(3.231.29.122) 您好!臺灣時間:2021/02/25 22:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林靜宜
研究生(外文):LIN, JING-YI
論文名稱:以教學為導向之機器人軌跡設計及人機介面開發
論文名稱(外文):Development of Teaching Oriented Robot Trajectory Design and Human Machine Interface
指導教授:吳宗亮
指導教授(外文):WU, TSUNG-LIANG
口試委員:孫榮宏郭永麟
口試委員(外文):SUN, RONG-HONGGUO, YONG-LIN
口試日期:2020-06-15
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:機電工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:90
中文關鍵詞:軌跡規劃人機介面
外文關鍵詞:Trajectory planningHuman-machine interface
相關次數:
  • 被引用被引用:0
  • 點閱點閱:36
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
軌跡規劃對於機器人的運行相當重要。透過軌跡規劃能夠使機器人的運動軌跡更加平滑、平穩且減少運行時的振動,提高機器人的穩定性、可靠性和工作效率。本論文將三次多項式軌跡、五次多項式軌跡、七次多項式軌跡、4-3-4多項式軌跡、3-5-3多項式軌跡與5-Cubic多項式軌跡方程式,整合並建立一個圖形化使用者介面(Graphical user interface, GUI),讓使用者輸入欲計算機器人之D-H參數,建立機器人模型後,並輸入其運動定義條件(起點與終點的位置、速度和加速度),選取計算軌跡之方式便能計算出該機器人的運動軌跡並繪出軌跡位置圖、軌跡速度圖和軌跡加速度圖,並繪出機器人的運動軌跡模擬圖。透過此介面能夠計算出機器人運動軌跡。
Track planning is very important for the operation of robots. Through track planning, the robot's motion trajectory can be smoother, smoother and less vibration, and improve the stability, reliability and efficiency of the robot. This paper integrates third-order polynomial tracks, fifth-order polynomial tracks, seventh-order polynomial tracks, 4-3-4 polynomial tracks, 3-5-3 polynomial tracks and 5-Cubic polynomial trajectories, integrates and establishes a Graphical user interface ( GUI ), allows users to calculate the robot's D-H parameters, build the robot model, and enter its motion definition conditions ( the position and acceleration of the starting point, acceleration ). By calculating the trajectory, we can calculate the trajectory of the robot and draw the trajectory position map, track speed map and track acceleration map, and draw the motion trajectory simulation map of the robot. Through this interface, the robot motion trajectory can be calculated.
摘 要 i
ABSTRACT ii
致謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 1
1.3 論文架構 2
第二章 文獻回顧 3
2.1 機器人軌跡規劃 3
2.2 研究方法 5
第三章 機器人運動學 6
3.1 順向運動學介紹 6
3.2 逆向運動學介紹 11
第四章 機器人軌跡規劃推導 17
4.1 三次多項式軌跡方程式 17
4.2 五次多項式軌跡方程式 20
4.3 七次多項式軌跡方程式 23
4.4 高項次(4-3-4)多項式軌跡方程式 27
4.5 高項次(3-5-3)多項式軌跡方程式 33
4.6 5-Cubic多項式軌跡方程式 38
4.7 軌跡計算圖形化使用者介面 45
第五章 機器人軌跡規劃比較結果與討論 52
5.1 三次、五次與七次多項式軌跡規劃比較結果與討論 52
5.2.1 三次多項式軌跡 52
5.2.2 五次多項式軌跡 55
5.2.3 七次多項式軌跡 58
5.2.4 三次、五次多項式軌跡 62
5.2 4-3-4、3-5-3與5-Cubic多項式軌跡比較結果與討論 65
5.2.1 4-3-4多項式軌跡 65
5.2.2 3-5-3多項式軌跡 68
5.2.3 5-Cubic多項式軌跡 71
第六章 結論與未來展望 75
6.1 結論 75
6.2 未來展望 75
參考文獻 76

[1].Porawagama, C. D. and S. R. Munasinghe (2014). Reduced jerk joint space trajectory planning method using 5-3-5 spline for robot manipulators. 7th International Conference on Information and Automation for Sustainability.
[2].Liu, H., et al. (2013). "Time-optimal and jerk-continuous trajectory planning for robot manipulators with kinematic constraints." Robotics and Computer-Integrated Manufacturing 29(2): 309-317.
[3].Stilman, M. (2010). "Global Manipulation Planning in Robot Joint Space With Task Constraints." IEEE Transactions on Robotics 26(3): 576-584.
[4].Wu, W., et al. (2009). Smooth joint trajectory planning for humanoid robots based on B-splines. 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO).
[5].Gasparetto, A. and V. Zanotto (2007). "A new method for smooth trajectory planning of robot manipulators." Mechanism and Machine Theory 42(4): 455-471.
[6].Zheng, C., et al. (2009). "Simple online smooth trajectory generations for industrial systems." Mechatronics 19(4): 571-576.
[7].Liu, L., et al. (2016). "Smooth trajectory planning for a parallel manipulator with joint friction and jerk constraints." International Journal of Control, Automation and Systems 14(4): 1022-1036.
[8].Liu, X. and Z. Shen (2016). "Rapid Smooth Entry Trajectory Planning for High Lift/Drag Hypersonic Glide Vehicles." Journal of Optimization Theory and Applications 168(3): 917-943.
[9].Lin, C., et al. (1983). "Formulation and optimization of cubic polynomial joint trajectories for industrial robots." IEEE Transactions on Automatic Control 28(12): 1066-1074.
[10].Li, W., et al. (2012). Optimized tracjectory planning algorithm for industrial robot. 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery.
[11].Fang, S., et al. (2019). Trajectory Planning for Seven-DOF Robotic Arm Based on Quintic Polynormial. 2019 11th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC).
[12].Wang, H., et al. (2019). "Smooth point-to-point trajectory planning for industrial robots with kinematical constraints based on high-order polynomial curve." Mechanism and Machine Theory 139: 284-293.
[13].Xiao, Y., et al. (2012). "Smooth and near time‐optimal trajectory planning of industrial robots for online applications." Industrial Robot: An International Journal 39(2): 169-177.
[14].Kim, H. and B. K. Kim (2014). "Online Minimum-Energy Trajectory Planning and Control on a Straight-Line Path for Three-Wheeled Omnidirectional Mobile Robots." IEEE Transactions on Industrial Electronics 61(9): 4771-4779.
[15].Park, J., et al. (2015). "Homotopy-Based Divide-and-Conquer Strategy for Optimal Trajectory Planning via Mixed-Integer Programming." IEEE Transactions on Robotics 31(5): 1101-1115.
[16].Huang, J., et al. (2018). "Optimal time-jerk trajectory planning for industrial robots." Mechanism and Machine Theory 121: 530-544.
[17].Abu-Dakka, F. J., et al. (2017). "Statistical evaluation of an evolutionary algorithm for minimum time trajectory planning problem for industrial robots." The International Journal of Advanced Manufacturing Technology 89(1): 389-406.
[18].Niku, Saeed B. Introduction to Robotics : Analysis, Control, Applications. Second Edition ed., Wiley, 2010.
[19].Craig, John J. Introduction to Robotics: Mechanics and Control. Third Edition ed., Prentice Hall, 2016.
[20].Spong, Mark W, et al. Robot Modeling and Control. First Edition ed., John Wiley & Sons, Inc., 2005.
[21].Biagiotti, Luigi, and Claudio Melchiorri. Trajectory Planning for Automatic Machines and Robots. Springer, 2010.
[22].Das, M. T. and L. Canan Dülger (2005). "Mathematical modelling, simulation and experimental verification of a scara robot." Simulation Modelling Practice and Theory 13(3): 257-271.
[23].Falconi, R. and C. Melchiorri (2008). "RobotiCad: an Educational Tool for Robotics." IFAC Proceedings Volumes 41(2): 9111-9116.
[24].Manzoor, S., et al. (2014). "An open-source multi-DOF articulated robotic educational platform for autonomous object manipulation." Robotics and Computer-Integrated Manufacturing 30(3): 351-362.
[25].Lumsden, J. and C. Ortega-Sanchez (2010). Modular autonomous robotics platform for educational use. TENCON 2010 - 2010 IEEE Region 10 Conference.



電子全文 電子全文(網際網路公開日期:20250703)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔