跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/03/16 10:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林廷宇
研究生(外文):Ting-Yu Lin
論文名稱:不同光譜對異地養殖紫羽軟珊瑚 (Pachyclavularia violacea)之成長、共生藻密度二次代謝物與受緊迫恢復能力之影響
論文名稱(外文):Effects of different light spectrum on the growth,zooxanthellae density, secondary metabolites and stressrecovery abilities of ex situ aquaculture soft coral(Pachyclavularia violacea)
指導教授:曾美珍
指導教授(外文):Mei-Chen Tseng
口試委員:顏才博高孝偉樊同雲
口試委員(外文):Tsair-Bor YenHsiao-Wei KaoTung-Yung Fan
口試日期:2020-06-05
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:水產養殖系所
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:77
中文關鍵詞:二萜類Thunbergol光譜固醇類Campesterol海洋醫藥化合物
外文關鍵詞:campesterolex situ coral cultureLED spectrummarine pharmaceutical compoundsthunbergol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:1
珊瑚除了作為水族觀賞之外,還具有海洋生態保護和海洋醫藥的潛力。自全球環境變化以來,導致大量珊瑚減少,這增強了人們對環境保護的意識。而開發珊瑚的異地養殖以及優化其培養條件被認為是有效的解決方法。在海洋醫藥開發上,建立海洋天然物生成的標準流程,可以透過人為調控培養環境的珊瑚異地養殖進行。光是影響珊瑚異地養殖的關鍵因素之一,光譜對珊瑚的異地養殖成效有著相當大的影響。對軟珊瑚的相關研究很少。本研究以白紅藍綠四種LED (Light-emitting diode) 發光二極管作為實驗光源,透過珊瑚異地養殖模式進行培養。並選擇紫羽軟珊瑚 (Pachyclavularia violacea) 為實驗物種。目的為探討光譜的差異對於紫羽軟珊瑚異地養殖活存率、成長、重量、共生藻密度,以及化合物成分與含量之影響。另外,也分析不同光譜對紫羽軟珊瑚子株受切割及高水溫兩種緊迫後恢復能力之影響。結果顯示藍光對於珊瑚異地養殖之活存率 (100%)、成長 (72 ± 2.64 polyps increased)、重量 (3.6 ± 0.1 g) 以及共生藻密度 (2.39 ± 0.15 × 106 cell/g) 皆有顯著影響。而受緊迫後恢復能力之成效如新生成共肉組織的天數 (18.3 ± 2.51 days),及經過14天恢復期後之活存率 (90%) 和共生藻密度恢復能力 (1.22 × 106 cell/g) 也以藍光照射之下最佳。也代表紫羽軟珊瑚適用於單一LED藍光培養之珊瑚異地養殖模式,不同光譜培養之下會影響二次代謝物的成分及含量,總含量以白光培養 (38.76%) 略優於藍光培養 (31.54%)。但藍光組別檢測出高於白光組別之二萜類Thunbergol及固醇類Campesterol。本研究發現藍光為最佳的培養光譜,訂定一套紫羽軟珊瑚培養流程及條件,有助於建立人為培養珊瑚作為海洋醫藥的可行性、珊瑚保種復育、市場供應的可能性。
In addition to be used as an ornamental purpose, corals also have the potential in marine ecological conservation and marine medicine. Since the global en-vironment change, causing significant coral population decline, that increases the awareness of environmental protection. The development of ex situ cul-ture of corals and the optimization of their cultivation conditions are consid-ered effective solutions. In the field of marine medicine cultivation, the es-tablishment of a standard process for the generation of marine natural prod-ucts can also be carried out through ex situ coral culture by artificially control the culture environment. Light is one of the key factors that affects the results of ex situ coral culture. In recent years, studies have also shown that the quality of the spectrum has a considerable effect on the ex situ culture of coral, but only few focused on soft coral. This study used four LED light (white, red, blue, and green) as experimental light sources, and culture soft coral (Pachy-clavularia violacea) through the ex situ culture mode. Our purpose was to explore the effect of four different spectrums on ex situ culture of P. violacea (eg. survival ratio, growth, weight, zooxanthellae density), as well as com-position of secondary metabolites. In addition, the experiment also analyzed the effect of different spectrums on the recovery ability of P. violacea after cutting and heat stresses. The results showed the survival ratio (100% healthy), growth (72 ± 2.64 polyps increased), weight (3.6 ± 0.1 g) and zooxanthellae density (2.39 ± 0.15 × 106 cell/g) were positive relative to blue light. The best recovery abilities after being stressed were as follows: new growth coe-nenchyme (18.3 ± 2.51 days), survival ratio (90% healthy) and zooxanthellae density recovery ability (1.22 × 106 cell/g) by blue light experiment. It suggests that the optimization of culture soft coral is using LED blue light on ex situ culture mode. In terms of the chemical composition, the cultivation of different spectra can affect the composition and content of secondary metab-olites. Judging by the total content, white light culture (38.76%) is slightly better than that of blue light culture (31.54%). More steroid campesterol and diterpene thunbergol were detected in the blue light group than in the white light group. In conclusion, we believe that it is necessary to establish a set of exclusive cultivation procedures and conditions for corals or different target compounds for coral restoration and marine bioactive compounds production. This study would advance the coral's conservation, restoration, commercial market, and pharmaceutical applications.
目錄
摘要 I
Abstract II
謝誌 IV
目錄 VI
圖目錄 XI
表目錄 XIII
第1章 前言 1
第2章 文獻回顧 3
2.1. 物種介紹 3
2.2. 珊瑚礁生態系簡介 4
2.3. 珊瑚生長的環境因子 5
2.3.1. 光線 5
2.3.3. 海流 6
2.3.4. 溫度 6
2.3.5. 酸鹼值 6
2.4. 共生藻 7
2.4.1. 共生藻簡介 7
2.4.2. 共生藻與珊瑚之共生關係維持及價值 8
2.5. 二次代謝物 9
2.5.1. 珊瑚二次代謝物簡介 9
2.5.2. 以珊瑚水產養殖開發海洋醫藥之潛力 10
2.5.3. 透過培養條件之改變影響二次代謝物成分及含量 11
2.6. 珊瑚礁所面臨的危機 11
2.6.1. 漁業的破壞 11
2.6.2. 觀光的破壞 12
2.7. 珊瑚的水產養殖 12
2.7.1. 珊瑚的異地養殖開發 13
2.7.2. 珊瑚異地養殖人造光源之選擇 13
2.7.3. 發光二極管作為光源對珊瑚影響之相關研究 14
2.7.4. 異地養殖對於受緊迫後珊瑚子株之恢復能力 15
2.8. 研究目的 15
第3章 材料與方法 16
3.1. 實驗物種來源、蓄養及取樣 16
3.2. 實驗系統設置 16
3.2.1. 照明系統 16
3.2.2. 飼育系統 18
3.3. 實驗分組 18
3.4. 珊瑚子株活存率 18
3.5. 珊瑚子株成長之判斷及秤重 19
3.6. 共生藻密度分析 19
3.6.1. 共生藻懸浮液製備、細胞觀察及細胞密度計算 19
3.7. 受緊迫後恢復能力試驗 19
3.7.1. 珊瑚子株受切割緊迫後恢復能力 19
3.7.2. 珊瑚受高水溫緊迫後共生藻密度恢復能力 20
3.7.2.1. 實驗物種來源、蓄養、分割及取樣 20
3.7.2.2. 受切割後珊瑚共生藻密度在不同溫度下的影響 20
3.7.2.3. 受高水溫緊迫後珊瑚共生藻密度在不同光譜下的影響 21
3.7.2.4. 受高水溫緊迫後珊瑚在不同光譜的活存率 21
3.8. 樣品萃取及分析 21
3.8.1. 樣品清洗及冷凍乾燥 21
3.8.2. 樣品萃取及減壓濃縮 21
3.9. 樣品所含化合物成分分析及比較 22
3.9.1. 樣品製備 22
3.9.2. 高解析氣相層析質譜儀分析 22
3.9.3. 成分以及百分比之分析鑑定 23
3.10. 統計分析 23
第4章 結果 24
4.1. 珊瑚子株活存率 24
4.1.1. 珊瑚子株 (成長組) 活存率 24
4.1.2. 珊瑚子株 (萃取組) 活存率 24
4.2. 珊瑚子株 (成長組) 之個體成長及重量 24
4.3. 珊瑚子株 (萃取組) 之共生藻密度 25
4.4. 受緊迫後恢復能力 25
4.4.1. 不同光譜培養受切割緊迫後珊瑚子株之組織生長 25
4.4.2. 珊瑚子株受高水溫緊迫對於共生藻密度之影響 25
4.4.3. 受高水溫緊迫珊瑚子株於不同光譜下共生藻恢復力 26
4.4.4. 不同光譜培養受高水溫緊迫後珊瑚子株之活存率 26
4.5. 樣品之萃取 35
4.5.1. 紫羽軟珊瑚之冷凍乾燥 35
4.5.2. 紫羽軟珊瑚凍乾物粗萃 35
4.6. 樣品所含化合物成分分析及比較 36
4.6.1. 白光組別之化合物成分分析 36
4.6.2. 藍光組別之化合物成分分析 37
4.6.3. 藍光及白光組別之化合物比較 38
第5章 討論 45
5.1. 珊瑚子株於不同光譜下的活存率、成長及重量 45
5.2. 珊瑚子株於不同光譜下的共生藻密度 47
5.3. 受緊迫後珊瑚子株於不同光譜下的恢復能力 49
5.3.1. 受切割緊迫珊瑚子株新生成共肉組織時間 50
5.3.2. 受高水溫緊迫珊瑚子株共生藻密度恢復趨勢 50
5.4. 不同光譜培養之下化合物分析之結果 52
5.4.1. 光譜對於化合物成分及含量的影響 53
5.4.2. 藍光對於二萜類Thunbergol的影響 54
5.4.3. 藍光對於固醇類Campesterol的影響 56
第6章 結論 58
第7章 參考文獻 59
附錄 74
附錄 1、白光組別之GC-MS檢測表 74
附錄 2、藍光組別之GC-MS檢測表 75
附錄 3、白光及藍光組別經文獻比對之化合物功能 76
作者簡介 77


圖目錄
圖 1、紫羽軟珊瑚 (Pachyclavularia violacea) (於墾丁萬里桐拍攝)。 3
圖 2、紫羽軟珊瑚 (Pachyclavularia violacea) 之共生藻圖 (900x拍攝)。 7
圖 3、藍光綠光及紅光燈具光譜圖 (水晶魚LED工作室提供)。 17
圖 4、白光燈具光譜圖 (水晶魚LED工作室提供)。 17
圖 5、紫羽軟珊瑚 (Pachyclavularia violacea) 珊瑚子株 (成長組) 於四種不同光譜下180天之個體成長比較 (mean ± SD,n = 3),於每個天數組別內對不同光譜之成長進行LSD分析,具有相同字母者表示無顯著差異 (p ≥ 0.05)。 28
圖 6、紫羽軟珊瑚 (Pachyclavularia violacea) 珊瑚子株 (成長組) 於四種不同光譜下180天之重量比較 (mean ± SD,n = 3),於每個天數組別內對不同光譜之重量進行LSD分析,具有相同字母者表示無顯著差異 (p ≥ 0.05)。 29
圖 7、紫羽軟珊瑚 (Pachyclavularia violacea) 珊瑚子株 (萃取組) 於四種不同光譜下180天之共生藻密度比較 (mean ± SD,n = 3),於每個天數組別內對不同光譜之共生藻密度進行LSD分析,具有相同字母者表示無顯著差異 (p ≥ 0.05)。 30
圖 8、紫羽軟珊瑚 (Pachyclavularia violacea) 珊瑚子株受切割緊迫後於四種不同光譜下,新生成共肉組織之時間差異 (mean ± SD,n = 3),不同光譜之新生成共肉組織之時間進行LSD分析,具有相同字母者表示無顯著差異 (p ≥ 0.05)。 31
圖 9、紫羽軟珊瑚 (Pachyclavularia violacea) 珊瑚子株受四種溫度 (26℃、28℃、30℃、32℃) 高溫緊迫後 (每個溫度梯度24個小時,共96小時)。共生藻密度變化 (mean ± SD,n = 3),不同溫度之共生藻密度進行LSD分析,具有相同字母者表示無顯著差異 (p ≥ 0.05)。 32
圖 10、紫羽軟珊瑚 (Pachyclavularia violacea) 珊瑚子株受32℃高水溫緊迫後於四種不同光譜下培養14天,共生藻密度恢復趨勢。 33
圖 11、紫羽軟珊瑚 (Pachyclavularia violacea) 珊瑚子株受32℃高水溫緊迫後於四種不同光譜下培養14天,珊瑚子株之活存率。 34
圖 12、白光飼養180天之紫羽軟珊瑚 (Pachyclavularia violacea) 之萃出物GC圖譜。 36
圖 13、藍光飼養180天之紫羽軟珊瑚 (Pachyclavularia violacea) 之萃出物GC圖譜。 37
圖 14、藍光及白光所檢測到揮發性烷類之含量比較。 40
圖 15、藍光及白光所檢測到揮發性棕櫚酸十六烷基脂之含量比較。 41
圖 16、藍光及白光所檢測到揮發性二萜類Nedcembrene之含量比較。 42
圖 17、藍光及白光所檢測到揮發性二萜類Thunbergol之含量比較。 43
圖 18、藍光及白光所檢測到揮發性固醇類Campesterol之含量比較。 44

表目錄

表 1、軟珊瑚二次代謝物功用之文獻回顧。 10
表 2、紫羽軟珊瑚 (Pachyclavularia violacea) 生長及萃取組別於各光譜 培養下180天之活存率。 27
表 3、藍光及白光所檢測到揮發性烷類之 RT (min)、Area (%)、SI值。 40
表 4、藍光及白光所檢測到揮發性棕櫚酸十六烷基脂之 RT (min)、Area (%)、SI值。 41
表 5、藍光及白光所檢測到揮發性二萜類Nedcembrene之 RT (min)、Area (%)、SI值。 42
表 6、藍光及白光所檢測到揮發性二萜類Thunbergol之 RT (min)、Area (%)、SI值。 43
表 7、藍光及白光所檢測到揮發性固醇類Campesterol之 RT (min)、Area (%)、SI值。 44
丁楓峻、謝恆毅、蔡萬生. 2011. 海水酸化的威脅與對策.水試專訊. 53: 53-55.
王立雪、陳泓愷. 2019. 中光層珊瑚研究-神秘待解的海洋熱帶雨林. 國立海洋生物館館訊. 98: 28-31.
王立雪、林沅真、李協和. 2012. 珊瑚和海葵恢復健康的重要關鍵-光照. 國立海洋生物館館訊. 61: 14-15.
朱育民、陳啟祥、蔣鎮宇、蕭義勇、方力行. 2010. 以核內之內轉錄區間序列探討珊瑚共生藻系群的遺傳變異與演化. 台灣生物多樣性研究13(1) : 17-28.
呂怡貞. 2012. 珊瑚與共生藻-動植物跨界關係解密. 科學人雜誌. http://sa.ylib.com/MagArticle.aspx?Unit=easylearn&id=2070.
何俊忠. 2003. 墾丁海域巨枝軸孔珊瑚 (Acropora grandis) 白化現象與水文條件之關係. 國立中山大學碩士學位論文.
何平合、陳昭倫、孟培傑、陳正平、邱郁文、林幸助、張揚祺. 2009. 墾丁國家公園海域長期生態研究計畫- 人為活動對海域生態所造成之衝擊研究(九) . 墾丁國家公園管理處委託研究報告,PG9802-0498.
宋柏青. 2015. Aiptasia-Symbiodinium 的共生關係中共生藻獲取鐵的途徑與高溫誘發共生藻缺鐵反應之探討. 國立中山大學海洋科學系博士論文.
宋秉鈞、蘇尹帝. 2017. 臺灣藥用珊瑚資源開發. 國立海洋生物館館訊. 88: 28-29.
邵廣昭. 2005. 海洋生物的多樣性及其保育. 中央研究院動物研究所.
周進、晉慧、蔡中華. 2014. 微生物在珊礁生態系統中的作用與功能.
應用生態學報. 25(3): 919-930.
段文宏. 2010. 珊瑚的秘密. 科學發展. 445: 24-29.
陳永軒、許志宏、宋秉鈞. 2012. 養殖型海洋生物的藥用資源. 科學發展. 479: 30-36.
高陽、楊薇、王佳江、侯長希、王海岩. 2008. 植物甾醇的生理功能及其應用. 農產食品科技. 2(1): 48-49.
彭紹恩、王立雪、黃慧茹、陳啟祥. 2010. 珊瑚與共生藻. 科學發展. 445: 6-11.
廖荻燁. 2013. 溫度與石珊瑚白化相關性之研究. 國立中山大學碩士學位 論文
蔡錡函. 2005. 人造光源對軟珊瑚 (Pachyclavularia violacea) 形態及生理的影響. 國立中山大學碩士學位論文.
蔡雅如、施彤煒. 2015. 東北角珊瑚礁的現況與復育策略. 科學發展. 516: 12-18.
樊同雲、方力行. 2010. 墾丁珊瑚礁的環境適應性. 科學發展. 455: 18-23.
樊同雲. 2018. 水產養殖珊瑚的興起. 科學發展. 551: 16-20.
蘇瑞欣、吳淑黎、張祐嘉. 2012. 珊瑚活性物質的開發. 科學發展. 479: 12-17.
戴昌鳳. 2017. 墾丁國家公園海洋生物多樣性及其保育. 台灣大學海洋研究所.


Albright, R., L. Caldeira, J. Hosfelt, L. Kwiatkowski, J. K. Maclaren, B. M. Mason, Y. Nebuchina, A. Ninokawa, J. Pongratz, K. L. Ricke, T. Rivlin, K. Schneider, S. Marine, K. Shamberger, J. Silverman, K. Wolfe, K. Zhu, K. Caldeira. 2016. Reversal of ocean acidification enhances net coral reef calcification. Nature. 531(7594): 362-365.
Angelo, C., A. Denzel, A. Vogt, M. V. Matz, F. Oswald, A. Salih, G. Ulrich Nienhaus, J. Wiedenman. 2008. Blue light regulation of host pig-ment in reef-building corals. Marine Ecology Progress Series. 364: 97-106.
Babcock, A. L., S. Minarro, W. K. Fitt, P. M. Medeiros. 2016. American Geophysical Union. Ocean Sciences Meeting. Abstract #PC54B-2250.
Balboa, E. M., E. Conde, A. Moure, F. E. Domínguez. 2013. In vitro anti-oxidant properties of crude extracts and compounds from brown algae. Food Chemistry. 138 (2-3): 1764-1785.
Beyer, H. L., E. V. Kennedy, M. Beger, C. A. Chen., J. E. Cinner, E. S. Darling, C. M. Ekin, R. D. Gates, S. F. Heron, N. Knowlton, D. Obura, S. Palumbi, H. Possingham, M. Uotinen, R. K. Runting, W. J. Krving, M. Spalding, K. A. Wilson, S. Wood, J. Veron, O. H. Guldberg. 2018. Risk-sensitive planning for conserving coral reefs under rapid climate change. Conservation Letters. e12587.
Bhattacharjee, R., A. Mitra, D. Baishakhi, P. Abhisek. 2014. Exploration of anti-diabetic potentials amongst marine species- a mini review. Indo Global Journal of Pharmaceutical Sciences. 4(2): 65-73.
Birrell, C. L., L. J. Mcook, B. L. Willis. 2005. Effects of algal turfs and sediment on coral settlement. Marine Pollution Bulletin. 51: 408-414.
Blockley, A., E. R. David, A. P. Roberts, S. Michael. 2017. Symbiotic mi-crobes from marine invertebrates: driving a new era of natural product drug discovery. Diversity. 9(4): 49-62.
Bohn, R., L. Fang, T. Jin, M. Jina. M. John, B. Lee. L. Dawn. 2011. NIST cloud computing reference architecture. National Institute of Standards and Technology. Special Publication 500-292.
Bowden, B., J. Coll, G. Konig. 1990. Studies of australian soft corals. XLVIII. new briaran diterpenoids from the gorgonian coral Junceela gem-macea. Journal of Chemistry. 43(1): 151.
Brown, B. E., 1997. Coral bleaching: causes and consequenc. Coral Reefs. 16: 129-138.
Bruckner, A. W. 2005. The importance on the marine ornamental reef fish trade in the wider Caribbean. Revista de Biologia Tropical 53(1): 127-138.
Chang, Y. C., J. H. Sheu, Y. C. Wu, P. J. Sung. 2017. Terpenoids from Oc-tocorals of the genus Pachyclavularia. Marine Drugs. 15(12): 382.
Chantable, B., C. K. Schelten, M. M. Nugues, H. Julie. 2016. Effects of protection and sediment stress on coral reefs in saint lucia. Plos One. 11(2): 1-16.
Cleary, D. F. R., A. R. M. Polónia, W. Renem, B. W. Hoeksema, P. G. R. Dolmen, R. G. Moolenbeek, A. Budiyanto, Y. Tuti, Giyanto, S. G. A. Draisma, W. F. P. Reine, R. Hariyanto, A. Gittenberger, M. S. Rikoh, N. J. Voogd. 2016. Variation in the composition of corals, fishes, sponges, echinoderms, ascidians, molluscs, foraminifera and macroalgae across a pronouncedin-to-offshore environmental gra-dient in the jakarta bay–thousand Islands coral reef complex. Ma-rine Pollution Bulletin. 110: 701-717.
Cohen, I., Z. Dubinsky, J. Erez. 2016. Light enhanced calcification in her-matypic corals: new insights from light spectral responses. Frontiers in Marine Science. 2: 1-12.
Coll, J. C., P. A. Leone, B. F. Bowden, A. R. Carroll, G. M. Konig, A. Heaton, P. N. Alderslade. 1995. Chemical aspects of mass spawning in corals. II. (-) -Epi-thunbergol, the sperm attractant in the eggs of the soft coral Lobophytum crassum (Cnidaria: Octocorallia). Marine Biology. 123(1): 137-143.
Cragg, G. M., Pezzuto, J. M. 2015. Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Medical Principles and Practice. 25(2): 41-59.
Dauben, W. G., G. H. Beasley, M. D. Broadhurst, B. Muller, D. J. Peppard, P. Pesnelle, C. Suter. 1975. Synthesis of cembrene, a four-teen-membered ring diterpene. Journal of the American Chemical Society. 97(17): 4973-4980.
David, J. S., W. Mark, L. William. 2017. Symbiotic dinoflagellate functional diversity mediates coral survival under ecological crisis. Trends in Ecology and Evolution. 32(10): 735-745.
Davy, S. K., D. Allemand, V. M. Weisc. 2012. Cell biology of cnidari-an-dinoflagellate symbiosis. Microbiology and Molecular Biology Reviews. 76(2): 229-261.
Delbeek, J. C. 2001. Coral farming: past, present and future trends. Aquarium Sciences and Conservation. 3: 171-181.
Depczynski, M., J. P. Gilmour, T. Ridgway, H. Barnes. 2012. Bleaching, coral mortality and subsequent survivorship on a west australian fringing reef. Coral Reefs. 32(1): 233-238.
Dobretsov, S., A. S. M. Wahaibi, D. L. Sabahi, J. M. Claereboudt, P. Proksch, B. Soussi. 2015. Inhibition of bacterial fouling by soft coral natural products. International Biodeterioration and Biodegradation. 98: 53-58.
Erin, K. E., H. Elora, J. A. Drew. 2016. Population connectivity measures of fishery-targeted coral reef species to inform marine reserve network design in Fiji. Scientific Reports. 6(10): 1-10.
Fenner, R. 2016. Stoloniferans: clove, star polyps, pipe organ corals. Ultra Marine Magazine. 56: 34-40.
Fleury, B. G., B. G. Lages, J. P. Barbosa, C. R. Kaiser, A. C. Pinto. 2008. New hemiketal steroid from the introduced soft coral Chromonephthea braziliensis is a chemical defense against preda-tory fishes. Journal of Cemical Eology. 34(8): 987-993.
Forsman, Z. H., B. Rinkevich, C. L. Hunter. 2006. Investigating fragment size for culturing reef-building corals in ex situ nurseries. Aqua-culture. 261(1): 89-97.
Fujiwara, S., K. Yasui, K. Watanabe, T. Wakabayashi. 2003. Molecular phylogenetic relationships between prostanoid-containing Okina-wan soft coral (Clavularia viridis) and nonprostanoid-containing Clavularia species based on ribosomal ITS sequence. Marine Bio-technology. 5(4): 401-407.
Gabay, V., C. Sanchez, C. Salvat, F. Chevy, M. Breton, G. Nourissat, F. Berenbaum. 2010. Stigmasterol: a phytosterol with potential
anti-osteoarthritic properties. Osteoarthritis and Cartilage. 18(1): 106-116.
Gorbunov, M. Y., P. G. Falkowski. 2002. Photoreceptors in the cnidarian hosts allow symbiotic corals to sense blue moonlight. Limnology and Oceanography. 47(1): 309-315.
Goreau, T. J. 1992. Bleaching and reef community change in Jamaica: 1951-1991. American Zoologist. 32(6): 683-695.
Grizzle, R. E., K. M. Ward, J. A. Burt. 2016. Current status of coral reefs in the United Arab Emirates: distribution, extent, and community structure with implications for managemen. Marine Pollution Bul-letin. 105: 515-523.
Grottoli, A. G., L. J. Rodrigues, E. P. James. 2006. Heterotrophic plasticity and resilience in bleached corals. Nature. 440: 1186-1189.
Hayter, A. J. 1986. The maximum familywise error rate of fisher’s least sig-nificant difference test. Journal of the American Statistical Associa-tion. 81(396): 1000-1004.
Heather, E. V., N. S. William. 2010. Cembrene diterpenoids: conformational studies and molecular docking to tubulin. Records of Natural Products. 4(2): 115-123.
Hedley, J. D., P. J. Mumby. 2002. Biological and remote sensing perspec-tives of pigmentation in coral reef organisms. Advances in Marine Biology. 43: 277-317.
Heike, K., B. Worm, M. Markus, M. Wahl. 2002. Effects of UV radiation and consumers on recruitment and succession of a marine macrobenthic community. Marine Ecology Progress Series. 243: 57-66.
Higuchi, T., H. Fujimura, T. Arakaki, T. Oomori. 2008. Activities of an-tioxidant enzymes (SOD and CAT) in the coral Galaxea fascicu-laris against increased hydrogen peroxide concentrations in seawater. Coral Reef Symposium. 19: 926-930.
Hughes, T. P., A. H. Baird, D. R. Bellwood, M. Card, S. R. Connolly, C. Folke, P. Marshall, M. Nystrom, S. R. Palumbi, J. M. Pandolfi, B. Rosen, J. Roughgarden. 2003. Climate change human impacts and the resilience of coral reefs. Science. 301: 929-933.
Hughes, T. P., K. D. Anderson, S. R. Connolly, S. F. Heron, J. T. Kerry, J. M. Lough, S. K. Wilson. 2018. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science. 359(6371): 80-83.
Ianora, A., M. Boersma, R. Casotti, A. Fontana, J. Harder, F. Hoffmann, G. Toth. 2006. New trends in marine chemical ecology. Estuaries and Coasts. 29(4): 531-551.
Iguchi, K., S. Kanet, K. Mori, Y. Yamada. 1987. A new marine epoxy pros-tanoid with an antiproliferative activity from the stolonifer Clavu-laria viridis quoy and gaimard. Chemical and Pharmaceutical Bulletin. 35(10): 4375-4376.
Jaap, W. C. 2000. Coral reef restoration. Ecological Engineering. 15: 345-364.
Karban, R., I. T. Baldwin. 1997. A phylogenetic reconstruction of constitu-tive and induced resistance in Gossypium. The American Naturalist. 149(6): 1139-1146.
Kemp, D. W., C. A. Oakley, D. J. Thornhill, L. A. Newcomb, G. W. Schmidt, W. K. Fitt. 2011. Catastrophic mortality on inshore coral reefs of the Florida Keys due to severe low-temperature stress. Global Change Biology. 17(11): 3468-3477.
Khalesi, M. K., H. H. Beeftink, R. H. Wijffels. 2008. Light-dependency of growth and secondary metabolite production in the captive zoo-xanthellate soft coral Sinularia flexibilis. Marine Biotechnology. 11(4): 488-494.
Kinzie, R. A., P. L. Jokiel, R. York. 1984. Effects of light of altered spectral composition on coral zooxanthellae associations and on zooxan-thellae in vitro. Marine Biology. 78(3): 239-248.
Leal, M., C. R. Calado, C. Sheridan, A. Alimonti, R. Osinga. 2013. Coral aquaculture to support drug discovery. Trends in Biotechnology. 31(10): 555-561.
Leal, M. C., C. Ferrier, D. Petersen, R. Osinga. 2016. Coral aquaculture: applying scientific knowledge to ex situ production. Reviews in Aquaculture. 8(2): 136-153.
Ledoux, J. B., A. Antunes. 2017. Beyond the beaten path: improving natural products bioprospecting using an eco-evolutionary framework - the case of the octocorals. Critical Reviews in Biotechnology. 38(2): 184-198.
Levas, S., A. G. Grottoli, V. Schoepf, M. Aschaffenburg, J. Baumann, J. E. Bauer, M. Warner. 2016. Can heterotrophic uptake of dissolved organic carbon and zooplankton mitigate carbon budget deficits in annually bleached corals. Coral Reefs. 35: 495-506.
Levy, O., L. Appelbaum, W. Leggat, Y. Gothlif, D. C. Hayward, D. J. Miller, H. O. Guldberg. 2007. Light-responsive cryptochromes from a simple multicellular animal, the Coral Acropora millepora. Science. 318(5849): 467-470.
Lindel, T., P. R. Jensen, W. Fenical, B. H. Long, A. M. Casazza, J. Carboni,
C. R. Fairchild. 1997. Eleutherobin, a new cytotoxin that mimics paclitaxel (Taxol) by stabilizing microtubules. Journal of the American Chemical Society. 119(37): 8744-8745.
Marican, H., R. Edros, M. Mohammad, S. Salleh. 2016. Antimicrobial ac-tivity of tropical soft corals found in the northern straits of Malacca. International Journal of Engineering Technology and Sciences. 6: 1.
Mittenberg, W., E. M. Canyock, D. Condit, C. Patton. 2001. Treatment of post-concussion syndrome following mild head injury. Journal of Clinical and Experimental Neuropsychology. 23(6): 829-836.
Muscatine, L., P. G. Falkowski, J. W. Porter, Z. Dubinsky. 1984. Fate of photosynthetic fixed carbon in light- and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Royal Society. 222(1227): 181-202.
Myers, M. R., J. T. Hardy, C. H. Mazel, P. Dustan. 1999. Optical spectra and pigmentation of Caribbean reef corals and macroalgae. Coral Reef. 18: 179-186.
O’Neill, M. E., K. L. Mathews. 2002. Levene tests of homogeneity of vari-ance for general block and treatment designs. Biometrics. 58(1): 216-224.
Osinga, R., M. Schutter, B. Griffioen, R. H. Wijffels, J. A. J. Verreth, S. Shafir, S. Lavorano. 2011. The biology and economics of coral growth. Marine Biotechnology. 13(4): 658-671.
Palmer, C. V., C. K. Modi, L. D. Mydlarz. 2009. Coral fluorescent proteins as antioxidants. Plos One. 4: 1-10.
Peng, B. R., M. C. Lu, M. E. Shazly, S. L. Wu, K. H. Lai, J. H. Su. 2017. Aquaculture soft coral Lobophytum crassum as a producer of anti-proliferative cembranoids. Marine Drugs. 16(1): 15.
Pomeroy, R. S., J. E. Parks, J. E. Balboa. 2006. Farming the reef: is aqua-culture a solution for reducing fishing pressure on coral reefs. Ma-rine Policy. 30(2): 111-130.
Pordesimo, E. O., F. J. Schmitz, L. S. Ciereszko, M. B. Hossain. 1991. New briarein diterpenes from the caribbean gorgonians erythropodium caribaeorum and Briareum sp. The Journal of Organic Chemistry, 56(7): 2344-2357.
Poza, J. J., R. Fernández, F. Reyes, J. Rodríguez, C. Jiménez. 2008. Isolation, biological significance, synthesis, and cytotoxic evaluation of new natural parathiosteroids A−C and analogues from the soft coral Paragorgia sp. The Journal of Organic Chemistry. 73(20): 7978-7984.
Rani, C., M. N. Nessa, A. Faizal, S. Werorilangi, A. Tahir, J. Jompa. 2018. Temporal dynamics of eutrophication level and sedimentation rate in coral reef area of spermonde and Sembilan islands, south sula-wesl. Environmental Science. 4(1): 12-19.
Rhyne, A., R. Rotjan, A. Bruckner, M. Tlusty. 2009. Crawling to collapse: ecologically unsound ornamental invertebrate fisheries. Plos One. 4(12): 1-8.
Rhyne, A. L., M. F. Tlusty, L. Kaufman. 2012. Long-term trends of coral imports into the United States indicate future opportunities for ecosystem and societal benefits. Conservation Letters. 5: 478-485.
Richier, S., R. Lanetty, C. E. Schnitzler, V. M. Weis. 2008. Response of the symbiotic cnidarian anthopleura elegantissima transcriptome to temperature and UV increase. Comparative Biochemistry and Physiology Genomics and Proteomics. 3(4): 283-289.
Rocha, J., L. Peixe, N. C. M. Gomes, R. Calado. 2011. Cnidarians as a source of new marine bioactive compounds – an overview of the last decade and future steps for bioprospecting. Marine Drugs. 9: 1860-1886.
Rocha, R. J. M., T. Pimentel, J. Serôdio, R. Calado. 2013. Comparative performance of light emitting plasma (LEP) and light emitting di-ode (LED) in ex situ aquaculture of Scleractinian corals. Aquacul-ture. 402: 38-45.
Schlacher, T. A., J. Stark, A. B. P. Fischer. 2007. Evaluation of artificial light regimes and substrate types for aquaria propagation of the staghorn coral Acropora solitaryensis. Aquaculture. 269: 278-289.
Schutter, M., B. V. Velthoven, M. Janse, R. Osinga, M. Janssen, R. Wijffels, J. Verreth. 2008. The effect of irradiance on long-term skeletal growth and net photosynthesis in Galaxea fascicularis under four light conditions. Journal of Experimental Marine Biology and Ecology. 367: 75-80.
Segura, R., C. Javierre, M. A. Lizarraga, E. Ros. 2007. Other relevant com-ponents of nuts: phytosterols, folate and minerals. British Journal of Nutrition. 96(2): 36-44.
Sica, D., D. Musumeci. 2004. Secosteroids of marine origin. Steroids. 69(11-12): 743-756.
Spalding, M. D., B. E. Brown. 2015. Warm-water coral reefs and climate change. Science. 350: 769-771.
Speers, A. E., E. Y. Besedin, J. E. Palardy, C. Moore. 2016. Impacts of cli-mate change and ocean acidification on coral reef fisheries: An in-tegrated ecological–economic model. Ecological Economics. 128: 33-43.
Spencer, A. 2000. Effect of towed demersal fishing gear on biogenic sedi-ments: A 5-year study. Impact! trawl fishing on benthic communi-ties. Proceedings. 19: 9-24.
Spencer, T., K. A. Teleki, C. B. Wand, M. D. Spalding. 2000. Coral bleach-ing in the southern seychelles during the 1997-1998 Indian ocean warm event. Marine Pllution Bulletin. 40: 569-586.
Stambler, N., Z. Dubinsky. 2004. Corals as light collectors: an integrating sphere approach. Coral Reefs. 24: 1-9.
Stat, M., E. Morris, R. D. Gates. 2008. Functional diversity in coral - dino-flagellate symbiosis. Proceedings of the National Academy of Sciences. 105: 9256-9261.
Stoline, M. R. 1981. The status of multiple comparisons: simultaneous esti-mation of all pairwise comparisons in one-way ANOVA designs. The American Statistician. 35(3): 134-141.
Storlazzi, C. D., E. K. Brown, M. E. Field, K. Rodgers, P. L. Jokiel. 2005. A model for wave control on coral breakage and species distribution in the Hawaiian islands. Coral Reefs. 24: 43-55.
Su, J. H., C. I. Liu, M. C. Lu, C. I. Chang, M. Y. Hsieh, Y. C. Lin, Y. S. Lin. 2019. New secondary metabolite with cytotoxicity from spawning soft coral Asterospicularia laurae in Taiwan. Natural Product Re-search. 1-9. doi: 10.1080/14786419.2019.1614579.
Sun, P., L. Y. Meng, H. Tang, B. S. Liu, L. Li, Y. Yi, W. Zhang. 2012. Sinularosides A and B, bioactive 9,11-secosteroidal glycosides from the South China Sea soft coral Sinularia humilis of wegen. Journal of Natural Products. 75(9): 1656-1659.
Susiloningtyas, D., T. Handayani, A. N. Amalia. 2018. The impact of coral reefs destruction and climate change in nusa dua and nusa penida, bali, Indonesia IOP Conference Series. Earth and Environmental Science. 145. doi:10.1088/1755-1315/145/1/012054.
Tanod, W. A., U. Yanuhar, P. M. Y. Maftuch, Y. Risjani. 2019. Screening of NO inhibitor release activity from soft coral extracts origin palu bay, central sulawesi, Indonesia. Anti-inflammatory and Anti-allergy Agents in Medicinal Chemistry. 18: 126-141.
Thierry, C., 2006. Sea surface temperature and salinity reconstruction from coral geochemical tracers. Palaeoecology. 232: 408-428.
Venn, A. A., J. E. Loram, A. E. Douglas. 2008. Photosynthetic symbioses in animals. Journal of Experimental Botany. 59(5): 1069-1080.
Villanueva, H. E., N. S. William. 2010. Cembrene diterpenoids: conforma-tional studies and molecular docking to tubulin. Records of Nature Products. 4(2): 115-123.
Wang, G.H., J. H. Sheu, C. Y. Duh, M. Y. Chiang. 2002. Pachyclavulari-aenones D-G, new diterpenoids from the soft coral Pachyclavularia violacea. Journal of Natural Products, 65(10): 1475-1478.
Wang, L. H., Y. H. Liu, Y. M. Ju, Y. Y. Hsiao, L. S. Fang, C. S. Chen. 2008. Cell cycle propagation is driven by light-dark stimulation in a cultured symbiotic dinoflagellate isolated from corals. Coral Reefs. 27: 823-835.
Weis, V. M. 2008. Cellular mechanisms of cnidarian bleaching: stress causes the collapse of symbiosis. Journal of Experimental Biology. 211: 3059-3066.
Wijgerde, T., P. Henkemans, R. Osinga. 2012. Effects of irradiance and light spectrumon growth of the scleractinian coral Galaxea fascicularis applicability of LEP and LED lighting to coral aquaculture. Aq-uaculture. 344: 188-193.
Wijgerde, T., A. Melis, C. Silva, M. Lea, L. Vogels, C. Mutter, R. Osinga. 2014. Red light represses the photophysiology of the scleractinian coral Stylophora pistillata. Plos One. 9: 3.
Wooldridge, S. A. 2013. Breakdown of the coral - algae symbiosis: towards formalising a linkage between warm-water bleaching thresholds and the growth rate of the intracellular zooxanthellae. Biogeosci-ences. 10: 1647-1658.
Woesik, V. R., C. J. Randall. 2017. Coral disease hotspots in the caribbean. Ecosphere. 8: 5.
Xu, J. H., Y. C. Chang, G. Q. Li, Z. H. Wen, Y. C. Wu, P. J. Sung. 2018. Briaviolides O and P, new briaranes from a cultured octocoral Bri-areum violaceum. Phytochemistry Letters. 27: 129-133.
Young, C. N., S. A. Schopmeyer, D. Lirman. 2012. A review of reef resto-ration and coral propagation using the threatened genus Acropora in the caribbean and western atlantic. Bulletin of Marine Science. 88: 1075-1098.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top