|
[1] H.M. Jaeger, S.R. Nage, R.P. Behringer, 1996, Granular solids, liquids and gases, Rev. Mod. Phys., Vol. 68, pp. 1259-1273. [2]《科學發展》,2015年9月,vol. 513,pp. 24-29。 [3] P.A. Shamlon, 1998, Handling of Bulk Solids: Theory and practice, Butterworth. [4] J.Torres-Serra, E.Romero, A.Rodríguez-Ferran, 2020, A new column collapse apparatus for the characterisation of the flowability of granular materials, Powder Technology, Vol. 362, pp. 559-577. [5] W.X Guo, Q. Zhang, J.J. Wylie, 2016, Dynamic behavior of convergent rapid granular flows Comportement dynamique d'un flux granulaire rapide convergent, Comptes Rendus Mathematique, Vol. 354, pp. 864-868. [6] X. Ye, D. Wang, X. Zheng, 2016, Criticality of post-impact motions of a projectile obliquely impacting a granular medium, Powder Technology, Vol. 301, pp. 1044-1053. [7] J. Zheng, A. Sun, Y. Wang, J. Zhang, 2018, Energy fluctuations in slowly sheared granular materials, Physical Review Letters, 121, Article 248001. [8] W.Q. Zhong, A.B. Yu, G.W. Zhou, J. Xie, H. Zhang, 2016, CFD simulation of dense particulate reaction system: Approaches, recent advances and applications, Chemical Engineering Science, Vol. 140, pp. 16-43. [9] P. Zhou, H.L. Li, P.Y. Shi, C.Q. Zhou, 2016, Simulation of the transfer process in the blast furnace shaft with layered burden, Applied Thermal Engineering, Vol. 95, pp. 296-302. [10] S.B. Kuang, Z.Y. Li, D.L. Yan, Y.H. Qi, A.B. Yu, 2014, Numerical study of hot charge operation in ironmaking blast furnace, Minerals Engineering, Vol. 63, pp. 45-56. [11] M. Umer, M.S. Siraj, 2018, DEM studies of polydisperse wet granular flows, Powder Technology, Vol. 328, pp. 309-317. [12] G.G.D. Zhou, Q.C. Sun, 2013, Three-dimensional numerical study on flow regimes of dry granular flows by DEM, Powder Technology, Vol. 239, pp. 115-127. [13] H.W. Zhu, Q.F. Shi, L.S. Li, M.C. Yang, A. Xu, N. Zheng, 2020, Frictional effect of bottom wall on granular flow through an aperture on a conveyor belt, Powder Technology, Vol. 367, pp. 421-426. [14] S. Albaraki, S.J. Antony, 2014, How does internal angle of hoppers affect granular flow? Experimental studies using digital particle image velocimetry, Powder Technology, Vol. 268, pp. 253-260. [15] H. Henein, J.K. Brimacombe, A.P. Watkinson, 1983, Experimental study of transverse bed motion in rotary kilns, Metallurgical Transactions B, Vol. 14, pp. 191-205. [16] J. Rajchenbach, 1990, Flow in powders: from discrete avalanches to continuous regime, Physical Review Letters, Vol. 65, pp. 2221-2224. [17] J. Mellmann, 2001, The transverse motion of solids in rotating cylinders-forms of motion and transition behavior, Powder Technology, Vol. 118, pp. 251-270. [18] R. Li, H. Yang, G. Zheng, Q.C. Sun, 2018, Granular avalanches in slumping regime in a 2D rotating drum, Powder Technology, Vol. 326, pp. 322-326. [19] W. Blumberg, 1995, Selektive Konvektions- und Kontakttrocknung im Drehrohr, VDI Fortschrittsbericht Nr. 384, VDI-Verlag, Düsseldorf. [20] A.V. Orpe, D.V. Khakhar, 2001, Scaling relations for granular flow in quasi-two-dimensional rotating cylinders, Physical Review E, Vol. 64, pp. 1-13. [21] G Félix, V Falk, U D'Ortona, 2002, Segregation of dry granular material in rotating drum: experimental study of the flowing zone thickness, Powder Technology, Vol.128, pp. 314-319. [22] C.C. Liao, 2019, Effect of dynamic properties on density-driven granular segregation in a rotating drum, Powder Technology, Vol. 345, pp. 151-158. [23] R.J. Brandao, R.M.L. Raphael, L.S. Claudio, R.D.M.A.S. Barrozo, 2020, Experimental study and DEM analysis of granular segregation in a rotating drum, Powder Technology, Vol. 364, pp. 1-12. [24] A. Rosato, K.J. Strandburg, F. Prinz, R.H. Swendsen, 1987, Why the Brazil nuts are on top: size segregation of particulate matter by shaking, Physical Review Letters., vol. 58, pp.1038-1040. [25] M.E. Möbius, B.E. Lauderdale, S.R. Nagel, H.M. Jaeger, 2001, Brazil-nut effect Size separation of granular particles, Nature, vol. 414, pp.270. [26] N. Jain, J.M. Ottino, R. R. Lueptow, 2005, Regimes of segregation and mixing in combined size and density granular systems: an experimental study, Granular Matter, vol.7, pp.69-81. [27] A. Tripathi, D.V. Khakhar, 2013, Density difference-driven segregation in a dense granular flow, Journal of Fluid Mechanics, vol. 717, pp.643-669. [28] C.C. Liao, S.S. Hsiau, H.C. Nien, 2014, Density-driven spontaneous streak segregation patterns in a thin rotating drum, Physical Review E, vol. 89, 62204. [29] C.C. Liao, S.S. Hsiau, S.F. Wen, 2016, Effect of adding a small amount of liquid on density- induced wet granular segregation in a rotating drum, Advanced Powder Technology, vol. 27, pp. 1265-1271. [30] C.C. Liao, 2018, Density-induced granular migration dynamics in sheared slurry granular materials, Powder Technology, vol. 338, pp. 931-936. [31] C.C. Liao, 2019, Effect of dynamic properties on density-driven granular segregation in a rotating drum, Powder Technology, Vol. 345, Pages 151-158. [32] A.A. Boateng, 1998, Boundary layer modeling of granular flow in the transverse plane of a partially filled rotating cylinder, International Journal of Multiphase Flow, Vol. 24, pp. 499-521. [33] X.Y. Liu, E. Specht, O.G. Gonzalez, P. Walzel, 2006, Analytical solution for the rolling-mode granular motion in rotary kilns, Chemical Engineering and Processing: Process Intensification, Vol. 45, pp. 515 -521. [34] D.A. Santos, M.A.S. Barrozo, C.R. Duarte, F. Weigler, J. Mellmann, 2016, Investigation of particle dynamics in a rotary drum by means of experiments and numerical simulations using DEM, Advanced Powder Technology, vol. 27, pp. 692-703. [35] R. Li, H. Yang, G. Zheng, Q.C. Sun, 2018, Granular avalanches in slumping regime in a 2D rotating drum, Powder Technology, vol. 326, pp. 322-326. [36] C.C. Liao, S.F. Ou, S.L. Chen, Y.R. Chen, 2018, Influences of fine powder on dynamic properties and density segregation in a rotating drum, Advanced Powder Technology, vol. 31, pp. 1702-1707. [37] S. Ogawa, 1978, Multi-temperature Theory of Granular Materials, In Proceedings of US-Japan Seminar on Continuum-Mechanical and Statistical Approaches in the Mechanics of Granular Materials, Tokyo. [38] S.S. Hsiau, L.S. Lu, C.H. Tai, 2008, Experimental investigations of granular temperature in vertical vibrated beds, Powder Technology, vol 182, pp. 202-210. [39] C.C. Liao, 2016, Mulstized immersed granular materials and bumpy base on the brazil nut effect in a three-dimensional vertically vibrating granular bed, Powder Technology, vol. 288, pp. 151-156. [40] S.Y. Wang, R.C. Tian, H.L. Lia, X.Q. Li, X. Wang, J. Zhao, L.L. Liu, Q.J. Sun, 2017, Predictions of granular temperatures of particles in a flat bottomed spout bed, Powder Technology, vol 322, pp. 147-158. [41] A.A. Aissa, C. Duchesne, D. Rodrigue, 2012, Transverse mixing of polymer powders in a rotary cylinder part I: Active layer characterization, Powder Technology, Vol. 219, pp. 193-201. [42] T.J. Glover, 1997, Pocket Reference, 2nd ed, Sequoia Publishing. [43] H.M.B.A. Hashemi, O.S.B.A. Amoudi, 2018, A review on the angle of repose of granular materials, Powder Technology, vol 330, pp. 397-417. [44] C.J. Coetzee, 2017, Review: calibration of the discrete element method, Powder Technology, vol 310, pp. 104-142. [45] H. Wadell, 1932, Volume, shape, and roundness of rock particles, J. Geol., vol 40, pp. 443-451, 10.1086/623964. [46] D. Höhner, S. Wirtz, V. Scherer, 2014, A study on the influence of particle shape and shape approximation on particle mechanics in a rotating drum using the discrete element method, Powder Technology, vol 253, pp. 256-265. [47] B.B. Dai, J. Yang, C.Y. Zhou, W. Zhang, 2017, Effect of particle shape on the formation of sandpile, Proceedings of the 7th International Conference on Discrete Element Methods, pp. 767-776, 10.1007/978-981-10-1926-5-79. [48] M.P. Bryan, S.L. Rough, D.I. Wilson, 2018, Measurement of the wall slip behaviour of a solid granular soap in ram extrusion, Powder Technology, vol 323, pp. 76-85. [49] J.R. Flagg, J.E. Reber, 2020, Effect of grain size and grain size distribution on slip dynamics: An experimental analysis, Tectonophysics, Volume 774, 228288. [50] C.C. Liao, H.W Lan, S.S. Hsiau, 2016, Density-induced granular segregation in a slurry rotating drum, International Journal of Multiphase Flow, Vol. 84, pp. 1-8. [51] G.D Liu, F. Yu, S. Wang, P.W. Liao, W.R. Zhang, B. Han, H.L. Lu, 2017, Investigation of interstitial fluid effect on the hydrodynamics of granular in liquid-solid fluidized beds with CFD-DEM, Powder Technology, Vol. 322, pp. 353-368. [52] S.H. Chou, F.C. Yang, S.S. Hsiau, 2019, Influence of interstitial fluid viscosity and particle size on creeping granular flow in a rotating drum, International Journal of Multiphase Flow, Vol. 113, pp. 179-190. [53] K. Yamane, M. Nakagawa, 1998, Steady particulate flows in a horizontal rotating cylinder, Physics of Fluids 10, 1419. [54] Z.Y. Zhou, D. Pinson, R.P. Zou, A.B. Yu, 2011, Discrete particle simulation of gas fluidization of ellipsoidal particles, Chemical Engineering Science, Vol.66, pp.6128-6145. [55] M.K. Saeed, M.S. Siraj, 2019, Mixing study of non-spherical particles using DEM, Powder Technology, Vol.344, pp.617-627. [56] J. Yang, 2019, DEM investigation of shear flows of binary mixtures of non-spherical particles, Chemical Engineering Science, Vol.202, pp.383-391. [57] P.Y. Liu, R.Y. Yang, A.B. Yu, 2013, DEM study of the transverse mixing of wet particles in rotating drums, Chemical Engineering Science, Vol. 86, pp. 99-107. [58] Q. Chen, H. Yang, R. Li, W.Z. Xiu, R. Hana, Q.C. Sun, V. Zivkovic, 2020, Compaction and dilatancy of irregular particles avalanche flow in rotating drum operated in slumping regime, Powder Technology, Vol. 364, pp. 1039-1048. [59] Q. Chen, H. Yang, R. Li, W.Z. Xiu, G. Zheng, V. Zivkovic, H. Yanga, 2020, Dynamics of irregular particles in the passive layer under the slumping regime, Powder Technology, In Press, Journal Pre-proof. [60] S.L. Yang, H. Wang, Y.G. Wei, J.H. Hu, J.W. Chew, 2020, Flow dynamics of binary mixtures of non-spherical particles in the rolling-regime rotating drum, Powder Technology, Vol.361, pp.930-942. [61] L.L. Zhao, C.S. Liu, J.X. Yan, Z.P. XU, 2010, Numerical simulation on segregation process of particles using 3D discrete element method, Acta Physica Sinica, Vol.59, pp.1870-1867. [62] O. Dube, E. Alizadeh, J. Chaouki, F. Betrand, 2013, Dynamics of non-spherical particles in a rotating drum, Chemical Engineering Science, Vol.101, pp.486-502. [63] T. Oschmann, J. Hold, H.K. Emden, 2014, Numerical investigation of mixing and orientation of non-spherical particles in a model type fluidized bed, Powder Technology, Vol.258, pp.304-323. [64] H.R. Norouzi, R. Zarghami, N. Mostoufi, 2015, Insights into the granular flow in rotating drums, Chemical Engineering Research and Design, Vol.102, pp.12-25. [65] Y. You, M. Liu, H. Ma, L. Xu, B. Liu, Y. Shao, 2018, Investigation of the vibration sorting of non-spherical particles based on DEM simulation, Powder Technology, Vol.325, pp.316-332. [66] S. He, J. Gan, P. David, Z. Zhou, 2017, Transverse mixing of ellipsoidal particles in a rotating drum, Powders and Grains, Vol.140, id.06018. [67] S.Y. He, J.Q. Gan, D. Pinson, Z.Y. Zhou, 2019, Particle shape-induced radial segregation of binary mixtures in a rotating drum, Powder Technology, Vol.341, pp.157-166. [68] S.Y. He, J.Q. Gan, D. Pinson, A.B. Yu, Z.Y. Zhou, 2019, Radial segregation of binary-sized ellipsoids in a rotating drum, Powder Technology, Vol.357, pp.322-330. [69] S.L Yang, H. Wang, Y.G. Wei, J.H. Hu, J.W. Chew, 2019, Segregation behavior of binary mixtures of cylindrical particles with different length ratios in the rotating drum, particle technology and fluidization, vol.66, Issue1. [70] G. Lu, C.R. Müller, 2020, Particle-shape induced radial segregation in rotating cylinders, Granular Matter, Vol. 22, Article number: 50. [71] M. Asachi, M.A. Behjani, E. Nourafkan, A. Hassanpour, 2020, Tailoring particle shape for enhancing the homogeneity of powder mixtures: Experimental study and DEM modelling, Particuology, In Press, Corrected Proof. [72] C.D. Willett, M.J. Adams, S.A. Johnson, J.P.K. Seville, 2000, Capillary bridges between two spherical bodies, Langmuir, vol. 16, pp.9396–9405. [73] O. Harireche, A. Faramarzi, A.M. Alani, 2013, A toroidal approximation of capillary forces in polydisperse granular assemblies, Granular Matter, Vol.15, pp.573-581. [74] H. Schubert, 1984, Capillary forces - modeling and application in particulate technology, Powder Technology, Vol.37, pp.105–116. [75] P. Tegzes, T. Vicsek, P. Schiffer, 2003, Development of correlations in the dynamics of wet granular avalanches, Physical Review E, 67, 051303. [76] R.A. Fisher, 1926, On the capillary forces in an ideal soil, The Journal of Agricultural Science, vol. 16, pp.492-505. [77] G. Lian, C. Thornton, M.J. Adams, 1998, Discrete particle simulation of agglomerate impact coalescence, Chemical Engineering Science, vol. 53, pp. 3381-3391. [78] S.T. Nase, W.L. Vargas, A.A. Abatan, J.J. McCarthy, 2001, Discrete characterization tools for cohesive granular material, Powder Technology, vol. 116, pp.214-223. [79] M.M. Kohonen, D. Geromichalos, M. Scheel, C. Schier, S. Herminghaus, 2004, On capillary bridges in wet granular materials, Physica A: Statistical Mechanics and its Applications, vol. 339, pp.7-15. [80] W.L. Yang, S.S. Hsiau, 2005, Wet granular materials in sheared flows, Chemical Engineering Science, vol. 60, pp.4265-4274. [81] S. Herminghaus, 2005, Dynamics of wet granular matter, Advances in Physics, vol. 54, Issue 3. [82] C.C. Liao, S. S. Hsiau, T. H. Tsai, C. H. Tai, 2010, Segregation to mixing in wet granular matter under vibration, Chemical Engineering Science, vol. 65, pp.1109-1119. [83] C.C. Liao, S. S. Hsiau, K. To, 2010, Granular dynamics of a slurry in a rotating drum, Physical Review E, vol. 82, 010302. [84] C.C. Liao, S. S. Hsiau, 2010, Experimental analysis of dynamic properties in wet sheared granular matter, Powder Technology, vol. 197, pp.222-229. [85] S.H. Chou, C.C. Liao, S.S. Hsiau, 2010, An experimental study on the effect of liquid content and viscosity on particle segregation in a rotating drum, Powder Technology, vol. 201, pp. 266-272. [86] S.S. Hsiau, C.C. Liao, H. Tai, C.Y. Wang, 2013, The dynamics of wet granular matter under a vertical vibration bed, Granular Matter, vol. 15, pp.437-446. [87] P.Y. Liu, R.Y. Yang, A.B. Yu, 2013, The effect of liquids on radial segregation of granular mixtures in rotating drums, Granuler Matter, vol.15, pp.427-436. [88] H.T. Chou, S.H. Chou, S.S. Hsiau, 2014, The effects of particle density and interstitial fluid viscosity on the dynamic properties of granular slurries in a rotating drum, Powder Technology, vol. 252, pp.42-50. [89] S.L.L. Seah, E.W.C. Lim, 2015, Density segregation of dry and wet granular mixtures in gas fluidized beds, American Institute of Chemical Engineers, vol. 61, pp.4069-4086. [90] C.C. Liao, S.S. Hsiau, S.F. Wen, 2016, Effect of adding a small amount of liquid on density-induced wet granular segregation in a rotating drum, Advanced Powder Technology, vol. 27, pp. 126-1271. [91] T.Q Tang, Y.R. He, T Tai, D.S. Wen, 2017, DEM numerical investigation of wet particle flow behaviors in multiple-spout fluidized beds, Chemical Engineering Science, vol. 172, pp. 79-99. [92] H.Y. Xiao, J. Hruska, J.M. Ottino, R.M. Lueptow, P.B. Umbanhowar, 2018, Unsteady flows and inhomogeneous packing in damp granular heap flows, Physical Review E, 98, 032906. [93] S. Schmelzle, H. Nirschl, 2018, DEM simulations: mixing of dry and wet granular material with different contact angles, Granular Matter, vol. 20, Article number: 19. [94] C.C. Liao, 2018, A study of the effect of liquid viscosity on density-driven wet granular segregation in a rotating drum, Powder Technology, vol. 325, pp. 632-638. [95] E. Yazdani, S.H. Hashemabadi, 2019, Physica A: Statistical Mechanics and its Applications, vol. 525, pp. 788-797. [96] S.H. Chou, F.C. Yang, S.S. Hsiau, 2019, Influence of interstitial fluid viscosity and particle size on creeping granular flow in a rotating drum, International Journal of Multiphase Flow, vol. 113, pp. 179-190. [97] J. Ahmed, M. Vanessa, L. Stefn, 2019, Wet granular flow control through liquid induced cohesion, Powder Technology, vol.341, pp.126-139. [98] F. Xiao, J.Q. Jing, S.B. Kuang, L. Yang, A.B Yu, 2020, Capillary forces on wet particles with a liquid bridge transition from convex to concave, Advanced Powder Technology, vol.363, pp.59-73. [99] S. Mandal, M. Nicolas, O. Pouliquen, 2020, Insights into the rheology of cohesive granular media, Proceedings of the National Academy of Sciences, 117. 15. 8366-8373. [100] P. V. Danckwerts, 1952, The definition and measurement of some characteristic of mixtures, Applied Scientific Research, Section A, vol. 3, pp.279-296. [101] H. Kan, H. Nakamura, S. Watano, 2017, Effect of droplet size on particle-particle adhesion of colliding particles through droplet, Powder Technology, vol. 321, pp.318-325.
|