(3.238.7.202) 您好!臺灣時間:2021/02/25 10:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉濬豪
研究生(外文):YEH, CHUN-HAO
論文名稱:旋轉鼓內不同液體添加量對於非球形顆粒分離機制之影響
論文名稱(外文):Effect of liquid content on non-spherical particles segregation mechanism in a rotating drum
指導教授:廖俊忠廖俊忠引用關係
指導教授(外文):Liao, Chun-Chung
口試委員:蕭述三郭修伯廖俊忠
口試委員(外文):Hsiau, Shu-SanKuo, Hsiu-PoLiao, Chun-Chung
口試日期:2020-07-23
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:模具工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:93
中文關鍵詞:旋轉鼓長軸比形狀分離效應液橋液體含量
外文關鍵詞:Rotating drumLong axis ratioShape-induced granular segregationLiquid bridgeDimensionless liquid volume
相關次數:
  • 被引用被引用:0
  • 點閱點閱:16
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
顆粒材料在許多的產業界都扮演相當重要的角色,在化學工業、粉末冶金工業、醫療產業、食品工業等,大部分製品都是以顆粒材料的形態存在,然而顆粒的分離行為也一直都是工業界中很常見也很重要的一個物理現象,而顆粒也都以非球形顆粒的形態存在為多,因此本研究針對非球形顆粒的流動特性與分離行為做探討,並且在顆粒中添加微量的液體,從而控制非球形顆粒間的動態特性與分離強度,本研究是以二維旋轉鼓作為實驗設備,使用長軸比為0.352、0.470、0.588及0.704組合的顆粒材料(3、4、5、6mm白色POM顆粒與紅豆,其中紅豆縱橫比為1.63),使用的液體為清水,實驗過程中使用高速攝影機與數位攝影機來進行拍攝與記錄,藉由改變不同的液體含量與長軸比的組合,最後透過粒子追蹤測速法與影像處理技術來測量顆粒的平均速度、擾動速度、粒子溫度、最終分離強度與動態安息角。實驗結果表明當長軸比越小時,顆粒的形狀效應越大,而添加液體於顆粒中時,會使顆粒間產生液橋,而液橋的形成會使顆粒間產生內聚力,減緩顆粒的運動情形,同時也降低了尺寸效應,使兩種顆粒更加混合。然而液體對非球形顆粒的動態特性影響很大,並且隨著液體添加量的增加,會使液橋的數量與厚度都增加,顆粒間的內聚力也隨之增加,其最終分離強度會呈遞減的趨勢,而動態安息角則呈遞增的趨勢。當長軸比為0.704時,顆粒材料會因形狀效應發生逆向分離,但是液體的添加會造成這個情況消失。因此本研究結果證實了液體的添加對非球形顆粒在顆粒分離的機制下扮演關鍵因素。
Granular materials play a very important role in many industries. Processing technology of granular materials is also widely applied in the chemical industry, powder metallurgy industry, medical industry, and food industry, etc. However, the segregation phenomenon of granular materials has always been a common and important physical phenomenon in many industries. Additionally, granular materials are mostly in the form of non-spherical particles. In this study, a quasi-2D rotating drum was used as the experimental equipment. POM beads and red beans were served as granular mixtures, different long axis ratio: 0.352, 0.470, 0.588, 0.704 (3, 4, 5, 6mm POM and red beans, the red beans aspect ratio is 1.63) were used to study the wet non-spherical particulate segregation. High-speed cameras and digital cameras were used for recording the movement of particles. The particle tracking method and image processing technology were applied to measure the average velocity, fluctuation velocity, granular temperature, dynamic angle of repose, and the intensity of segregation. The experimental results show that liquid bridges could be formed between the particles when a small amount of water added into granular mixtures. The liquid bridges can cause cohesive force between particles and slow down the movement of the particles. At the same time, it could reduce the size-induced granular segregation. When the liquid content increase, the number, and volume of the liquid bridges will increase, the cohesive force also becomes greater, resulting in the decrease of the final intensity of segregation, and an increase of the dynamic repose angle. When the long axis ratio is 0.704, the particle will reversely segregate due to shape effects, but the addition of liquid will cause this situation to disappear. Therefore, the results of this study confirm that the addition of liquid plays an important role in the mechanism of size segregation of non-spherical particles.
摘要 i
ABSTRACT ii
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
符號說明 x
一、 前言 1
1. 顆粒流介紹 1
2. 旋轉鼓簡介 3
3. 顆粒材料的分離現象 7
4. 顆粒材料之物理特性與流動性質 10
5. 非球形顆粒形狀效應對顆粒材料輸送性質與分離機制之影響 14
6. 顆粒間的內聚力 18
7. 液橋力對顆粒材料動態特性之影響 21
8. 研究動機與目的 26
二、 實驗設備與研究方法 28
1. 實驗設備 28
2. 實驗參數與原理 32
3. 實驗配置 36
4. 實驗流程 36
5. 實驗誤差 38
三、 結果與討論 40
1. 不同液體添加量對於不同長軸比顆粒流動行為之影響 40
2. 不同液體添加量對於不同長軸比顆粒分離機制之影響 40
3. 不同液體添加量對於不同長軸比顆粒動態特性之影響 41
4. 不同液體添加量對於不同長軸比顆粒動態安息角之影響 43
5. 不同液體添加量對於不同長軸比顆粒最終分離強度與動態安息角之關係 44
6. 濕顆粒系統對於長軸比為0.704時顆粒分佈型態之影響 45
四、 結論 46
參考文獻 47
附表 55
附圖 58
個人簡歷 93

[1] H.M. Jaeger, S.R. Nage, R.P. Behringer, 1996, Granular solids, liquids and gases, Rev. Mod. Phys., Vol. 68, pp. 1259-1273.
[2]《科學發展》,2015年9月,vol. 513,pp. 24-29。
[3] P.A. Shamlon, 1998, Handling of Bulk Solids: Theory and practice, Butterworth.
[4] J.Torres-Serra, E.Romero, A.Rodríguez-Ferran, 2020, A new column collapse apparatus for the characterisation of the flowability of granular materials, Powder Technology, Vol. 362, pp. 559-577.
[5] W.X Guo, Q. Zhang, J.J. Wylie, 2016, Dynamic behavior of convergent rapid granular flows Comportement dynamique d'un flux granulaire rapide convergent, Comptes Rendus Mathematique, Vol. 354, pp. 864-868.
[6] X. Ye, D. Wang, X. Zheng, 2016, Criticality of post-impact motions of a projectile obliquely impacting a granular medium, Powder Technology, Vol. 301, pp. 1044-1053.
[7] J. Zheng, A. Sun, Y. Wang, J. Zhang, 2018, Energy fluctuations in slowly sheared granular materials, Physical Review Letters, 121, Article 248001.
[8] W.Q. Zhong, A.B. Yu, G.W. Zhou, J. Xie, H. Zhang, 2016, CFD simulation of dense particulate reaction system: Approaches, recent advances and applications, Chemical Engineering Science, Vol. 140, pp. 16-43.
[9] P. Zhou, H.L. Li, P.Y. Shi, C.Q. Zhou, 2016, Simulation of the transfer process in the blast furnace shaft with layered burden, Applied Thermal Engineering, Vol. 95, pp. 296-302.
[10] S.B. Kuang, Z.Y. Li, D.L. Yan, Y.H. Qi, A.B. Yu, 2014, Numerical study of hot charge operation in ironmaking blast furnace, Minerals Engineering, Vol. 63, pp. 45-56.
[11] M. Umer, M.S. Siraj, 2018, DEM studies of polydisperse wet granular flows, Powder Technology, Vol. 328, pp. 309-317.
[12] G.G.D. Zhou, Q.C. Sun, 2013, Three-dimensional numerical study on flow regimes of dry granular flows by DEM, Powder Technology, Vol. 239, pp. 115-127.
[13] H.W. Zhu, Q.F. Shi, L.S. Li, M.C. Yang, A. Xu, N. Zheng, 2020, Frictional effect of bottom wall on granular flow through an aperture on a conveyor belt, Powder Technology, Vol. 367, pp. 421-426.
[14] S. Albaraki, S.J. Antony, 2014, How does internal angle of hoppers affect granular flow? Experimental studies using digital particle image velocimetry, Powder Technology, Vol. 268, pp. 253-260.
[15] H. Henein, J.K. Brimacombe, A.P. Watkinson, 1983, Experimental study of transverse bed motion in rotary kilns, Metallurgical Transactions B, Vol. 14, pp. 191-205.
[16] J. Rajchenbach, 1990, Flow in powders: from discrete avalanches to continuous regime, Physical Review Letters, Vol. 65, pp. 2221-2224.
[17] J. Mellmann, 2001, The transverse motion of solids in rotating cylinders-forms of motion and transition behavior, Powder Technology, Vol. 118, pp. 251-270.
[18] R. Li, H. Yang, G. Zheng, Q.C. Sun, 2018, Granular avalanches in slumping regime in a 2D rotating drum, Powder Technology, Vol. 326, pp. 322-326.
[19] W. Blumberg, 1995, Selektive Konvektions- und Kontakttrocknung im Drehrohr, VDI Fortschrittsbericht Nr. 384, VDI-Verlag, Düsseldorf.
[20] A.V. Orpe, D.V. Khakhar, 2001, Scaling relations for granular flow in quasi-two-dimensional rotating cylinders, Physical Review E, Vol. 64, pp. 1-13.
[21] G Félix, V Falk, U D'Ortona, 2002, Segregation of dry granular material in rotating drum: experimental study of the flowing zone thickness, Powder Technology, Vol.128, pp. 314-319.
[22] C.C. Liao, 2019, Effect of dynamic properties on density-driven granular segregation in a rotating drum, Powder Technology, Vol. 345, pp. 151-158.
[23] R.J. Brandao, R.M.L. Raphael, L.S. Claudio, R.D.M.A.S. Barrozo, 2020, Experimental study and DEM analysis of granular segregation in a rotating drum, Powder Technology, Vol. 364, pp. 1-12.
[24] A. Rosato, K.J. Strandburg, F. Prinz, R.H. Swendsen, 1987, Why the Brazil nuts are on top: size segregation of particulate matter by shaking, Physical Review Letters., vol. 58, pp.1038-1040.
[25] M.E. Möbius, B.E. Lauderdale, S.R. Nagel, H.M. Jaeger, 2001, Brazil-nut effect Size separation of granular particles, Nature, vol. 414, pp.270.
[26] N. Jain, J.M. Ottino, R. R. Lueptow, 2005, Regimes of segregation and mixing in combined size and density granular systems: an experimental study, Granular Matter, vol.7, pp.69-81.
[27] A. Tripathi, D.V. Khakhar, 2013, Density difference-driven segregation in a dense granular flow, Journal of Fluid Mechanics, vol. 717, pp.643-669.
[28] C.C. Liao, S.S. Hsiau, H.C. Nien, 2014, Density-driven spontaneous streak segregation patterns in a thin rotating drum, Physical Review E, vol. 89, 62204.
[29] C.C. Liao, S.S. Hsiau, S.F. Wen, 2016, Effect of adding a small amount of liquid on density- induced wet granular segregation in a rotating drum, Advanced Powder Technology, vol. 27, pp. 1265-1271.
[30] C.C. Liao, 2018, Density-induced granular migration dynamics in sheared slurry granular materials, Powder Technology, vol. 338, pp. 931-936.
[31] C.C. Liao, 2019, Effect of dynamic properties on density-driven granular segregation in a rotating drum, Powder Technology, Vol. 345, Pages 151-158.
[32] A.A. Boateng, 1998, Boundary layer modeling of granular flow in the transverse plane of a partially filled rotating cylinder, International Journal of Multiphase Flow, Vol. 24, pp. 499-521.
[33] X.Y. Liu, E. Specht, O.G. Gonzalez, P. Walzel, 2006, Analytical solution for the rolling-mode granular motion in rotary kilns, Chemical Engineering and Processing: Process Intensification, Vol. 45, pp. 515 -521.
[34] D.A. Santos, M.A.S. Barrozo, C.R. Duarte, F. Weigler, J. Mellmann, 2016, Investigation of particle dynamics in a rotary drum by means of experiments and numerical simulations using DEM, Advanced Powder Technology, vol. 27, pp. 692-703.
[35] R. Li, H. Yang, G. Zheng, Q.C. Sun, 2018, Granular avalanches in slumping regime in a 2D rotating drum, Powder Technology, vol. 326, pp. 322-326.
[36] C.C. Liao, S.F. Ou, S.L. Chen, Y.R. Chen, 2018, Influences of fine powder on dynamic properties and density segregation in a rotating drum, Advanced Powder Technology, vol. 31, pp. 1702-1707.
[37] S. Ogawa, 1978, Multi-temperature Theory of Granular Materials, In Proceedings of US-Japan Seminar on Continuum-Mechanical and Statistical Approaches in the Mechanics of Granular Materials, Tokyo.
[38] S.S. Hsiau, L.S. Lu, C.H. Tai, 2008, Experimental investigations of granular temperature in vertical vibrated beds, Powder Technology, vol 182, pp. 202-210.
[39] C.C. Liao, 2016, Mulstized immersed granular materials and bumpy base on the brazil nut effect in a three-dimensional vertically vibrating granular bed, Powder Technology, vol. 288, pp. 151-156.
[40] S.Y. Wang, R.C. Tian, H.L. Lia, X.Q. Li, X. Wang, J. Zhao, L.L. Liu, Q.J. Sun, 2017, Predictions of granular temperatures of particles in a flat bottomed spout bed, Powder Technology, vol 322, pp. 147-158.
[41] A.A. Aissa, C. Duchesne, D. Rodrigue, 2012, Transverse mixing of polymer powders in a rotary cylinder part I: Active layer characterization, Powder Technology, Vol. 219, pp. 193-201.
[42] T.J. Glover, 1997, Pocket Reference, 2nd ed, Sequoia Publishing.
[43] H.M.B.A. Hashemi, O.S.B.A. Amoudi, 2018, A review on the angle of repose of granular materials, Powder Technology, vol 330, pp. 397-417.
[44] C.J. Coetzee, 2017, Review: calibration of the discrete element method, Powder Technology, vol 310, pp. 104-142.
[45] H. Wadell, 1932, Volume, shape, and roundness of rock particles, J. Geol., vol 40, pp. 443-451, 10.1086/623964.
[46] D. Höhner, S. Wirtz, V. Scherer, 2014, A study on the influence of particle shape and shape approximation on particle mechanics in a rotating drum using the discrete element method, Powder Technology, vol 253, pp. 256-265.
[47] B.B. Dai, J. Yang, C.Y. Zhou, W. Zhang, 2017, Effect of particle shape on the formation of sandpile, Proceedings of the 7th International Conference on Discrete Element Methods, pp. 767-776, 10.1007/978-981-10-1926-5-79.
[48] M.P. Bryan, S.L. Rough, D.I. Wilson, 2018, Measurement of the wall slip behaviour of a solid granular soap in ram extrusion, Powder Technology, vol 323, pp. 76-85.
[49] J.R. Flagg, J.E. Reber, 2020, Effect of grain size and grain size distribution on slip dynamics: An experimental analysis, Tectonophysics, Volume 774, 228288.
[50] C.C. Liao, H.W Lan, S.S. Hsiau, 2016, Density-induced granular segregation in a slurry rotating drum, International Journal of Multiphase Flow, Vol. 84, pp. 1-8.
[51] G.D Liu, F. Yu, S. Wang, P.W. Liao, W.R. Zhang, B. Han, H.L. Lu, 2017, Investigation of interstitial fluid effect on the hydrodynamics of granular in liquid-solid fluidized beds with CFD-DEM, Powder Technology, Vol. 322, pp. 353-368.
[52] S.H. Chou, F.C. Yang, S.S. Hsiau, 2019, Influence of interstitial fluid viscosity and particle size on creeping granular flow in a rotating drum, International Journal of Multiphase Flow, Vol. 113, pp. 179-190.
[53] K. Yamane, M. Nakagawa, 1998, Steady particulate flows in a horizontal rotating cylinder, Physics of Fluids 10, 1419.
[54] Z.Y. Zhou, D. Pinson, R.P. Zou, A.B. Yu, 2011, Discrete particle simulation of gas fluidization of ellipsoidal particles, Chemical Engineering Science, Vol.66, pp.6128-6145.
[55] M.K. Saeed, M.S. Siraj, 2019, Mixing study of non-spherical particles using DEM, Powder Technology, Vol.344, pp.617-627.
[56] J. Yang, 2019, DEM investigation of shear flows of binary mixtures of non-spherical particles, Chemical Engineering Science, Vol.202, pp.383-391.
[57] P.Y. Liu, R.Y. Yang, A.B. Yu, 2013, DEM study of the transverse mixing of wet particles in rotating drums, Chemical Engineering Science, Vol. 86, pp. 99-107.
[58] Q. Chen, H. Yang, R. Li, W.Z. Xiu, R. Hana, Q.C. Sun, V. Zivkovic, 2020, Compaction and dilatancy of irregular particles avalanche flow in rotating drum operated in slumping regime, Powder Technology, Vol. 364, pp. 1039-1048.
[59] Q. Chen, H. Yang, R. Li, W.Z. Xiu, G. Zheng, V. Zivkovic, H. Yanga, 2020, Dynamics of irregular particles in the passive layer under the slumping regime, Powder Technology, In Press, Journal Pre-proof.
[60] S.L. Yang, H. Wang, Y.G. Wei, J.H. Hu, J.W. Chew, 2020, Flow dynamics of binary mixtures of non-spherical particles in the rolling-regime rotating drum, Powder Technology, Vol.361, pp.930-942.
[61] L.L. Zhao, C.S. Liu, J.X. Yan, Z.P. XU, 2010, Numerical simulation on segregation process of particles using 3D discrete element method, Acta Physica Sinica, Vol.59, pp.1870-1867.
[62] O. Dube, E. Alizadeh, J. Chaouki, F. Betrand, 2013, Dynamics of non-spherical particles in a rotating drum, Chemical Engineering Science, Vol.101, pp.486-502.
[63] T. Oschmann, J. Hold, H.K. Emden, 2014, Numerical investigation of mixing and orientation of non-spherical particles in a model type fluidized bed, Powder Technology, Vol.258, pp.304-323.
[64] H.R. Norouzi, R. Zarghami, N. Mostoufi, 2015, Insights into the granular flow in rotating drums, Chemical Engineering Research and Design, Vol.102, pp.12-25.
[65] Y. You, M. Liu, H. Ma, L. Xu, B. Liu, Y. Shao, 2018, Investigation of the vibration sorting of non-spherical particles based on DEM simulation, Powder Technology, Vol.325, pp.316-332.
[66] S. He, J. Gan, P. David, Z. Zhou, 2017, Transverse mixing of ellipsoidal particles in a rotating drum, Powders and Grains, Vol.140, id.06018.
[67] S.Y. He, J.Q. Gan, D. Pinson, Z.Y. Zhou, 2019, Particle shape-induced radial segregation of binary mixtures in a rotating drum, Powder Technology, Vol.341, pp.157-166.
[68] S.Y. He, J.Q. Gan, D. Pinson, A.B. Yu, Z.Y. Zhou, 2019, Radial segregation of binary-sized ellipsoids in a rotating drum, Powder Technology, Vol.357, pp.322-330.
[69] S.L Yang, H. Wang, Y.G. Wei, J.H. Hu, J.W. Chew, 2019, Segregation behavior of binary mixtures of cylindrical particles with different length ratios in the rotating drum, particle technology and fluidization, vol.66, Issue1.
[70] G. Lu, C.R. Müller, 2020, Particle-shape induced radial segregation in rotating cylinders, Granular Matter, Vol. 22, Article number: 50.
[71] M. Asachi, M.A. Behjani, E. Nourafkan, A. Hassanpour, 2020, Tailoring particle shape for enhancing the homogeneity of powder mixtures: Experimental study and DEM modelling, Particuology, In Press, Corrected Proof.
[72] C.D. Willett, M.J. Adams, S.A. Johnson, J.P.K. Seville, 2000, Capillary bridges between two spherical bodies, Langmuir, vol. 16, pp.9396–9405.
[73] O. Harireche, A. Faramarzi, A.M. Alani, 2013, A toroidal approximation of capillary forces in polydisperse granular assemblies, Granular Matter, Vol.15, pp.573-581.
[74] H. Schubert, 1984, Capillary forces - modeling and application in particulate technology, Powder Technology, Vol.37, pp.105–116.
[75] P. Tegzes, T. Vicsek, P. Schiffer, 2003, Development of correlations in the dynamics of wet granular avalanches, Physical Review E, 67, 051303.
[76] R.A. Fisher, 1926, On the capillary forces in an ideal soil, The Journal of Agricultural Science, vol. 16, pp.492-505.
[77] G. Lian, C. Thornton, M.J. Adams, 1998, Discrete particle simulation of agglomerate impact coalescence, Chemical Engineering Science, vol. 53, pp. 3381-3391.
[78] S.T. Nase, W.L. Vargas, A.A. Abatan, J.J. McCarthy, 2001, Discrete characterization tools for cohesive granular material, Powder Technology, vol. 116, pp.214-223.
[79] M.M. Kohonen, D. Geromichalos, M. Scheel, C. Schier, S. Herminghaus, 2004, On capillary bridges in wet granular materials, Physica A: Statistical Mechanics and its Applications, vol. 339, pp.7-15.
[80] W.L. Yang, S.S. Hsiau, 2005, Wet granular materials in sheared flows, Chemical Engineering Science, vol. 60, pp.4265-4274.
[81] S. Herminghaus, 2005, Dynamics of wet granular matter, Advances in Physics, vol. 54, Issue 3.
[82] C.C. Liao, S. S. Hsiau, T. H. Tsai, C. H. Tai, 2010, Segregation to mixing in wet granular matter under vibration, Chemical Engineering Science, vol. 65, pp.1109-1119.
[83] C.C. Liao, S. S. Hsiau, K. To, 2010, Granular dynamics of a slurry in a rotating drum, Physical Review E, vol. 82, 010302.
[84] C.C. Liao, S. S. Hsiau, 2010, Experimental analysis of dynamic properties in wet sheared granular matter, Powder Technology, vol. 197, pp.222-229.
[85] S.H. Chou, C.C. Liao, S.S. Hsiau, 2010, An experimental study on the effect of liquid content and viscosity on particle segregation in a rotating drum, Powder Technology, vol. 201, pp. 266-272.
[86] S.S. Hsiau, C.C. Liao, H. Tai, C.Y. Wang, 2013, The dynamics of wet granular matter under a vertical vibration bed, Granular Matter, vol. 15, pp.437-446.
[87] P.Y. Liu, R.Y. Yang, A.B. Yu, 2013, The effect of liquids on radial segregation of granular mixtures in rotating drums, Granuler Matter, vol.15, pp.427-436.
[88] H.T. Chou, S.H. Chou, S.S. Hsiau, 2014, The effects of particle density and interstitial fluid viscosity on the dynamic properties of granular slurries in a rotating drum, Powder Technology, vol. 252, pp.42-50.
[89] S.L.L. Seah, E.W.C. Lim, 2015, Density segregation of dry and wet granular mixtures in gas fluidized beds, American Institute of Chemical Engineers, vol. 61, pp.4069-4086.
[90] C.C. Liao, S.S. Hsiau, S.F. Wen, 2016, Effect of adding a small amount of liquid on density-induced wet granular segregation in a rotating drum, Advanced Powder Technology, vol. 27, pp. 126-1271.
[91] T.Q Tang, Y.R. He, T Tai, D.S. Wen, 2017, DEM numerical investigation of wet particle flow behaviors in multiple-spout fluidized beds, Chemical Engineering Science, vol. 172, pp. 79-99.
[92] H.Y. Xiao, J. Hruska, J.M. Ottino, R.M. Lueptow, P.B. Umbanhowar, 2018, Unsteady flows and inhomogeneous packing in damp granular heap flows, Physical Review E, 98, 032906.
[93] S. Schmelzle, H. Nirschl, 2018, DEM simulations: mixing of dry and wet granular material with different contact angles, Granular Matter, vol. 20, Article number: 19.
[94] C.C. Liao, 2018, A study of the effect of liquid viscosity on density-driven wet granular segregation in a rotating drum, Powder Technology, vol. 325, pp. 632-638.
[95] E. Yazdani, S.H. Hashemabadi, 2019, Physica A: Statistical Mechanics and its Applications, vol. 525, pp. 788-797.
[96] S.H. Chou, F.C. Yang, S.S. Hsiau, 2019, Influence of interstitial fluid viscosity and particle size on creeping granular flow in a rotating drum, International Journal of Multiphase Flow, vol. 113, pp. 179-190.
[97] J. Ahmed, M. Vanessa, L. Stefn, 2019, Wet granular flow control through liquid induced cohesion, Powder Technology, vol.341, pp.126-139.
[98] F. Xiao, J.Q. Jing, S.B. Kuang, L. Yang, A.B Yu, 2020, Capillary forces on wet particles with a liquid bridge transition from convex to concave, Advanced Powder Technology, vol.363, pp.59-73.
[99] S. Mandal, M. Nicolas, O. Pouliquen, 2020, Insights into the rheology of cohesive granular media, Proceedings of the National Academy of Sciences, 117. 15. 8366-8373.
[100] P. V. Danckwerts, 1952, The definition and measurement of some characteristic of mixtures, Applied Scientific Research, Section A, vol. 3, pp.279-296.
[101] H. Kan, H. Nakamura, S. Watano, 2017, Effect of droplet size on particle-particle adhesion of colliding particles through droplet, Powder Technology, vol. 321, pp.318-325.

電子全文 電子全文(網際網路公開日期:20250810)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔