(44.192.112.123) 您好!臺灣時間:2021/03/07 16:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李奇峯
研究生(外文):LI, CHI-FENG
論文名稱:以CFD模式模擬分析中空纖維薄膜在壓電形變效應下之流場分佈特性
論文名稱(外文):Modeling and analyzing characteristics of fluid fields around hollow fiber membranes under piezoelectric effects with CFD models
指導教授:洪崇軒洪崇軒引用關係
指導教授(外文):HUNG, CHUNG-HSUANG
口試委員:宋偉國羅國誠
口試委員(外文):SONG,WEI-GUOLUO,GUO-CHENG
口試日期:2020-07-25
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:環境與安全衛生工程系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:83
中文關鍵詞:壓電薄膜薄膜積垢積垢機制分析計算流體力學
外文關鍵詞:Piezo filmCFDfouling effectsfouling mechanism analyses
相關次數:
  • 被引用被引用:0
  • 點閱點閱:27
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
以超過濾(Ultra-filtration, UF)薄膜處理廢水時,清水通量會快速地衰減,其主因在於薄膜產生積垢現象(Fouling);減少薄膜積垢物的累積,延長薄膜需要清洗的頻率,為各界努力研發的方向。因聚偏氟乙烯(Polyvinylidene fluoride, PVDF)具有壓電特性,結合UF過濾薄膜的使用,預期可延緩薄膜積垢累積的速度,深具開發價值。基於此,於實際製備具壓電特性的UF薄膜前,研究先嘗試應用CFD軟體模擬分析中空纖維膜(Hollow Fiber UF Membrane, HFM)與壓電中空纖維膜(Pizeoelectric Hollow Fiber UF Membrane, PHM),在超過濾薄膜處理流場中,其在流體剪應力、流場速度分佈、紊流強度等面向的差異,藉以研析壓電薄膜應用在薄膜過濾系統中減少薄膜積垢之可能機制。
模擬結果顯示:形變後的中空纖維過濾膜(PHM)其紊流強度,高於未形變的過濾膜(HFM);PHM產生徑向旋流,可產生薄膜表面的擾動,減弱膠體吸附在膜面上;作用於流場內薄膜表面的軸向與徑向剪應力,為抑制過濾薄膜表面積垢形成的重要因素,當薄膜表面的濾餅層受到剪應力越大時,顆粒所受的環流升力越大,能有效的抑制濾餅層厚度的增加。與PHM流場內產生的剪應力強度相比,HFM產生的剪應力強度僅介於0~1%間,前者剪應力強度較強;依據CFD流場模擬的膜邊界掃流強度與水流在膜面的分佈情形,因薄膜的形變,可增加流體在薄膜表面的剪應力強度及流場內的紊流動能,使得水流能更有效的掃除薄膜表面之膠體微粒,減少背向擴散及極化現象產生的積垢,故能有效地改善通量衰減的情況,延遲薄膜積垢的形成。

Ultra-filtration (UF) membranes are widely applied to water/wastewater treatment processes, but the clean water flux for them reduce quickly resulting from membrane fouling effects. Many research efforts have been made for establishing the technologies to reduce the membrane fouling effects. Among them, due to the piezoelectric effects of generating constant vibration on the membrane surfaces, polyvinylidene fluoride (PVDF) are considered as a candidate being as a co-material for membrane production. The piezoelectric effects are expected to be able to reduce the accumulation of colloids and fouling layer formation on the membrane surfaces.
Accordingly, this study aimed to apply the computational fluid dynamics (CFD) software to simulate fluid flow patterns near the UF membrane surfaces. Two typical types of UF filtration systems, hollow fiber UF membrane (HFM) and piezoelectric hollow fiber UF membrane (PHM) systems, were tested. Some fluid flow characteristics including surface stress, flow field distribution, and turbulence intensity for both systems were predicted and compared for investigating the potential mechanisms of reducing membrane fouling effects. The simulation results demonstrated that the PHM system achieves higher surface stress and turbulence intensity than the HFM system, less foulding observed by the PHM system. According to the CFD flow field simulation for sweep intensity in membrane boundary layers and the water flow distribution on the membrane surface, the flow of the fluid increases owing to the membrane deformation. The stability enables the water flow to sweep colloids on the membrane surface of the film more effectively and reduce the scale formation caused by the back diffusion and polarization phenomenon. Therefore, it can improve the flux attenuation and delay the formation of fouling effects.

摘要 I
Abstract II
致謝 III
List of Symbols IV
目錄 VI
圖目錄 VII
表目錄 IX
第一章 緒論 1
1-1 研究背景 1
1-2 研究目的 3
第二章 文獻回顧 5
2-1 中空纖維過濾膜的特性與主要污染的因子 5
2-1-1 中空纖維過濾膜的特性 5
2-1-2 中空纖維過濾膜主要污染因子 7
2-1-3過濾膜的發展 8
2-2壓電膜之特性現況 10
第三章 CFD數值模型與分析方法 25
3-1幾何模型設定 25
3-2邊界條件 28
3-3網格劃分 31
3-4流場模擬與分析 32
3-4-1 流場計算方法 32
3-4-2 制御方程式 35
3-4-3 紊流模型模擬方法 38
3-4-4 多孔介質模型 39
3-5數值計算方法 41
第四章 結果與討論 46
4.1薄膜表面剪應力的變化 46
4.2 流場速度分佈的變化 53
4.3 紊流動能的變化 61
4.4 結果討論 65
第五章 結論與建議 67
5.1 結論 67
5.2 建議事項 67
參考文獻 68

Abdullah S.; Wray H.; Bérubé P.; Andrews R.; “Distribution of surface shear stress for a densely packed submerged hollow fiber membrane system”, Desalination, 357: 117–120, 2015.
Akhondi E.; Zamani F.; Tng K.; Leslie G.; Krantz I.; Fane A.; Chew J.; “The Performance and Fouling Control of Submerged Hollow Fiber (HF) Systems: A Review”, applied sciences, 1-39, 2017.
Bae J.; Baek I.; Choi H.; “Efficacy of piezoelectric electrospun nanofiber membrane for water Treatment”, Chemical Engineering Journal, 307: 670–678, 2017.
Bilad M.; Mezohegyi G.; Declerck, P.; Vankelecom, I.; "Novel magnetically induced membrane vibration (MMV) for fouling control in membrane bioreactors." Water Research, 46 (1): 63-72, 2012.
Celmer D.; Oleszkiewicz J.; Cicek N.; “Impact of shear force on the biofilm structure and performance of a membrane biofilm reactor for tertiary hydrogen-driven denitrification of municipal wastewater”, Water Research, 42: 3057-3065, 2008.
Chan C.; Hall E.; “Shear profiles inside gas sparged submerged hollow fiber membrane modules”, Journal of Membrane Science, 297: 104–120,.2007.
Chena D.; Pomalaza R.; “A self-cleaning piezoelectric PVDF membrane system for filtration of kaolin suspension”, Separation and Purification Technology, 215: 612-618, 2019.
Coster H.; T. Farahani D.; Chilcott T.; “Production and characterization of piezo-electric membranes”, Desalination, 283: 52–57, 2011.
Darestani M.; .Coster H.; Chilcott T.; “Piezoelectric membranes for separation processes: Operating conditions and filtration performance”, Journal of Membrane Science, 435: 226–232, 2013.
Gee S.; Johnson B.; Smith A.; “Optimizing electrospinning parameters for piezoelectric PVDF nanofiber membranes”, Journal of Membrane Science, 563: 804-812, 2018.
Ghidossi R.; Daurelle J.; Veyret D.; Moulin P.; “Simplified CFD approach of a hollow fiber ultrafiltration system”, Chemical Engineering Journal, 123: 117–125, 2006.
Kaya R.; Deveci G.; Turken T.; Sengur R.; Guclu S.; Koseoglu I.; “Analysis of wall shear stress on the outside-in type hollow fiber membrane modules by CFD simulation”, Desalination, 351: 109–119, 2014.
Krinks J.; Qiu M.; .Mergos I.; Weavers L.; Mouser P.; “Piezoceramic membrane with built-in ultrasonic defouling”, Journal of Membrane Science, 494: 130–135, 2015.
Kurada K.; Tanmay D.; “Modeling of cross flow hollow fiber ultrafiltration for treatment of effluent from Railway Workshop”, Journal of Membrane Science, 551: 223-233, 2018.
Kuščer D.; Rojac T.; Belavič D.; Santo M.; Bradeško A.; “Integrated piezoelectric vibration system for fouling mitigation in ceramic filtration membranes”, Journal of Membrane Science, 540: 277-284, 2017.
Le C.; Jefferson P.; Judd B.; "Impact of aeration, solids concentration and membrane characteristics on the hydraulic performance of a membrane bioreactor.", Journal of Membrane Science, 218 (1e2): 117-129, 2003.
Liang S.; Zhao Y.; Zhang Jian, Song Lianfa, “Bisection method for accurate modeling and simulation of fouling in hollow fiber membrane system”, Environmental Science and Pollution Research, 24: 14346–14354, DOI 10.1007/ s11356- 017- 9023-4, 2017.
Lic X.; Mo Y.; Li J.; Guo W.; Ngo H.; “In-situ monitoring techniques for membrane fouling and local filtration characteristics in hollow fiber membrane processes: A critical review”, Journal of Membrane Science, 528: 187–200, 2017.
Liu L.; Ding Z.; Lu Y.; Ma R.; “Modeling the bubbling enhanced microfiltration for submerged hollow fiber membrane module”, Desalination, 256: 77–83, 2010.
Liu X.; Wang Y.; Waite T.; Leslie G.; “Numerical simulation of bubble induced shear in membrane bioreactors: Effects of mixed liquor rheology and membrane configuration”, Water Research, 755: 131-145, 2015.
Liu Y.; He G.; Li B.; Hu Z.; Ju J.; "A comparison of cake properties in traditional and turbulence promoter assisted microfiltration of particulate suspensions", Water Research, 46: 2535-2544, 2012.
Mao H.; Bu J.; Qiu M.; Ding D.; Chen X.; Verweij H.; “PZT/Ti composite piezoceramic membranes for liquid filtration: Fabrication and self-cleaning properties”, Journal of Membrane Science, 581: 28-37, 2019.
Polyakov Y.; “Membrane Fouling at the Service of UF/MF: Hollow Fiber Membrane Adsorber”, 2005.
Pourbozorg M.; Li T.; Adrian L.; ” Effect of turbulence on fouling control of submerged hollow fibre membrane filtration”, Water Research, 99: 101-111, 2016.
Tong Y.; Huang L.; Li W.; “CFD simulation of flow field and resistance in a 19-core tandem ceramic membrane module”, Chinese Journal of Chemical Engineering, 28: 625-635, 2020.
Wang J.; Gao X.; Ji G.; Gu X.; “CFD simulation of hollow fiber supported NaA zeolite membrane modules”, Separation and Purification Technology, 213: 1–10, 2019.
Wang S. "The Use of Fluid Instabilities to Control MF/UF Membrane Fouling.", Membrane Quaterly, 20: 7–11, 2005.
Wypysek D.; Rall D.; Wiese M.; Neef T.; Koops G.; Wessling M.; “Shell and lumen side flow and pressure communication during permeation and filtration in a multibore polymer membrane module”, Journal of Membrane Science, 584: 254-267, 2019.
Yanb J.; Liu M.; Jeong Y.; Kang W.; Li L.; Deng N.; Cheng B.; Yang G.; “Performance enhancements in oly(vinylidene fluoride)-based piezoelectric nanogenerators for efficient energy harvesting”, Nano Energy, 56: 662-692, 2019.
Zhao J.; Li B.; Li X.; Qin Y.; Li C.; Wang S.; “Numerical simulation of novel polypropylene hollow fiber heat exchanger and analysis of its characteristics”, Applied Thermal Engineering, 59:134-141, 2013.
Zhuang L.; Guo H.; Dai G.; Xu Z.; “Effect of the inlet manifold on the performance of a hollow fiber membrane module-A CFD study”, Journal of Membrane Science, 526: 73–93, 2017.
Zhuang L.; Guo H.; Wang P.; Dai G.; ”Studyonthe flux distributioninadead- endoutside-inhollow fiber membranemodule”, Journal of Membrane Science, 495: 372–383, 2015.

孙余凭, 霍彦强, 顾瑾, “螺旋形中空纤维超滤膜处理高浓度废水时Dean 旋流对膜污染阻力的削弱作用”, 膜科学与技术, 第29 卷,第3 期, 2009.
马浩 , 曹国凭 , 邓建绵 , 刘金盾 , 陈菊香, “聚砜中空纤维超滤膜工艺条件优化”, 河北理工大学学报(自然科学版), 第31卷, 第1期, 2009.
鲍文, 许振良, 杨虎, 周颖, 冯翠平, “聚偏氟乙烯(PVDF)中空纤维超滤膜的电性能与渗透性能”, 华东理工大学学报(自然科学版), 1006-3080, 05-0627-04, 2008.
丁啟聖., 王惟一, 新型實用過濾技術, 冶金工業出版社, 2011.
邱运仁, 缪畅, 叶红齐, ”聚砜中空纤维超滤膜的流动电位研究”, 膜科学与技术, 第29 卷,第6 期, 1007-8924.2009.06.022, 2009.
崔春芳, 王雷, 塑料薄膜制品與加工, 化業工業出版社, 2012.
王褔軍, 計算流體力學-CFD軟件原理應用, 清華大學出版社, 2004.


Wuhu Huamo Environmental Co.,Ltd, May 1, 2020,
http://www.rwp-filter.com/productshow.asp?ArticleID=PYP94V9RX5)

電子全文 電子全文(網際網路公開日期:20250821)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔