跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/05 23:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許允盛
研究生(外文):HSU, YUN-SHENG
論文名稱:影響創新技術使用意圖的因素-以E政府服務為例
論文名稱(外文):Factors influencing the use intention of innovative technologies – an example of e-government
指導教授:邱彥婷邱彥婷引用關係
指導教授(外文):CHIU, YEN-TING
口試委員:陳宥杉李婉怡
口試委員(外文):Chen, Yu-ShanLee, Wan-I
口試日期:2020-06-17
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:行銷與流通管理系
學門:商業及管理學門
學類:行銷與流通學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:96
中文關鍵詞:E政府線上實名證系統UTAUT表現期望努力期望顧客知覺價值使用意圖持續意圖
外文關鍵詞:electronic-governmentonline customs declarationUTAUTperformance expectancyeffort expectancycustomer perceived valueuse intentioncontinuance intention
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探討哪些因素會影響台灣政府部門創新技術的使用意圖。根據整合型科技接受模式理論(UTAUT)以一個新開發的在線上實名認證APP系統為例,研究了用戶的績效預期,努力預期,消費者知覺價值和使用意圖/持續意圖之間的關係。

本研究透過線上問卷並採用李克特式五點量表計分方式一共收集了212份有效樣本。研究結果顯示,績效預期,努力預期對顧客知覺價值有正向影響。此外,顧客知覺價值對使用/持續意圖也有正向影響。然而,不同性別間對於使用意圖/持續意圖有顯著差異。另外,EZWay的使用者根據月收入和每次跨境線上購物的價格,存在顯著差異。最後,績效預期和努力預期也可以直接影響使用意圖/持續意圖,而無需透過顧客知覺價值的中介效果。依據上述結論,本研究對於軟體開發者及未來研究方向提出具體建議,而本研究之限制也在文章末節加以討論。

This study aimed to explore which factors influence the use intention of innovative technologies in Taiwan’s government sector. Based on the UTAUT (Unified Theory of Acceptance and Use of Technology), the relationships among users' performance expectancy, effort expectancy, customer perceived value, and use intention are all investigated using the example of a newly developed app for online customs declaration.

The study collected a total number of 212 valid Taiwanese responses. Respondents were approached using an online survey, and a 5-point Likert scale was utilized to help respondents assess each measurement.

According to the results of the survey, performance expectancy and effort expectancy had positive influence on customer perceived value. Furthermore, customer perceived value had positive influence on use/continuance intention. There are significant differences between gender groups with respect to use intention/continuance intention. Moreover, there is a significant difference in the use intention for EZWay between respondents based on their monthly income and prices for cross-border online shopping per time. Finally, performance expectancy and effort expectancy can also directly impact use intention/continuance intention without the intervention of customer perceived value.

Theoretical and managerial implications of the study were given, followed by study limitations and suggested future research directions.

Table of Contents
ABSTRACT.........................................................................i
摘要............................................................................ii
Acknowledgements...............................................................iii
Table of Contents...............................................................iv
List of Tables...................................................................v
List of Figures.................................................................vi
Chapter 1: Introduction..........................................................1
1.1.Research background..........................................................1
1.2.Research motivation..........................................................2
1.3.Research objective...........................................................3
1.4.Research process.............................................................4
Chapter 2: Literature review.....................................................5
2.1.Definition of electronic-government..........................................5
2.2.EZWay online real-name authentication system.................................6
2.2.1.Background.................................................................6
2.2.2.Scope of check.............................................................7
2.2.3.Points to note.............................................................7
2.2.4.Operating description of “EZ Way” App registration and POA process.........8
2.3.Technology acceptance model.................................................10
2.4.Unified theory of acceptance and use of technology..........................13
2.4.1.Performance expectancy....................................................15
2.4.2.Effort expectancy.........................................................17
2.4.3.Social influence..........................................................18
2.4.4.Facilitating conditions...................................................20
2.5.Customer perceived value....................................................23
2.6.Use intention...............................................................25
2.7.Continuance intention.......................................................28
Chapter 3: Methodology..........................................................31
3.1.Research framework..........................................................31
3.2.Hypotheses development......................................................32
3.3.Questionnaire design........................................................35
3.3.1.Operational definition and measures.......................................35
3.3.2.Questionnaire design......................................................38
3.3.3.Data collection...........................................................38
3.3.4.Method of analysis........................................................39
3.3.5.Descriptive analysis......................................................39
3.3.6.Reliability test..........................................................39
3.3.7.Regression analysis.......................................................40
3.3.8.T-test....................................................................41
3.3.9.One-way analysis of variance..............................................41
3.3.10. Mediation test..........................................................42
Chapter 4.Data analysis and result..............................................43
4.1.Sample descriptions.........................................................43
4.2.Reliability analysis........................................................44
4.3.Validity analysis...........................................................46
4.4.Multiple linear regression..................................................47
4.5.Single linear regression....................................................49
4.6.Mediation test..............................................................50
4.6.1.Mediation test 1..........................................................50
4.6.2.Mediation test 2..........................................................51
4.7.Hypothesis test result......................................................53
4.8.Group comparison............................................................56
4.8.1.One-sample t-test result..................................................56
4.8.2.One-way analysis of variance result.......................................57
Chapter 5: Conclusions and implementations......................................62
5.1.Theoretical Implications....................................................62
5.2.Managerial Implications.....................................................64
5.3.Conclusion..................................................................66
5.4.Study Limitations...........................................................67
5.5.Future Research.............................................................67
References......................................................................69
Appendix I......................................................................80
Appendix II.....................................................................84


Agarwal, R., & Prasad, J. (1999). Are individual differences germane to the acceptance of new information technologies? Decision sciences, 30(2), 361-391.

AIhua, Z., Xing, Y., & Mingxing, Z. (2012). Empirical test of determinants of accepting mobile payment. China Communications, 9(7), 127-141.

Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211.

Al-Gahtani, S. (2001). The applicability of TAM outside North America: An empirical test in the United Kingdom. Information Resources Management Journal (IRMJ), 14(3), 37-46.

Alsheikh, L. and Bojei, J., (2012). Customer's perceived value to use mobile banking services. In International Conference on Management, Behavioral Sciences and Economics Issues (ICMBSE 2012), Penang. Malaysia, 178-182.

Anderson, E. W., & Sullivan, M. W. (1993). The antecedents and consequences of customer satisfaction for firms. Marketing science, 12(2), 125-143.

Anderson, J. C., & Narus, J. A. (1998). Business marketing: understand what customers value. Harvard business review, 76, 53-67.

Anderson, J. E., & Schwager, P. H. (2005, February). SME adoption of wireless LAN technology: applying the UTAUT model. In Proceedings of the 7th annual conference of the southern association for information systems, Vol. 7, 39-43.

Arshad, R. (2014). Perceived service quality and customer satisfaction with mediating effect of purchase intention. Academy of Contemporary Research Journal, 8(2), 40-49.

Attuquayefio, S., & Addo, H. (2014). Using the UTAUT model to analyze students’ ICT adoption. International Journal of Education and Development using ICT, 10(3), 77-86.

Bandura, A. (1997) Self-Efficacy: The Exercise of Control, Freeman, New York.

Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of personality and social psychology, 51(6), 1173.

Bhattacherjee, A. (2001). Understanding information systems continuance: an expectation-confirmation model. MIS quarterly, 351-370.

Bolton, R. N., & Drew, J. H. (1991). A longitudinal analysis of the impact of service changes on customer attitudes. Journal of marketing, 55(1), 1-9.

Bolton, R. N., & Lemon, K. N. (1999). A dynamic model of customers’ usage of services: Usage as an antecedent and consequence of satisfaction. Journal of marketing research, 36(2), 171-186.

Bourdeau, L., Chebat, J. C., & Couturier, C. (2002). Internet consumer value of university students: E-mail-vs.-Web users. Journal of Retailing and Consumer Services, 9(2), 61-69.

Bouwman, H., López–Nicolás, C., Molina–Castillo, F. J., & Hattum, P. V. (2012). Consumer lifestyles: alternative adoption patterns for advanced mobile services. International Journal of Mobile Communications, 10(2), 169-189.

Catherine, N., Geofrey, K. M., Moya, M. B., & Aballo, G. (2018). Effort Expectancy, Performance Expectancy, Social Influence and Facilitating Conditions as Predictors of Behavioural Intentions to Use ATMs with Fingerprint Authentication in Ugandan Banks. Global Journal of Computer Science and Technology, 17(5), 4-22.

Chang, C. C. (2013). Exploring the determinants of e‐learning systems continuance intention in academic libraries. Library Management, 34(1), 40-55.

Chau, A., Stephens, G., & Jamieson, R. (2004). Biometrics acceptance-perceptions of use of biometrics. ACIS 2004 Proceedings, 28.

Chen, S. C. (2012). To use or not to use: understanding the factors affecting continuance intention of mobile banking. International Journal of Mobile Communications, 10(5), 490-507.

Chen, S. C., Liu, M. L., & Lin, C. P. (2013). Integrating technology readiness into the expectation–confirmation model: An empirical study of mobile services. Cyberpsychology, Behavior, and Social Networking, 16(8), 604-612.

Chen, Z., & Dubinsky, A. J. (2003). A conceptual model of perceived customer value in e‐commerce: A preliminary investigation. Psychology & Marketing, 20(4), 323-347.


Chiu, C. M., E. T. G. Wang, Y. H. Fang, and H. Y. Huang, (2014), “Understanding Customers’ Repeat Purchase Intentions in B2C E-Commerce: The Roles of Utilitarian Value, Hedonic Value and Perceived Risk,” Information Systems Journal, 24, 85-114.

Chu, C. W., & Lu, H. P. (2007). Factors influencing online music purchase intention in Taiwan. Internet Research, 17 (2), 139-155.

Churchill Jr, G. A., & Surprenant, C. (1982). An investigation into the determinants of customer satisfaction. Journal of marketing research, 19(4), 491-504.

Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS quarterly, 189-211.

Cronin Jr, J. J., Brady, M. K., & Hult, G. T. M. (2000). Assessing the effects of quality, value, and customer satisfaction on consumer behavioral intentions in service environments. Journal of retailing, 76(2), 193-218.

Cronin, J. J., Brady, M. K., Brand, R. R., Hightower, R., & Shemwell, D. J. (1997). A cross‐sectional test of the effect and conceptualization of service value. Journal of services Marketing, 11(17), 375-391.

Curtis, L., Edwards, C., Fraser, K. L., Gudelsky, S., Holmquist, J., Thornton, K., & Sweetser, K. D. (2010). Adoption of social media for public relations by nonprofit organizations. Public relations review, 36(1), 90-92.

Davis, F. D. “Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology,” MIS Quarterly (13:3), 1989, 319-339.

Davis, F. D. (1993). User acceptance of information technology: system characteristics, user perceptions and behavioral impacts. International journal of man-machine studies, 38(3), 475-487.

Davis, F. D., Bagozzi, R. P., and Warshaw, P. R. “User Acceptance of Computer Technology: A Comparison of Two Theoretical Models,” Management Science (35:8), 1989, 982-1002.

Davis, F.D. (1989) ‘Perceived usefulness, perceived ease of use, and user acceptance’, MIS Quarterly, Vol. 13, No. 3, 319–340.

De Jong, P. F. (1999). Hierarchical regression analysis in structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 6(2), 198-211.

DeLone, W. H., & McLean, E. R. (1992). Information systems success: The quest for the dependent variable. Information systems research, 3(1), 60-95.

Droge, C. (1998). Know your customer: New approaches to understanding customer value and satisfaction. Journal of the Academy of Marketing Science, 26(4), 351.

Fang, I. C., & Fang, S. C. (2016). Factors affecting consumer stickiness to continue using mobile applications. International Journal of Mobile Communications, 14(5), 431-453.

Fazio, R. H., Sanbonmatsu, D. M., Powell, M. C., & Kardes, F. R. (1986). On the automatic activation of attitudes. Journal of personality and social psychology, 50(2), 229–238.

Felton, G. W. (1995). Oxidative Stress of Vertebrates and Invertebrates, Ahmad, S(ed), Oxidative Stress and Antioxidant Defenses in Biology(ed.S.Ahmad), Chapman and Hall, New York, 356-434.

Fishbein, M. (1981). leek Ajzen (1975), Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research. Read-ing, MA: Addison-Wesley, 177-189.

Gale, B., Gale, B. T., & Wood, R. C. (1994). Managing customer value: Creating quality and service that customers can see. Simon and Schuster. Publication in New York, United States.

Gefen, D., & Straub, D. W. (2000). The relative importance of perceived ease of use in IS adoption: A study of e-commerce adoption. Journal of the association for Information Systems, 1(1), 8.

Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: An integrated model. MIS quarterly, 27(1), 51-90.

Gwilliam, K. (2002). Cities on the move. A World Bank urban transport strategy review. Washington DC, USA: The World Bank.

H. Fazio, D.M. Sanbonmatsu, M.C. Powell, F.R. Kardes, On the automatic activation of attitudes, Journal of Personality and Social Psychology 50 (1986) 229–238.

Ha, Y. W., & Park, M. C. (2013). Antecedents of customer satisfaction and customer loyalty for emerging devices in the initial market of Korea: An equity framework. Psychology & Marketing, 30(8), 676-689.

Haque, A., Anwar, N., Yasmin, F., Sarwar, A., Ibrahim, Z., & Momen, A. (2015). Purchase intention of foreign products: A study on Bangladeshi consumer perspective. Sage Open, 5(2), 2158244015592680.

Hawkins, D. I., & Mothersbaugh, D. L. (2010). Consumer behavior: Building marketing strategy. Boston: McGraw-Hill Irwin,.

Hawkins, D. I., Mothersbaugh, D. L., & Best, R. J. (2010). Consumer behavior. NY: McGraw-Hill.

Herr, P. M., Kardes, F. R., & Kim, J. (1991). Effects of word-of-mouth and product-attribute information on persuasion: An accessibility-diagnosticity perspective. Journal of consumer research, 17(4), 454-462.

Hew, J. J. (2017). Hall of fame for mobile commerce and its applications: A bibliometric evaluation of a decade and a half (2000–2015). Telematics and Informatics, 34(1), 43-66.

Hillmann, R., & Trier, M. (2013). Influence And Dissemination Of Sentiments In Social Network Communication Patterns. In ECIS, 52.

Ho, D. M. (2011). Personality and Social Influence Characteristic Affects on Ease of Use and Peer Influence of New Media Users Over Time.

Ho, G., Stephens, G., & Jamieson, R. (2003). Biometric authentication adoption issues. ACIS 2003 Proceedings, 11. Perth, Western Australia.

Hofstede, G. (1980). Culture and organizations. International Studies of Management & Organization, 10(4), 15-41.

Holbrook, M. B. (1994). The nature of customer value, Paper Presented in Service Quality: New Directions in Theory and Practice.

Hsu, C. L., & Lin, A. J. (2013). The effect of community identity on continuance intention of microblogging. International journal of electronic business, 10(4), 355-382.

Huang, Z., & Benyoucef, M. (2014). Usability and credibility of e-government websites. Government Information Quarterly, 31(4), 584-595.

Ismail, H. A. (2016). Intention to use smartphone through perceived compatibility, perceived usefulness, and perceived ease of use. Jurnal Dinamika Manajemen, 7(1), 1-10.

Jaeger, P., & Matteson, M. (2009). e-Government and Technology Acceptance: The Case of the Implementation of Section 508 Guidelines for Websites. Electronic Journal of E-Government, 7(1), 87-98.

Jamal, A., & Sharifuddin, J. (2015). Perceived value and perceived usefulness of halal labeling: The role of religion and culture. Journal of Business research, 68(5), 933-941.

Jeon, H. M., Ali, F., & Lee, S. W. (2019). Determinants of consumers’ intentions to use smartphones apps for flight ticket bookings. The Service Industries Journal, 39(5-6), 385-402.

Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31–36.

Kang, S. (2014). Factors influencing intention of mobile application use. International Journal of Mobile Communications, 12(4), 360-379.

Karahanna, E., Straub, D. W., & Chervany, N. L. (1999). Information technology adoption across time: a cross-sectional comparison of pre-adoption and post-adoption beliefs. MIS quarterly, 183-213.

Kearney, A. T. (2015). The 2015 global retail e-commerce index. Global retail e-commerce clicks on clicking.

Keeney, R. L. (1999). The value of Internet commerce to the customer. Management science, 45(4), 533-542.

Kessler, S. K., & Martin, M. (2017). How do potential users perceive the adoption of new technologies within the field of Artificial Intelligence and Internet-of-Things?-A revision of the UTAUT 2 model using Voice Assistants. Lund University

Kim, H. W., Chan, H. C., & Gupta, S. (2007). Value-based adoption of mobile internet: an empirical investigation. Decision support systems, 43(1), 111-126.

Kim, Y. H., Kim, D. J., & Wachter, K. (2013). A study of mobile user engagement (MoEN): Engagement motivations, perceived value, satisfaction, and continued engagement intention. Decision Support Systems, 56, 361-370.

Knutsen, L., Constantiou, I. D., & Damsgaard, J. (2005, July). Acceptance and perceptions of advanced mobile services: alterations during a field study. In International Conference on Mobile Business (ICMB'05) (326-332). IEEE.

Kumar, A., Sikdar, P., & Alam, M. M. (2016). E-retail adoption in emerging markets: Applicability of an integrated trust and technology acceptance model. International Journal of E-Business Research (IJEBR), 12(3), 44-67.

Kumar, A., Sikdar, P., & Alam, M. M. (2018). E-Retail Adoption in Emerging Markets: A Perspective on Predictive Constructs. In Entrepreneurship, Collaboration, and Innovation in the Modern Business Era, 40-67.

Kuo, Y. F., Wu, C. M., & Deng, W. J. (2009). The relationships among service quality, perceived value, customer satisfaction, and post-purchase intention in mobile value-added services. Computers in human behavior, 25(4), 887-896.

Kurkinen, E. (2014). Effect of enjoyment on attitude and on behavioral intention to use mobile applications when technology use is mandatory. University of Jyväskylä

Lai, I. K. W., & Shi, G. (2015). The impact of privacy concerns on the intention for continued use of an integrated mobile instant messaging and social network platform. International Journal of Mobile Communications, 13(6), 641-669.

Lee, D., Moon, J., Kim, Y. J., & Mun, Y. Y. (2015). Antecedents and consequences of mobile phone usability: Linking simplicity and interactivity to satisfaction, trust, and brand loyalty. Information & Management, 52(3), 295-304.

Lee, W. I., Chiu, Y. T., Liu, C. C., & Chen, C. Y. (2011). Assessing the effects of consumer involvement and service quality in a self‐service setting. Human Factors and Ergonomics in Manufacturing & Service Industries, 21(5), 504-515.

Lee, W., Xiong, L., & Hu, C. (2012). The effect of Facebook users’ arousal and valence on intention to go to the festival: Applying an extension of the technology acceptance model. International Journal of Hospitality Management, 31(3), 819-827.

Lee, Y., & Kwon, O. (2011). Intimacy, familiarity and continuance intention: An extended expectation–confirmation model in web-based services. Electronic Commerce Research and Applications, 10(3), 342-357.

Lin, C. C. (2003). A critical appraisal of customer satisfaction and e‐commerce. Managerial Auditing Journal, 18(3), 202-212.

Lin, K. Y. and H. P. Lu, (2015), “Predicting Mobile Social Network Acceptance Based on Mobile Value and Social Influence,” Internet Research, 25, 107-130.

Lin, T. C., Wu, S., Hsu, J. S. C., & Chou, Y. C. (2012). The integration of value-based adoption and expectation–confirmation models: An example of IPTV continuance intention. Decision Support Systems, 54(1), 63-75.

Liu, A. H., Leach, M. P., & Bernhardt, K. L. (2005). Examining customer value perceptions of organizational buyers when sourcing from multiple vendors. Journal of business research, 58(5), 559-568.

Liu, F., Zhao, X., Chau, P. Y., & Tang, Q. (2015). Roles of perceived value and individual differences in the acceptance of mobile coupon applications. Internet Research. 25(3), 471-495.

Lu, H. P., & Hsiao, K. L. (2010). The influence of extro/introversion on the intention to pay for social networking sites. Information & Management, 47(3), 150-157.

Lu, J., Yu, C. S., Liu, C., & Yao, J. E. (2003). Technology acceptance model for wireless Internet. Internet Research, 13(3), 206-222.

Luarn, P., & Lin, H. H. (2005). Toward an understanding of the behavioral intention to use mobile banking. Computers in human behavior, 21(6), 873-891.

Malhotra, N., Hall, J., Shaw, M., & Oppenheim, P. (2006). Marketing research: An applied orientation. Pearson Education Australia.

Mathieson, K. (1991). Predicting user intentions: comparing the technology acceptance model with the theory of planned behavior. Information systems research, 2(3), 173-191.

McDougall, G. H., & Levesque, T. (2000). Customer satisfaction with services: putting perceived value into the equation. Journal of services marketing.14(5), 392-410.

Meuter, M. L., Bitner, M. J., Ostrom, A. L., & Brown, S. W. (2005). Choosing among alternative service delivery modes: An investigation of customer trial of self-service technologies. Journal of marketing, 69(2), 61-83.

Midgley, D. F., & Dowling, G. R. (1978). Innovativeness: The concept and its measurement. Journal of consumer research, 4(4), 229-242.

Miladinovic, J., & Hong, X. (2016). A Study on factors affecting the behavioral intention to use mobile shopping fashion apps in Sweden.

Monroe, K. B. (1990). Pricing: Making Profitable Decisions McGraw-Hill, New York. MonroeMaking Profitable Decisions1990.

Moorman, C., Deshpande, R., & Zaltman, G. (1993). Factors affecting trust in market research relationships. Journal of marketing, 57(1), 81-101.

Mutlu, M. H., & Der, A. (2017). Unified theory of acceptance and use of technology: The adoption of mobile messaging application. Megatrend revija, 14(1), 169-186.

Mwesigwa, R. (2010). Consumers’ attitudes, perceived risk, trust and internet banking adoption in Uganda (Doctoral dissertation, Makerere University).

Mykytyn Jr, P. P., Mykytyn, K., & Harrison, D. A. (2005). Integrating intellectual property concepts into MIS education: An empirical assessment. Decision Sciences Journal of Innovative Education, 3(1), 1-27.

Nabavi, A., Taghavi-Fard, M. T., Hanafizadeh, P., & Taghva, M. R. (2016). Information technology continuance intention: A systematic literature review. International Journal of E-Business Research (IJEBR), 12(1), 58-95.

Naumann, E., & Jackson Jr, D. W. (1999). One more time: how do you satisfy customers?. Business Horizons, 42(3), 71-77.

Nielsen, J. (1999). Designing web usability: The practice of simplicity. New riders publishing.

Nilson, T. H. (1992). Value-added marketing: marketing management for superior results. McGraw-Hill Book Company.

Nunnally, J.C. (1978). Psychometric theory (2nd ed.). New York: McGraw-Hill.

Nysveen, H., Pedersen, P. E., & Thorbjørnsen, H. (2005). Explaining intention to use mobile chat services: moderating effects of gender. Journal of consumer Marketing, 22(5), 247-256.

Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. J Mark Res, 17(4), 460–469.

Oliver, R. L., & DeSarbo, W. S. (1988). Response determinants in satisfaction judgments. Journal of consumer research, 14(4), 495-507.

Ovčjak, B., Heričko, M., & Polančič, G. (2015). Factors impacting the acceptance of mobile data
P.M. Herr, F.R. Kardes, J. Kim, Effects of word-of-mouth and product-attribute in-formation on persuasion: an accessibility–diagnosticity perspective, Journal of Consumer Research 17 (1991), 454–462.

Ovčjak, B., Heričko, M., & Polančič, G. (2015). Factors impacting the acceptance of mobile data services–A systematic literature review. Computers in Human Behavior, 53, 24-47.

Parasuraman, A., & Grewal, D. (2000). The impact of technology on the quality-value-loyalty chain: a research agenda. Journal of the academy of marketing science, 28(1), 168-174.

Paul, K. J., Musa, M., & Nansubuga, A. K. (2015). Facilitating condition for E-learning adoption—Case of Ugandan universities. Journal of Communication and Computer, 12(5), 244-249.

Ramcharran, H. (2013). E-commerce growth and the changing structure of the retail sales industry. International Journal of E-Business Research (IJEBR), 9(2), 46-60.

Rau, P. L., Plocher, T., & Choong, Y. Y. (2012). Cross-cultural design for IT products and services. CRC Press.

Reuter, C., Goebel, P., & Foerstl, K. (2012). The impact of stakeholder orientation on sustainability and cost prevalence in supplier selection decisions. Journal of Purchasing and Supply Management, 18(4), 270-281.

Roy, K. (2011, December 14). Smartphone Security Threats. Paper presented at the Smartphone Security Seminar, Hong Kong.

Schechter, L. (1984). A normative conception of value. Progressive Grocer, executive report, 2, 12-14.

Schlosser, A. E., White, T. B., & Lloyd, S. M. (2006). Converting web site visitors into buyers: how web site investment increases consumer trusting beliefs and online purchase intentions. Journal of marketing, 70(2), 133-148.

Shaw, N., & Sergueeva, K. (2019). The non-monetary benefits of mobile commerce: Extending UTAUT2 with perceived value. International Journal of Information Management, 45, 44-55.

Slater, S. F., & Narver, J. C. (2000). Intelligence generation and superior customer value. Journal of the academy of marketing science, 28(1), 120.

Snijders, R., & Helms, R. W. (2014). Analyzing social influence through social media: A structured literature review. In Proceedings of the 7th IADIS International Conference on Information Systems 2014, 3-10.

Susanto, A., Chang, Y., & Ha, Y. (2016). Determinants of continuance intention to use the smartphone banking services. Industrial Management & Data Systems, 116(3), 508-525. .

Tarafdar, M., & Vaidya, S. D. (2006). Challenges in the adoption of E-Commerce technologies in India: The role of organizational factors. International Journal of Information Management, 26(6), 428-441.

Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A test of competing models. Information systems research, 6(2), 144-176.

Teo, T. (2009). The impact of subjective norm and facilitating conditions on pre-service teachers' attitude toward computer use: A structural equation modeling of an extended technology acceptance model. Journal of Educational Computing Research, 40(1), 89-109.

Teo, T., & Zhou, M. (2014). Explaining the intention to use technology among university students: a structural equation modeling approach. Journal of Computing in Higher education, 26(2), 124-142.

Thompson, R. L., Higgins, C. A., & Howell, J. M. (1991). Personal computing: toward a conceptual model of utilization. MIS quarterly, 15(1), 125-143.

Thompson, R. L., Higgins, C. A., & Howell, J. M. (1994). Influence of experience on personal computer utilization: Testing a conceptual model. Journal of management information systems, 11(1), 167-187.
Tian, M. (2019). The In-Depth Marketing Environment of Cross-Border E-Commerce Experience Stores. Ekoloji, 28(107), 2861-2864.

Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management science, 46(2), 186-204.

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.

Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS quarterly, 157-178.

Venkatesh, V., Thong, J. Y., Chan, F. K., Hu, P. J. H., & Brown, S. A. (2011). Extending the two‐stage information systems continuance model: Incorporating UTAUT predictors and the role of context. Information Systems Journal, 21(6), 527-555.

Vinnik, V. (2017). User adoption of mobile applications: Extension of UTAUT2 model. Master's thesis. NHH-Norwegian School of Economics

Wang, Y. S., Yeh, C. H., & Liao, Y. W. (2013). What drives purchase intention in the context of online content services? The moderating role of ethical self-efficacy for online piracy. International journal of information management, 33(1), 199-208.

White, C. J., McMurray, A. J., & Rudito, P. (2017). Human values and technology readiness: the mediating role of consumer perceived value. International Journal of Services Technology and Management, 23(4), 331-347.

Witte, J. S., & Greenland, S. (1996). Simulation study of hierarchical regression. Statistics in medicine, 15(11), 1161-1170.

Woodruff, R. B. (1997). Customer value: the next source for competitive advantage. Journal of the academy of marketing science, 25(2),139.

Wu, K., Zhao, Y., Zhu, Q., Tan, X., & Zheng, H. (2011). A meta-analysis of the impact of trust on technology acceptance model: Investigation of moderating influence of subject and context type. International Journal of Information Management, 31(6), 572-581.

Xia C (2017) Practice and Reflection on Supervision Mechanism of Cross-Border Import E-Commerce, Cooperative Economy and Technology, 17:188-189

Yang, K.; Forney J. C. (2013): The Moderating Role of Consumer Technology Anxiety in Mobile Shop- ping Adoption: Differential Effects of Facilitating Conditions and Social Influences, in: Journal of Electronic Commerce Research, 14 (4), 334-347.

Zhang, H. (2016). Susceptibility to Social influence in New Product Adoption: An Exploration of Its Antecedents and Consequences.

Zheng, J., & Li, F. (2015). The intention to use mobile network service: with gender as moderating factor.

Zhou, T. (2011). Understanding mobile Internet continuance usage from the perspectives of UTAUT and flow. Information Development, 27(3), 207-218.

Zhou, T. (2013). An empirical examination of continuance intention of mobile payment services. Decision support systems, 54(2), 1085-1091.

Website:

Ai Media Consulting (2018) 2017-2018 China’s Cross-Border Electricity Dealer Market Research Report. Retrieved on 03.09.2020 from: http://www.100ec.cn/detail-6436278.html.

Customs Administration, Ministry of Finance (2019) Taiwan Customs actively advances the implementation of the real-name authentication mechanism, and meanwhile intensifies checks against POAs (Powers of Attorney) relating to express shipments. Retrieved on 11.16.2019 from: https://eweb.customs.gov.tw/News_Content.aspx?n=1E1FFDB67EA2E33D&sms=29B28AEDBD5613A6&s=1B93ECF3C5E45E37

E-commerce marketing report: mobile transactions account for more than half Hypersondage (1996, October). 1996 Web trends, Retrieved on 02.05.2020 from: http://www.branches-vous.com/que.htm

eMarketer, Global B2C Ecommerce Sales to Hit $1.5 Trillion This Year Driven by Growth in Emerging Markets, 2014, Retrieved on 01.14.2020 from http://www.emarketer.com/Article/Global-B2C-Ecommerce-Sales-Hit-15-Trillion-This-Year-Driven-by-Growth-Emerging-Markets/1010575#sthash.dWq7hBAu.dpuf

GLOBAL DIGITAL REPORT (2018). World’s internet users pass the 4 billion mark, Retrieved on 01.15.2020 from: https://digitalreport.wearesocial.com/

INTERNET IN INDIA (2013), Retrieved on 03.05.2020 from: https://cms.iamai.in/Content/ResearchPapers/489d021f-bc32-4c76-87e5-dcb28dfde47e.pdf

Justin Smith (Jan, 2020). Mobile eCommerce Stats in 2019 and the Future Online Shopping Trends of mCommerce. Retrieved on 03.25.2020 from: https://www.outerboxdesign.com/web-design-articles/mobile-ecommerce-statistics
Mia (2018). Inside. 85% of marketing budget will be invested digitally in 2022! Criteo releases, Retrieved on 03.28.2020 from: https://www.criteo.com/insights/2020-digital-marketing-trends/

World Bank. (2007). National e-government strategies: Designing for success. Retrieved on 05.17.2020 from http://extsearch.worldbank.org/servlet/SiteSearchServlet?qe government.

Zheng (Jan, 2019). Commercial times. 3/4 of the world's mobile users will use only mobile phones to access the Internet in 2025.Retrieved on 11.16. 2019 from: https://ctee.com.tw/news/global/30280.html


電子全文 電子全文(網際網路公開日期:20230915)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊