(44.192.112.123) 您好!臺灣時間:2021/02/28 06:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝慶煌
研究生(外文):Ching-Huang Hsieh
論文名稱:具雙層八葉後彎葉輪盤攪拌器之應力與應變分析
論文名稱(外文):The Stree and Strain Analysis Double-layer and Eight-leaf Backward Curved Impeller Disc Agitator
指導教授:許兆民許兆民引用關係
指導教授(外文):Chao-Ming Hsu
口試委員:陳正義,張健桂,林阿德,許兆民
口試日期:2020-07-07
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:111
中文關鍵詞:攪拌槽流固耦合有限元素法
外文關鍵詞:Stress-StrainFluid-Structure Interaction(FSI)Finite Element MethodAgitator Tank
相關次數:
  • 被引用被引用:0
  • 點閱點閱:25
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
『混合攪拌』在工業製程中最常見及重要製程工法之一,也是用來改善與活化製程技術的重要單元,並對於物理變化過程-冷卻、加熱、氣體吸收與及液體萃取等,都需採用攪拌單元始能達到物質加速混合或分散傳遞過程之預期效果,達到極佳性交替混合攪拌之過程。因此,流體在攪拌桶槽內的流動特質、攪拌槽內部設計及攪拌翼種類及結構負荷均深切影響攪拌優劣性能,可直接影響物質產品混合後之好壞現象,再加上所攪拌物質特性係屬於有毒物質,攪拌槽必須為封閉性且攪拌翼總成亦須符合攪拌流場所承受之共振頻率及結構負荷性質,才能使有毒流體物質於攪拌過程中達到預期的攪拌效果。所以,攪拌設備中攪拌翼總成之結構組織應力應變數值是需要研究探討的。
本文研究是利用ANSYS FLUENT流體模組軟體與ANSYS Workbench有限元素法來模擬攪拌槽內部流場狀態、攪拌翼應力應變及預測共振頻率下之模態等項分析。首先運用ANSYS FLUENT流體軟體模擬攪拌槽內部流場的形態,再利用ANSYS Workbench有限元素模擬不同轉速下,求得攪拌翼總成應力應變與總位移之形變態樣,以達到ANSYS流固耦合效應分析。最後,再預測模擬攪拌翼總成在不同共振頻率下的模態樣貌與破壞點。
攪拌桶槽內旋轉運行下,受到流場流速壓力影響因素,產生單向流固耦合預應力,總變形及應變應力部位概為攪拌器葉輪葉尖及葉根處,可見攪拌翼葉片厚(薄)度值將影響攪拌器轉動變因其一,因為葉片厚(薄)度須承受流體波動力不致毀損變形彎曲,也須減輕攪拌翼總成重量,達到攪拌系統製作費用節省目的;另隨著攪拌翼轉動速度(rpm)增加,攪拌翼總成剛性結構總位移變形量、最大等效應力與應變亦採漸進式線性增長現象。

"Mixing" is one of the most common and important process methods in the industrial process, and it is also an important unit for improving and activating the process manufacturing. It also requires the use of stirring units for heating, cooling, liquid extraction and gas absorption and other physical changes. To achieve the expected effect of accelerating the mixing or dispersing process of the substance delivery, and achieve the process of excellent alternating mixing and stirring. Therefore, the flow characteristics of the fluid in the mixing tank, the internal design of the stirring tank, the type of impeller and the structural load all deeply affect the quality of mixing, and which can directly affect the quality of the material product after mixing. In addition, the characteristics of the material stirred are Toxic substances, the stirring tank must be closed and the impeller assembly must also conform to the resonance frequency and structural load characteristics of the stirring flow field, so that the toxic fluid substance can achieve the expected stirring effect during the stirring process. Therefore, the structural stress and strain value of the impeller assembly in the agitation equipments needs to be discussed.
The research in this paper is to use ANSYS FLUENT fluid module software and ANSYS Workbench finite element method to simulate the analysis of the status of flow field inside the agitator tank, the stress and strain of the impeller, and the prediction of modal equivalent analysis at resonance frequency. First of all , use ANSYS FLUENT fluid software to simulate the form of the flow field inside the agitator tank, and then use ANSYS Workbench finite elements to simulate the deformation of the stress strain and total displacement of the impeller assembly at different speeds to achieve ANSYS fluid-solid interaction effect analysis . Finally, predict the modal appearance and break-down point of the simulated impeller assembly at different resonance frequency.
During the rotating operation in the mixing tank tank, the one-way fluid-solid interaction prestress is generated due to the influence of the flow field velocity and pressure. The total deformation and strain stress are at the tip and the root of the impeller. It can be seen that the thickness value of the agitating vane will affect the rotation of the agitator. One of the reasons is that the thickness of the vane must withstand the dynamics of the fluid wave without being damaged, deformed and bent, and the weight of the impeller assembly must be reduced to achieve the purpose of saving the production cost of the stirring system; In addition , with increasing the rotation speed (rpm) of the impeller , the impeller assembly , the deflection of the structural rigidity , the maximum equivalent stress and strain of the rigid structure of the impeller assembly also adopt a progressive linear growth phenomenon.

摘 要 i
ABSTRACT ii
致 謝 iv
目 錄 v
表目錄 vii
圖目錄 viii
符號說明 xi
符號說明 xii
第一章 緒論 1
1.1 前言 1
1.2 研究背景 3
1.3 研究動機 9
1.4 研究方法與流程 10
1.5論文章節組織 11
第二章 文獻探討回顧 12
2.1 攪拌混合要素 12
2.2流態形狀及流體黏度 13
2.3 攪拌混合目的 18
第三章 理論與研究方法 22
3.1 軟體Ansys與Fluent流場分析理論探討 22
3.1.1
[1]化學品安全資料表,勞動部職業安全衛生署化學品安全性質調和制度,2015.。
[2]劉致中,”推動全球產業與技術變化”,亞太產業分析專業協進會7月產業雜誌,工研院產業經濟與趨勢研究中心,2012.。
[3]陳建明、劉榮昌,”轉型蛻變中的石化:替代石油來源的生質材料產業”,工業局石化產業高值化推動專案,財團法人工研院材化所,2017.。
[4],”化纖產業鏈總體狀況”,金融產業總結報告,p.4,2017.。
[5]譯者:黃莉芸,”乙二醇-ToxFAQs™”,ATSDR CAS # 107-21-1,有毒物质和疾病登记處毒理學和生物化學部,p.2,2013.。
[6]黃莉芸、施淑芳、黃詠愷,環境毒物知多少,國家環境毒物研究中心,p.4,2013.。
[7]呂維明、許瑞祺、巫鴻章,”液體攪拌技術”,高立圖書有限公司,p.4,2008.。
[8]Ibrahzm S,Nienow,A W. Power curves and flow patterns for a range of impellers in Newtonian fluids:40[9]Winardi S ,Nagase Y. Unstable phenomenon of flow in a mixing reactor with a marine propeller[J]. Journal of Chemical Engineering of Japen ,24(2):P.243-249,1991。
[10]R.M.Jones、A.D.HarveyⅢand S. Acharya,”Two-Equation Turbulence Modeling for Impeller Tanks”,Transactions of the ASME,Journal of Fluids Engineering,Vol.123,P.640-648,2001.。
[11]沈詩珍、崔燕勇,”圓盤斜葉渦輪式攪拌槽流場分析”,國立交大機械工程研究所碩士論文,P.3,2005.。
[12]胡育昌、崔燕勇,”應用在高黏性牛頓及非牛頓流體混合之層流攪拌器性能參數分析與流場計算”,國立交通大學機械工程研究所博士論文,P.13,2011.。
[13]呂維明、許瑞祺、巫鴻章,液體攪拌技術,高立圖書有限公司,p.10,2008.。
[14]M. Yianneskis and J. B. Joshi,”On the structure of the trailing vortices around rushton turbing blades” ,Transactions of the Institution of Chemical Engineers,Vo1. 71 Part A,P.543-550,1993.。
[15]M. YIANNESKIS、Z.Popiolek and J.H. Whitelaw,”An experimental study of the steady and unsteady flow characteristics of reactors”,Journal of Fluid Mechanics,Vo1. 175 P.537-555,1987.。
[16]K.C. LEE and M. YIANNESKIS,”Turbulence properties of the Impeller Stream of a Rushton Turbine “,Aiche JOURNAL,V01.44,No.1,pp.13-24,1998.。
[17]Stoots,C. M. and R. V. Calabrese,”Mean Velocity Field Relative to a Rushton Turbine Blade “,Aiche Journal ,V01.41,No.1,pp.1-11,1995.。
[18]Galindo,E. M. A. Arguello,D. Velasco,V. Albiter and A. Martinez,”A Comparison of Cavern Development in Mixing a Yield Stress Fluid by Rushton and Intermig Impellers”,Chem. Eng. Technol. ,P.315-323,1996.。
[19]呂維明、許瑞祺、巫鴻章,”液體攪拌技術”,高立圖書有限公司,p.26,2008.。
[20]Sharma F. and A.A. Shaikh,”Solid Suspension in Stirred Tanks with Pitched Blade Turbine “,Chem. Eng Sng.,V080, pp.2123-2140,2003.。
[21]Nienow、A.W.,”Suspension of Solid Particles in Turbine Agitated Baffled Vessels Vessels “,Chem.eng.Sci.,V01.23, pp.1453-1459,1968.。
[22]Conti、R.、S. Sicardi and V. Specchia,”Short Communication “,the Chem. Eng. J.,V01.22, pp.247-249,1981.。
[23]Armenante、Piero M.、E.U. Nagamine and J. Susanto,”Detremination of Correlation to Predict the Minimum Agitation Speed for Complete Solid Suspension in Agitated Vessels“,the Can.J.of Chem. Eng. ,V01.76, pp.413-419,1998.。
[24]Kato Y.、S. Hiraoka、Y Tada、M Ohnishi、T. Naganawa、R. Yamauchi and K.Shiobara,”Mixing Performance of an Agitated Vessel with Bottom Baffles “,J. Chem. Eng .Japan,35(2), pp.208-210,2002.。
[25]Smith、J. M.、M. M.C. G. Warmoeskerken、and E. Zeef,”Flow Conditions in Vessels Dispersing Gases in Liquids with Multiple Impellers“,Chem. Eng. Prog. Sym. Series Biotechnol. Proc. AIChE, pp.107,1987.。
[26]Lu、W. M. and C. L. Yao,”Power Consumption and Gas dispersion in Multi-Stage Rushton Turbine Impellers Stirred Tank“,J. of Chin. I. Ch.E.,23, pp.173,1992.。
[27]Mochizuki、M.、N. Takei、T. Sato、H. Tada、K. Sato、and T. Akehate,”Power Required for Upper Impeller in Gas-Liquid Vessels Agitated by Dual Turbines with Various Designs“,Kagaku Kougaku Ronbushu,23, pp.342,1997.。
[28]陳艷霞、CAX技術聯盟,”ANSYS WORKBENCH 18.0有限元素分析從入門到精通 “,電子工業出版社,P106.,2018.。
[29]張岩、CAE應用聯盟,”ANSYS WORKBENCH 15.0有限元素分析從入門到精通 “,機械工業出版社,P207,2014.。
[30]陳艷霞、CAX技術聯盟,”ANSYS WORKBENCH 18.0有限元素分析從入門到精通 “,電子工業出版社,P164.,2018.。
[31]陳艷霞、CAX技術聯盟,”ANSYS WORKBENCH 18.0有限元素分析從入門到精通 “,電子工業出版社,P193.,2018.。
[32]陳艷霞、CAX技術聯盟,”ANSYS WORKBENCH 18.0有限元素分析 從入門到精通“,電子工業出版社,P221.,2018.。
[33]陳艷霞、CAX技術聯盟,”ANSYS WORKBENCH 18.0有限元素分析從入門到精通 “,電子工業出版社,P239.,2018.。
[34]宋學官、蔡林、張華”ANSYS 流固耦合分析與工程實例“,中國水利水電出版社,P5.,2018.。
[35]朱紅鈞 ,”FLUENT 15.0流場分析實戰指南“,北京人民郵電出版社,P449.,2018.。
[36]段中喆,” ANSYS FLUENT流體分析與工程實例“,電子工業出版社、中國工信出版集團,P2.,2018.。
[37]孫錦、張裕中,”基於剪切技術的重油乳化過程三維流場數值模擬“,北京化工大學學報,2008.。
[38]唐家鵬 ,”ANSYS FLUENT 16.0超級學習手冊 “,北京人民郵電出版社、中國工信出版集團,P30.,2017.。
[39]王福軍,”計算流體動力學分析-CFD軟體原理與應用“,北京清華大學出版社,2004.。
[40]黃思,”流場機械數值仿真研究與應用“,華南理工大學出版社,P24.,2018.。
[41]朱紅鈞 ,”FLUENT 15.0流場分析實戰指南“,北京人民郵電出版社,P14.,2018.。
[42]鄭力銘 ,” ANSYS FLUENT 15.0流場計算從入門到精通“,電子工業出版社、中國工信出版集團,P19.,2018.。
[43]唐家鵬 ,”ANSYS FLUENT 16.0超級學習手冊 “,北京人民郵電出版社、中國工信出版集團,P60.,2017.。
[44]夸克工作室 ,”ANSYS 電腦輔助工程分析進階範例 “,易習圖書,P10-23.,2013.。
[45]黃思,”流場機械數值仿真研究與應用“,華南理工大學出版社,P139.,2018.。

電子全文 電子全文(網際網路公開日期:20250826)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔