灌入光子晶體光纖 250
4.6-2 升溫控制液晶流動性 251
4.6-3 光子晶體光纖寫入長週期鐵片光柵-2cm 253
4.6-4 光子晶體光纖寫入長週期鐵片光柵-4cm 256
4.6-5 光子晶體光纖寫入長週期鐵片光柵-3cm、1cm 257
4.6-6 證實液晶在光子晶體光纖內流動 260
4.6-7極化控制加電場下對傾斜式布拉格光纖光柵之影響 261
4.6-8 傾斜式布拉格光纖光柵串接光子晶體光纖極化控制下加電場 264
第五章 結論 306
參考文獻 307


[1] K. Hill, Y. Fujii, D. C. Johnson, and B. Kawasaki, "Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication," Applied physics letters, vol. 32, no. 10, pp. 647-649, 1978.
[2]Z. Zhao et al., "Fabrication of a tilted fiber Bragg grating with a designed reflection spectrum profile," Optics letters, vol. 29, no. 3, pp. 244-246, 2004.
[3]T. Guo, F. Liu, B.-O. Guan, and J. Albert, "Tilted fiber grating mechanical and biochemical sensors," Optics & Laser Technology, vol. 78, pp. 19-33, 2016.
[4] B. Zhang and M. Kahrizi, "High temperature resistance temperature sensor based on the hydrogen loaded fiber Bragg grating," in SENSORS, 2005 IEEE, 2005: IEEE, p. 4 pp.
[5]C.-L. Tien, H.-W. Chen, W.-F. Liu, S.-S. Jyu, S.-W. Lin, and Y.-S. Lin, "Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film," Thin Solid Films, vol. 516, no. 16, pp. 5360-5363, 2008.
[6]P. Li, H. Yan, Z. Xie, Y. Li, and X. Zhao, "An intensity-modulated and large bandwidth magnetic field sensor based on a tapered fiber Bragg grating," Optics & Laser Technology, vol. 125, p. 105996, 2020.
[7]Y. Miao, B. Liu, S. Tian, and Q. Zhao, "Temperature‐insensitive refractive index sensor based on tilted fiber Bragg grating," Microwave and Optical Technology Letters, vol. 51, no. 2, pp. 479-483, 2009.
[8]Y.-p. Miao and B. Liu, "Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating," Optical Fiber Technology, vol. 15, no. 3, pp. 233-236, 2009.
[9]Y. Y. Shevchenko and J. Albert, "Plasmon resonances in gold-coated tilted fiber Bragg gratings," Optics letters, vol. 32, no. 3, pp. 211-213, 2007.
[10]L.-Y. Shao, Y. Shevchenko, and J. Albert, "Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors," Optics express, vol. 18, no. 11, pp. 11464-11471, 2010.
[11]M. D. Baiad and R. Kashyap, "Concatenation of surface plasmon resonance sensors in a single optical fiber using tilted fiber Bragg gratings," Optics Letters, vol. 40, no. 1, pp. 115-118, 2015.
[12]Y. Chen, Q. Han, T. Liu, X. Lan, and H. Xiao, "Optical fiber magnetic field sensor based on single-mode–multimode–single-mode structure and magnetic fluid," Optics letters, vol. 38, no. 20, pp. 3999-4001, 2013.
[13]Z. Jia, S. Pu, J. Rao, Y. Zhao, Y. Li, and T. Yao, "Temperature self-compensative all-fiber magnetic field sensing structure based on no-core fiber cascaded with fiber Bragg gratings," Optics and Lasers in Engineering, vol. 119, pp. 26-29, 2019.
[14]S. Baek et al., "Liquid-crystal-cladding fiber Bragg gratings with electrically controllable polarization-dependent characteristics," Japanese journal of applied physics, vol. 45, no. 5R, p. 4044, 2006.
[15]X. Chen et al., "Liquid crystal-embedded tilted fiber grating electric field intensity sensor," Journal of Lightwave Technology, vol. 35, no. 16, pp. 3347-3353, 2017.
[16]Q. Liu, P. Xue, and Z. Liu, "Voltage sensor based on liquid-crystal-infiltrated photonic crystal fiber with high index," Applied Physics Express, vol. 13, no. 3, p. 032005, 2020.
[17]T. Erdogan, "Fiber grating spectra," Journal of lightwave technology, vol. 15, no. 8, pp. 1277-1294, 1997.
[18]張睿廷, "S型長周期光纖光柵磁場與濕度感測器之研製, 國立高雄應用科技大學機械系碩士論文," 2017.

電子全文 電子全文(網際網路公開日期:20250820)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔