(34.201.11.222) 您好!臺灣時間:2021/02/25 12:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王嘉農
研究生(外文):WANG, CHIA-NUNG
論文名稱:非球形顆粒形狀效應於旋轉鼓中顆粒材料分離機制的影響
論文名稱(外文):The effect of non-sphericity on granular segregation mechanisms in a rotating drum
指導教授:廖俊忠廖俊忠引用關係
指導教授(外文):Liao, Chun-Chung
口試委員:蕭述三郭修伯廖俊忠
口試委員(外文):Hsiau, Shu-SanKuo, Hsiu-PoLiao, Chun-Chung
口試日期:2020-07-23
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:模具工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:92
中文關鍵詞:旋轉鼓形狀分離非球形顆粒顆粒動態特性安息角
外文關鍵詞:Rotating DrumShape SegregationNon-spherical particlesDynamic propertiesRepose of Angle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:30
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
顆粒材料的分離行為一直以來都是工業中很常見的物理現象,以往許多研究都是針對球形顆粒,但在現實中上我們時常使用非球形顆粒做為材料,例如:稻米、藥丸、塑膠射出顆粒…等,故本實驗使用類二維旋轉鼓作為實驗設備,並以實驗方法利用紅豆(長軸8.5、短軸5.5毫米)與不同尺寸(3、4、5、6毫米)的球形聚甲醛顆粒(POM)混合,探討非球形顆粒形狀效應對分離現象與動態特性的影響。本實驗使用高速攝影機來拍攝顆粒運動情形,經由粒子追蹤測速法與影像處理技術來量測得到粒子的平均速度、平均擾動速度、平均粒子溫度、動態安息角與最終分離強度。實驗結果顯示因為紅豆為非球形橢圓顆粒體,所以紅豆的安息角特別大、流動性也比同尺寸球形顆粒差的多,當紅豆與3、4、5毫米聚甲醛顆粒混合時,混合結果遵循尺寸分離效應小顆粒在內、大顆粒在外,但當紅豆與6毫米聚甲醛顆粒混合時,聚甲醛顆粒在長軸尺寸並未超越紅豆時卻發生了逆向分離的情況,此結果表明非球形顆粒因為形狀效應、動態特性、安息角等影響了顆粒的分離結果。因本實驗所使用之紅豆密度與聚甲醛顆粒密度相當,故可以忽略密度效應帶來的影響。
Mixing and segregating process of granular materials has always been a very common physical phenomenon in many industries. Many previous studies have been investigated granular segregation with spherical particles. However, the non-spherical particles are usually found in nature and in industries, such as the pill, plastic particles, rice, metal powder, etc). In this study, we experimentally investigated the long axis ratio and rotating speeds on the shape-induced granular segregation behavior and dynamic properties in a rotating drum. The motions of the granular materials were recorded by using a high-speed camera. Image-processing method and the particle-tracking technology were employed to measure the average velocity, fluctuation velocity, granular temperature, and dynamic angle of repose and the intensity of segregation. The experimental results observe that non-spherical particles have a larger dynamic repose angle and poor fluidized ability. When red beans are mixed with 3, 4, and 5 mm (LAR=0.35, 0.47, 0.58) POM particles, the core segregation pattern is found with spherical POM beads formed the core. However, when red beans were mixed with 6mm (LAR=0.70) POM particles, the reversed segregation occurred with non-spherical particles formed the core. The relation between the dynamic repose angle and shape-induced segregation behavior was discussed in this study.
摘要 i
Abstract ii
致 謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
符號說明 ix
一、 前言 1
1.1 顆粒材料 1
1.2 顆粒流 1
1.3 旋轉鼓的介紹與應用 2
1.4 旋轉鼓中顆粒的流態行為 3
1.5 顆粒材料的分離現象 4
1.6 安息角 7
1.7 非球形顆粒形狀效應對顆粒材料流動性質之影響 8
1.8 非球形顆粒形狀效應對分離機制之影響 11
1.9 研究動機 14
二、 實驗設備與實驗方法 16
2.1 實驗設備配置 16
2.2 精密旋轉鼓系統 16
2.3 影像攝影儀器 17
2.4 顆粒材料 18
2.5 相關輔助設備 18
2.6 其他設備設備 19
2.7 實驗方法 20
三、 實驗原理與實驗參數 24
3.1 實驗參數原理 24
3.2 影像處理分析原理 25
3.3 顆粒動態特性 27
3.4 顆粒材料分離強度 28
3.5 實驗參數 29
四、 結果與討論 30
4.1 不同長軸比下顆粒形狀效應與轉速對分離強度之影響 30
4.2 不同長軸比下顆粒形狀效應與轉速對動態特性之影響 32
4.3 不同長軸比與轉速的單顆粒動態安息角 33
4.4 不同長軸比顆粒混合後形狀效應與轉速對動態安息角的影響 34
五、 結論 35
參考文獻 36
個人簡歷 79


表目錄
表1- 1. 顆粒流動型態 41
表3- 1. 實驗參數表 42

圖目錄
圖1-1工業用混合裝置:(A)藥丸裝填機(B)水泥車滾筒 43
圖1-2 研究顆粒流之設備(A)剪力槽(B)震動床 44
圖1-3 旋轉鼓設備(A)V形旋轉鼓(B)筒形旋轉鼓 45
圖1-4 二維精密旋轉鼓圖 46
圖1-5 旋轉鼓流動示意圖 46
圖1-6 旋轉鼓尺寸效應示意圖 47
圖1-7 旋轉鼓密度效應示意圖 47
圖2-1. 實驗設備擺設配置示意圖 48
圖2-2. 旋轉鼓裝載容器示意圖 48
圖2-3. 高速攝影機 49
圖2-4. 高解析度數位攝影機 50
圖2-5. 高光源LED投射燈 51
圖2-6. POM圓形顆粒與橢圓形紅豆顆粒尺寸示意圖 52
圖2-7. 數位式電子秤 PRECISA XS 6250D-SCS 52
圖2-8.水平儀 53
圖2-9. 光學顯微鏡(OPTICAL MICROSCOPE) 53
圖2-10. 各種尺寸篩網 54
圖2-11. 防潮箱 55
圖2-12. (A)玻璃撥水劑(B)玻璃清潔液 55
圖2-13. 烤箱 56
圖2-14. 除塵機 56
圖2-15. 溫濕度計 57
圖2-16. 實驗流程圖 58
圖3- 1. 影像處理流程圖 59
圖3-2. (A)初始圖片;(B)粒子追蹤測速法抓點程序;(C)顆粒流場動態分析 60
圖3-3. 粒子追蹤技術示意圖 (A) 顆粒於第一點位置;(B) 顆粒在經過T秒後位置 61
圖3-4. 顆粒初使配置圖 62
圖4-1. 2RPM下不同長軸比隨時間變化分離情況圖 63
圖4-1. 2RPM下不同長軸比顆粒隨時間變化分離強度圖 64
圖4-1. 2RPM下非球形顆粒體與3 毫米 POM球形顆粒OVERMIXING 示意圖 65
圖4-1. 3RPM下LAR=0.35、0.47、0.58、0.70隨時間變化分離情況圖 66
圖4-1. 4RPM下LAR=0.35、0.47、0.58、0.70隨時間變化分離情況圖 67
圖4-1. 3RPM下不同長軸比顆粒隨時間變化分離強度圖 68
圖4-1. 4RPM下不同長軸比顆粒隨時間變化分離強度圖 69
圖4-1.不同長軸比顆粒在不同轉速下最終穩態分離強度圖 70
圖4-1. 不同長軸比與轉速對顆粒平均速度之影響 71
圖4-1. 不同長軸比與轉速對顆粒平均擾動度之影響 72
圖4-1. 不同長軸比與轉速對顆粒平均粒子度之影響 73
圖4-1. 動態安息角示意圖 74
圖4-1. 利用PICPICK量測軟體量測動態安息角示意圖 75
圖4-1. 單種顆粒在不同轉速下動態安息角 76
圖4-1. 同長軸比顆粒混合後形狀效應與轉速對動態安息角 77
圖4-1.兩種顆粒混和後互鎖現象示意圖 78


[1] O. Reynolds, 1885, “On the dilatancy of media composed of rigid particles in Contact”, Philosophical Magazine, vol. 20, pp.469-481.
[2] O. Reynolds, 1887, “Experiments Showing Dilutency, A Property of Granular Materials Possibly Connected with Gravitation”, Proceedings of the Royal Institution of Great Britain, vol. 51, pp.218-227.
[3] H. M. Jaeger, and S. R. Nagel, 1992, “Physics of the Granular State”, Science, vol. 255, pp.1523-1531.
[4] H. Chen, X. Q. Zhao, Y. G. Xiao, Y. L. Liu, Y. Liu, 2016, “Radial mixing and segregation of granular bed bi-dispersed both in particle size and density within horizontal rotating drum”, Transactions of Nonferrous Metals Society of China, vol. 26, pp. 527-535.
[5] J. Mellmann, 2001, “The transverse motion of solids in rotating cylinders-forms of motion and transition behavior”, Powder Technology, vol. 118, pp. 251-270.
[6] A. Ingram, J. P. K. Seville, Parker, D. J., Fan, X., and Forster, R. G., 2005, “Axial and radial dispersion in rolling mode rotating drum”, Powder Technology., vol. 158, pp.76-91.
[7] A. V. Orpe, D. V. Khakhar, 2001, “Scaling relations for granular flow in quasi-two-dimensional rotating cylinders”, Physical Review E, vol. 64, pp.1-13.
[8] N. Jain, J. M. Ottino, R. M. Lueptow, 2002, “An experimental study of the flowing granular layer in a rotating tumbler”, Physics of Fluids, vol. 14, pp.572-582.
[9] T. Arndt, A. Brucks, J. M. Ottino, R. M. Lueptow, 2006, “Creeping granular motion under variable gravity levels”, Physical Review E, vol. 74, 031307.
[10] J. M. N. T. Gray, 2018, Particle Segregation in Dense Granular Flows, Annual Review of Fluid Mechanics, Vol. 50, 407-433.
[11] P. F. Navarro, P.H. Chiu, D.J. Benson, 2019, Cavity collapse in highly heterogeneous granular mixtures with different grain size and porosity, Journal of Applied Physics, Vol.126, 024303.
[12] A. Rosato, K. J. Strandburg, F. Prinz, R. H. Swendsen, 1987, Why the brazil nuts are on top: size segregation of particulate matter by shaking, Physical Review Lett, Vol.58, pp. 1037-1040.
[13] A. Rosato, K. J. Strandburg, F. Prinz, R. H. Swendsen, 1987, Why the brazil nuts are on top: size segregation of particulate matter by shaking, Physical Review Lett, Vol.58, pp. 1037-1040.
[14] H. P. Kuo, R.C. Hsu, Y.C. Hsiao, 2005, Investigation of axial segregation in a rotating drum, Powder Technology, Vol. 153, pp. 196-203.
[15] S. H. Chou, C. C. Liao, S. S. Hsiau, 2010, An experimental study on the effect of liquid content and viscosity on particle segregation in a rotating drum, Powder Technology, Vol.201, pp. 266-272.
[16] R. Chand, M. A. Khaskheli, A. Qadir, 2012, Discrete particle simulation of radial segregation in horizontally rotating drum: Effects of drum-length and non-rotating end-plates, Physica A, vol. 391, pp. 4590-4596.
[17] C.C. Liao, 2016, Multisized immersed granular materials and bumpy base on the brazil nut effect in a three-dimensional vertically vibrating granular bed, Powder Technology, vol. 288, pp. 151-156.
[18] Z. Hou, Y. Zhao, 2020, Numerical and experimental study of racial segregation of bi-disperse particles in a quasi-two-dimensional horizontal rotating drum, Particuology, Vol. 51, pp. 109-119.
[19] G. Bolshak, R. Chatterjee, R. Lieberman, Y. Shokef, 2019, Kinetically constrained model for gravity-driven granular flow and clogging, Phys. Rev. E, Published 24 September.
[20] M. Larcher, J.T. Jenkins, 2019, The influence of granular segregation on gravity-driven particle-fluid flows, Advances in Water Resources, Vol.129, pp.365-372.
[21] N. Jain, J.M. Ottino, R.M. Lueptow, 2005, Regimes of segregation and mixing in combined size and density granular systems: an experimental study, Granular Matter, vol. 7, pp. 69-81.
[22] L. Sanfratello, E. Fukushima, 2009, Experimental studies of density segregation in the 3D rotating cylinder and the absence of banding, Granular Matter, Vol.11, pp. 73-78.
[23] D.A. Santos, C.R. Duarte, M.A.S. Barrozo, 2016, Segregation phenomenon in a rotary drum: Experimental study and CFD simulation, Powder Technology, vol. 294, pp. 1-10.
[24] C.C. Liao, S.S. Hsiau, S.F. Wen, 2016, Effect of adding a small amount of liquid on density- induced wet granular segregation in a rotating drum, Advanced Powder Technology, vol. 27, pp. 1265-1271.
[25] C. H. Tai, S. S. Hsiau, and C. A. Kruelle, 2010, Density segregation in a vertically vibrated granular bed, Powder Technology, Vol. 204, 255-262.
[26] C. C. Liao, 2019, Effect of dynamic properties on density-driven granular segregation in a rotating drum, Powder Technology, Vol. 345, Pages 151-158.
[27] A. A. Aissa, C. Duchesne, Denis Rodrigue, 2012, Transverse mixing of polymer powders in a rotary cylinder part I: Active layer characterization, Powder Technology, Vol. 219, pp. 193-201.
[28] J. Mellmann, 2001, The transverse motion of solids in rotating cylinders-forms of motion and transitionbehavior, Powder Technol., Vol 118, pp. 251-270.
[29] A. Ingram, J.P.K. Seville, D.J. Parker, X. Fan, and R.G. Forster, 2005, Axial and radial dispersion in rolling mode rotating drums, Powder Technol., Vol. 158, pp. 76-91.
[30] M. Hamzah, A. H. Beakawi, O. S. Baghabra, 2018, A review on the angle of repose of granular materials, Powder Technology, Vol. 330, pp. 397-417.
[31] H. Chen, S. Zhao, X. Zhou, 2019, DEM investigation of angle of repose for super-ellipsoidal particles, Particuology, Vol 50, p.p.53-66.
[32] K. Yamane, M. Nakagawa, 1998, Steady particulate flows in a horizontal rotating cylinder, Physics of Fluids 10, 1419.
[33] Z.Y. Zhou, D. Pinson, R.P. Zou, A.B. Yu, 2011, Discrete particle simulation of gas fluidization of ellipsoidal particles, Chemical Engineering Science, Vol.66, pp.6128-6145.
[34] Xie, Changhua, Ma, Huaqing, Zhao, Yongzhi, 2019, Investigation of modeling non-spherical particles by using spherical discrete element model with rolling friction, Engineering Analysis with Boundary Elements,Vol. 105, p.p. 207-220.
[35] J. Yang, 2019, DEM investigation of shear flows of binary mixtures of non-spherical particles, Chemical Engineering Science Vol.202 pp.383-391.
[36] I. A. Mola, P. D.Fawell, M. Small, 2020, Particle-resolved direct numerical simulation of drag force on permeable, non-spherical aggregates, Chemical Engineering Science, Vol. 218, 115582.
[37] M.K. Saeed, M.S. Siraj, 2019, Mixing study of non-spherical particles using DEM, Powder Technology, Vol.344, pp.617-627.
[38] L. Johann, K. Michael, S. N. Daniel, F. Petra, B. Heiko, 2020, Particle shape matters – Using 3D printed particles to investigate fundamental particle and packing properties, Powder Technology, Vol. 361, p.p. 711-718.
[39] S.Y. He, J.Q. Gan, D. Pinson, A.B. Yu, Z.Y. Zhou, 2019, Flow regimes of cohesionless ellipsoidal particles in a rotating drum, Powder Technology, Vol.354, pp.174-187.
[40] H. Gerhardter, R. Prieler, C. Schluckner, M. Knoll, C. Hochenauer, M. Mühlböck, P.Tomazic, H. Schroettner, 2019, Modelling convective heat transfer to non-spherical particles, Powder Technology, Vol. 343, p.p. 245-254.
[41] Z. Xu, X. Song, G. Li, Z. Pang, Z. Zhu, 2019, Settling behavior of non-spherical particles in power-law fluids: Experimental study and model development, Particuology, Vol. 46,p.p. 30-39.
[42] Z.Y. Zhou, R.P. Zou, D. Pinson, A.B. Yu, 2014, Angle of repose and stress distribution of sand piles formed with ellipsoidal particles, Granular Matter, Volume 16, Issue 5, pp 695-709.
[43] S. Q. Wang, S. Y. Ji, 2019, Mixing characteristics of ellipsoidal granular materials in horizontal rotating drum based on analysis by discrete element method, Acta Physica Sinica, DOI: 10.7498/aps.68.20191071.
[44] L. Liu, S. Li, 2020, Shape effects on packing properties of bi-axial superellipsoids, Powder Technology, Vol. 364, p.p. 49-59.
[45] V. V. Mahajana, T. M .J. Nijssen, J.A.M.Kuipers, J. T. Paddinga, 2018, Non-spherical particles in a pseudo-2D fluidised bed: Modelling study, Chemical Engineering Science, Vol. 192, p.p 1105-1123.
[46] N. Govendera, W. C. Paul, K. O. Mehranc, N. W. Daniel, C. Y. Wu, H. Kurecke, 2020, The effect of particle shape on the packed bed effective thermal conductivity based on DEM with polyhedral particles on the GPU, Chemical Engineering Science, Vol. 219, 115584.
[47] N. Guia, X. Yang, J. Tu, S. Jianga, 2017, Numerical simulation and analysis of mixing of polygonal particles in 2D rotating drums by SIPHPM method, Powder Technology, Vol 318, p.p. 248-262.
[48] G. Lu, 2020, Particle-shape induced radial segregation in rotating cylinders, Granular Matter 22, Published: 02 May, Article number: 50.
[49] S. Yang, H. Wang, Y. Wei, J. Hu, J. W. Chew, 2019, Segregation behavior of binary mixtures of cylindrical particles with different length ratios in the rotating drum, Particle Technology and Fluidization, DOI: 10.1002/aic.16799.
[50] L.L. Zhao, C.S. Liu, J.X. Yan, Z.P. XU, 2010, Numerical simulation on segregation process of particles using 3D discrete element method, ACTA Physica Sinica, Vol.59, pp.1870-1867.
[51] O. Dube, E. Alizadeh, J. Chaouki, F. Betrand, 2013, Dynamics of non-spherical particles in a rotating drum, Chemical Engineering Science, Vol.101, pp.486-502.
[52] T. Oschmann, J. Hold, H.K. Emden, 2014, Numerical investigation of mixing and orientation of non-spherical particles in a model type fluidized bed, Powder Technology, Vol.258, pp.304-323.
[53] H.R. Norouzi, R. Zarghami, N. Mostoufi, 2015, Insights into the granular flow in rotating drums, Chemical Engineering Research and Design, Vol.102, pp.12-25.
[54] Y. You, M. Liu, H. Ma, L. Xu, B. Liu, Y. Shao, 2018, Investigation of the vibration sorting of non-spherical particles based on DEM simulation, Powder Technology, Vol.325, pp.316-332.
[55] S. He, J. Gan, P. David, Z. Zhou, 2017, Transverse mixing of ellipsoidal particles in a rotating drum, Powders and Grains, Vol.140, id.06018.
[56] S.Y. He, J.Q. Gan, D. Pinson, Z.Y. Zhou, 2019, Particle shape-induced radial segregation of binary mixtures in a rotating drum, Powder Technology, Vol.341, pp.157-166.
[57] P.C. Bartley, B.E.jackson, W.C. Fonteno, 2019, Effect of particle length to width ratio on sieving accuracy and precision, Powder Technology, Vol.355, pp.349-354.
[58] L. Ge, N. Gui, X. Yang, J. Tu, S. Jiang, 2019, Effects of aspect ratio and component ratio on binary-mixed discharging pebble flow in hoppers, Powder Technology, Vol.355, pp.320-332.
[59] C. C. Liao, 2019, Effect of dynamic properties on density-driven granular segregation in a rotating drum, Powder Technology, Vol. 345, pp. 151-158.
[60] P.V. Danckwerts, 1952, The definition and measurement of some characteristic of mixtures, Applied Scientific Research, Section A, Vol. 3, pp. 279-296.
[61] C.C. Liao, Kiwing To, S.S. Hsiau, 2010, Granular dynamics of a slurry in a rotating drum, Physical Review E, 82, 010302.
[62] C.C. Liao, S.S. Hsiau, T.H. Tsai, and T.H. Tsai, 2010, Segregation to mixing in wet granular matter under vibration, Chemical Engineering Science, Vol. 65, pp. 1109-1116.

電子全文 電子全文(網際網路公開日期:20250810)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔