跳到主要內容

臺灣博碩士論文加值系統

(44.213.63.130) 您好!臺灣時間:2023/02/01 01:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉宇翔
研究生(外文):Liu, Yu-Xiang
論文名稱:接種根瘤菌與叢枝菌根菌搭配不同量稻殼生物炭及有機質肥料對土壤性質、紅豆生育及產量之影響
論文名稱(外文):Effects of Different Rates of Rice Husk Biochar and Organic Fertilizer Application on the Soil Properties and the Growth of Adzuki Bean Inoculated with Rhizobium and Arbuscular Mycorrhizal Fungi
指導教授:王鐘和
口試委員:鍾仁賜陳仁炫王均琍林永鴻
口試日期:2019-12-26
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:農園生產系所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:143
中文關鍵詞:土壤肥力土壤改良劑有益微生物土壤總體密度
外文關鍵詞:soil fertilitysoil amendmenteffective microorganismssoil bulk density
相關次數:
  • 被引用被引用:2
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:61
  • 收藏至我的研究室書目清單書目收藏:0
紅豆 (Vigna angularis) 為台灣南部秋冬季裡作的重要經濟作物,隨著氣候極端變化與生育期間飽受病蟲之危害,加上生產成本高且產量較不穩定,致使有機栽培紅豆面臨許多困難。有機資材經低氧高熱裂解碳化後所產生之物質,稱為「生物炭」。生物炭的功能為改善土壤理化性質,促使植株生長較佳與提高作物產量,多孔隙之特性不但能保水與保肥,亦能提供微生物棲息地。本試驗目的為藉由稻殼生物炭作為土壤改良劑,並搭配有機質肥料用量與接種根瘤菌與菌根菌探討對土壤性質、紅豆生育及產量之影響。試驗處理為接種根瘤菌與菌根菌搭配施用不同量稻殼生物炭 (0 % 、2 % 、4 % 與8 % (w/w)) 與不同量有機質肥料 (含氮為45 kg ha-1、90 kg ha-1與180 kg ha-1)。結果顯示隨著稻殼生物炭用量增加可顯著降低土壤總體密度,並改善土壤田間含水量,提高土壤pH值、EC值、有機質、Bray-1-P、交換性鉀、鈣與鎂含量,其中以土壤交換性鉀含量提升效果較明顯。施用有機質肥料用量為180 kg ha-1顯著提高土壤理化性質,而接種根瘤菌處理則顯著提高土壤總無機態氮含量;接種菌根菌處理增加土壤磷有效性之含量。於植株乾物重以稻殼生物炭用量4 % 處理顯著高於其他稻殼生物炭處理,反之施用8 % 稻殼生物炭用量處理僅提高約6 %。有機質肥料用量180 kg ha-1之處理亦顯著提高植株乾物重,接菌處理則無顯著差異。紅豆產量與產量構成因子結果亦顯示4 % 與8 % 稻殼生物炭處理用量顯著高於對照組,總產量分別提高75 % 與53 %,但有機質肥料用量與接菌間皆無顯著差異。綜合上述,增加稻殼生物炭、有機質肥料用量與接種根瘤菌與叢枝菌根菌之應用的確能改善土壤理化性質,並以4 % 之稻殼生物炭用量搭配有機質肥料用量180 kg ha-1與單一接種菌根菌為最佳處理。
Adzuki bean (Vigna angularis) is important cash crop produced by autumn and winter in southern Taiwan. With extreme changes in climate and plant diseases and pest control during growth, coupled with high production costs and unstable production, facing many problems in organic production of adzuki beans. Organic materials are produced by carbonization of low-oxygen and high-temperature pyrolysis, called "biochar". The function of biochar is to improve soil physical and chemical properties, promote better plant growth and increase crop yield. Porous characteristics not only retain water and fertilizer, but also provide microbial habitat. The purpose of this experiment was to use rice husk biochar as a soil amendment, combined with application rate from organic fertilizer and inoculation with rhizobium and mycorrhizal fungi on soil properties, adzuki bean plant growth and yield. The experiment treatments were to inoculate rhizobium and arbuscular mycorrhizal fungi with application rates of rice husk biochar (0 %, 2 %, 4%, and 8% (w / w)) and N application rates of organic fertilizer (45 kg ha-1, 90 kg ha-1 and 180 kg ha-1). The results showed that with the increase of rice husk biochar, it could significantly reduce the soil bulk density, improve the soil moisture content of field capacity, increase soil pH, EC, organic matter, Bray-1-P, exchangeable potassium, calcium and magnesium, the effect of increasing the exchangeable potassium content of soil was more obvious. The application of organic fertilizer at 180 kg ha-1 significantly improved soil physical and chemical properties, while inoculation with rhizobium significantly increased soil inorganic nitrogen content; inoculation with mycorrhizal bacteria increased soil phosphorus availability. The dry matter weight of adzuki bean plants with 4% rice husk biochar was significantly higher than that of other rice husk biochar treatments, whereas the use of 8 % rice husk biochar increased only about 6%. The N application of 180 kg ha-1 from organic fertilizer also significantly increased the dry weight of the plant, but there was no significant difference in the treatment of inoculation. The results of adzuki bean yield and yield components factors showed that 4% and 8% rice husk biochar treatments were significantly higher than that of the control treatment, and the total yield increased by 75% and 53% respectively, but there was no significant difference between the amount of organic fertilizer and inoculation treatments. In summary, the application of rice husk biochar, organic fertilizer and inoculation treatment with Rhizobium and arbuscular mycorrhizal fungi can improve the physical and chemical properties of the soil. The best treatment is to use 4% rice husk biochar with 180 kg ha-1 from organic fertilizer and inoculation with arbuscular mycorrhizal fungi.
摘要 II
Abstract III
謝誌 V
目錄 VI
圖目錄 IX
表目錄 X
壹、 前言 1
貳、 文獻回顧 3
一、 紅豆簡介 3
二、 有機栽培的起源與介紹 6
三、 生物炭簡介 9
四、 有機質肥料簡介 11
五、 營養元素對作物生長的影響 15
六、 微生物肥料之介紹 18
(一) 根瘤菌之介紹 19
(二) 菌根菌之介紹 20
參、 材料與方法 23
一、 供試土壤採集 23
二、 生物炭製備 23
三、 土壤培育試驗 23
四、 試驗設計 24
五、 樣本分析項目及方法 36
(一) 土壤分析 36
1. 土壤質地 36
2. 土壤總體密度 37
3. 土壤田間含水量 37
4. 酸鹼值 (pH 值) 37
5. 電導度 (EC值) 37
6. 土壤有機質 37
7. 土壤無機態氮 38
8. 土壤Bray-1 磷 38
9. 土壤交換性鉀、鈣和鎂 39
(二) 植體分析 39
1. 植體全磷、鉀、鈣、鎂之測定 39
(三) 有機質肥料分析 39
1. pH值 39
2. EC值 39
3. 水分含量 40
4. 有機質含量 40
5. 全氮、氮與氫含量 40
6. 全磷、鉀、鈣、鎂、鐵、錳、銅與鋅測定 40
六、 統計分析 41
肆、 結果與討論 42
一、 稻殼生物炭用量對培育試驗之土壤理化性質的影響 42
(一) 稻殼生物炭用量對培育試驗之土壤pH值的影響 42
(二) 稻殼生物炭用量對培育試驗之土壤EC值的影響 44
二、 接種根瘤菌與叢枝菌根菌搭配不同量稻殼生物炭及有機質肥料對土壤理化性質之影響 46
(一) 不同稻殼生物炭處理對土壤總體密度的影響 46
(二) 不同稻殼生物炭處理對土壤田間容水量的影響 48
(三) 不同處理對土壤pH值的影響 50
(四) 不同處理對土壤EC值的影響 57
(五) 不同處理對土壤有機質含量的影響 60
(六) 不同處理對土壤有效磷含量的影響 62
(七) 不同處理對土壤交換性鉀含量的影響 66
(八) 不同處理對土壤交換性鈣含量的影響 69
(九) 不同處理對土壤交換性鎂含量的影響 70
(十) 不同處理對土壤總無機態氮含量的影響 72
1. 無機態氮 72
2. 硝酸態氮 73
3. 銨態氮 74
三、 接種根瘤菌與叢枝菌根菌搭配不同量稻殼生物炭及有機質肥料對紅豆產量及產量構成因子之影響 78
四、 接種根瘤菌與叢枝菌根菌搭配不同量稻殼生物炭及有機質肥料對紅豆生育的影響 83
(一) 不同處理對紅豆生育性狀的影響 83
(二) 不同處理對植株乾物質的影響 88
(三) 不同處理對植株營養元素的影響 93
1. 不同處理對植株磷濃度的影響 93
2. 不同處理對植株鉀濃度的影響 96
3. 不同處理對植株鈣濃度的影響 101
4. 不同處理對植株鎂濃度的影響 101
伍、結論 110
陸、 參考文獻 111
作者簡介 143
中央氣象局。2010-2018。屏東地區三地門測候站之資料。
王均琍。1998。紅豆接種叢枝內生菌根菌對乾旱逆境之反應。中華農學會報 181:92-101。
王均琍,2006。微生物肥料菌根菌之應用與發展。生物科技產學論壇7: 15-20。
王均琍。2007。菌根菌應用於經濟果樹之栽培。生物性肥料與農藥2: 42-48。
王均琍,2018。互利共生拓商機,微生物肥料菌根菌適用作物廣泛 接菌苗成活率、次級代謝產物含量明顯提升,具持續研發潛力。豐年雜誌68 (8): 82-88。
王清玲、李平全、吳炎融。2002。薊馬天敵-小黑花椿象(Orius strigicollis)之繁殖與利用。台灣昆蟲特刊 3: 157-174。
王銀波。1998。長期施用禽畜堆肥之影響。第一屆畜牧廢棄資源再生利用堆廣研究成果研討會論文集。第144-151頁。
王鐘和。2000。堆肥施用策略。堆肥製造技術:農業試驗所特刊88: 191-209。
王鐘和。2005。水旱輪作田稻作有機栽培之土壤養分管理。水旱田輪作有機栽培技術研討與觀摩會。台東區農業改良場編印,第12-23頁。
王鐘和。2008。有機農田土壤肥力即時偵測技術研發與應用。有機作物栽培技術研討會專刊:農業試驗所特刊136: 39-46。
王鐘和。2017。各類作物有機栽培土壤肥培管理技術。國立屏東科技大學農業推管委員會印行。農業推廣手冊;51。
王鐘和。2018。有機農業的內涵與生產技術。臺中區農業改良場特刊 135: 107-123.
王鐘和、陳滄海、陳文華、張萃瑛。2013。苦瓜及小胡瓜有機栽培綜合管理。國立屏東科技大學農業推管委員會印行。農業推廣手冊;48。
王鐘和、艾慶平、丘麗蓉、林毓雯、鍾仁賜。2002。施用不同有機資材對玉米、水稻輪作物生產之影響。農業土壤生態品質及生產力研討會論文集。國立中興大學土壤環境科學系,第181-218頁。
台灣農業統計年報。2018。行政院農業委員會。
行政院標準檢驗局。2002。肥料檢驗技術及管理作業流程。
行政院農業委員會。2013。肥料種類品目及規格。
李士畦。2016。生物炭品質規格與碳匯清機制。臺南區農業改良場-生物炭的應用與產業發展研討會。第40-64頁。
吳東傑。2006。臺灣的有機農業。台北:遠足文化。
邱明賜,王均琍。2013。微生物肥料-菌根菌在茶苗的應用技術。農業專訊85: 11-13。
沈英士。2005。有機蔬菜栽培指南。文國書局。250頁。
吳品賢、王志弘。2007。反身性的道德計劃?有機食品之銷售組織場域與引導理念。臺灣社會研究季刊 68: 119-176。
李蒼郎。2000。有機質肥料之登記與推廣。中華永續農業協會、中華土壤肥料學會與行政院農業委員會農業試驗所編印。有機質肥料應用技術研討會專刊,第1-3頁。
李蘭帝。1996。大量植物樣本氮磷鉀之迅速測定法。農業研究15(2):1-5。
林俊義。1999。台灣永續農業發展概況。永續農業作物合理化施肥技術專集。中華永續農業協會編印。第1-36頁。
林家棻。1966。怎樣採集土壤樣本。台灣省農業試驗所編印。
林素禎、吳繼光。2005。微生物肥料在合理化施肥之應用。合理化施肥專刊:農業試驗所特刊121: 289-304。
周國隆。2005。糧食作物-紅豆。台灣農家要覽。財團法人豐年社,第 135-142頁。
林瑋倫、陳啟予,2015。叢枝菌根菌在森林中所扮演之角色。林業研究專訊22 (3): 7-10。
林傳琦。2002。我國有機農業之發展策略。作物有機栽培:農業試驗所特刊102: 7-15。
林毓雯、王鍾和。2002。不同有機資材之分解與氮素礦化。行政院農業委員會農業試驗所-作物有機栽培102: 105-115。
林鳳琪。2000。顏色誘捕。行政院農業委員會農業試驗所 作物蟲害非農藥防治資材142: 109-114。
洪阿田、許秋玫。1999。紅豆接種根瘤菌及菌根菌後施肥技術研究。高雄區農業改良場年報87: 72 。
柯勇、郭孟祥。1980。台灣紅豆病害研究初報。Ⅰ. 紅豆銹病(Uromyces azukicola) 及白粉病(Sphaerotheca fuliginea)。國立屏東科技大學 植保會報 3:1-9。
柯勇、黃金池、洪震國。1980。台灣紅豆病害研究初報。Ⅱ. 紅豆三種根腐病之發生。國立屏東科技大學 植保會報3: 11-19。
洪崑煌、王銀波。1987。有機農業。新興科技在台灣農業運用之可能性及其影響小組評估報告。農委會,台北。行政院農業委員會彙篇,第229-237頁。
陳仁炫。2005。有機質肥料品質及施肥技術。臺南區農業改良場技術專刊 132: 75-93。
陳仁炫,2017。化學、有機質、微生物肥料,怎麼選?-摸透肥料的個性,對症下料。豐年雜誌 67(11): 36-40。
陳仁炫、徐琳媛。2004。改良質材之表層施用對強酸性土壤剖面酸性及鈣有效性的影響。臺灣農業化學與食品科學 42(1): 52-60。
陳仁炫、鐘仁賜、黃裕銘、鄒裕民、陳鴻基、吳正宗。2008。土壤與肥料分析手冊 (一) 土壤化學性質分析。中華土壤肥料學會。
陳玉如。2006。紅豆機械化栽培之研究。高雄區農業改良場研究彙報 17(1): 1-8。
陳玉如。2013。特大粒鮮紅的「紅豆新品種-高雄10號」問世了。高雄區改良場專業專訓 83: 18-19。
陳玉如。2015。紅豆新品種高雄9號之育成。高雄區農業改良場研究彙報 26(1): 1-16。
陳玉如、周國隆、林登雄、張憲榮。2003。紅豆新品種高雄8號之育成。高雄區農業改良場年報 14(2): 10-28。
徐卉明。2002。有機質肥料不同施用量對溫室蔬菜生長與養分吸收的影響。國立胎灣大學農業化學研究所碩士論文,台北,台灣。
陳吉仲。2018。永續農業政策和作為。中華永續農業協會-永續農業提升農業生產力與品質之永續行為 39: 1-9。
陳明昭。2015。紅豆重要病蟲害種類與防治。高雄區農技報導124: 1-15。
郭華仁。2009。我國需要怎樣的有機法規。有機誌28: 90-92。
高德錚。1984。接種有效瘤菌對大豆及後作玉米產量與土壤肥力之影響。台中區農業改良場研究彙報 9: 57-67。
郭鴻裕。2016。國內外生物炭發展的過去、未來與現在。臺南區農業改良場生物炭的應用與產業發展研討會。第1-20頁。
徐錦泉、陳玉如。1992。紅豆不同品種對撒播栽培技術與密度之反應。高雄區農業改良場研究彙報 4(2): 19-25。
倪禮豐、鍾仁賜。2003。有機物對青梗白菜生長及其硝酸態氮濃度的影響。花蓮區農業改良場研究彙報 21: 57-65。
許正一、陳尊賢、蔡呈奇。1999。台灣農地土壤品質指標之選擇與土壤品質評估方法之架構。土壤與環境 2 (1): 77-78。
莊作權、李英明、陳鴻基。1998。不同有機質材在不同土壤水分與溫度條件下之碳與氮之礦化作用。土壤與環境1(2): 135- 152。
張明輝、簡宣裕、劉禎祺。2005。有機質肥料介紹。合理化施肥專刊:農業試驗所特刊121: 255-266。
張庚鵬 李艷琪。2003。植物營養生理障礙診斷鑑定。植物重要防疫檢疫病害診斷鑑定技術研習會專刊2: 1-9。
張珈錡、廖玉珠。2012。植物對硝酸態氮和銨態氮之吸收與利用。種苗科技專訊 76: 16-19。
張愛華。2000。本省現行土壤測定方法。作物需肥診斷技術。行政院農業委員會農業試驗所。第9-26頁
張耀聰,2007。毛豆接種根瘤菌及菌根菌之施肥技術研究。高雄區農業改良場年報95: 86-87。
黃伯恩。2002。合理化施肥之意義與重要性。作物合理化施肥研討會專刊: 1-4。
黃明得、賴榮茂。1989。紅豆硬粒種子之研究。Ⅱ. 落葉劑對硬粒種子產生之影響。高雄區農業改良場研究彙報 2(2): 14 -20。
曾俊偉、陳明杰。2016。淺談土壤孔隙與水資源涵養之關係。林業研究專訊 23 (6): 84-89。
黃國禎、江介倫、黃彥凱、邱宏彬、黃瀞瑩。2009。老埤台地不同植生下土壤孔隙特性之研究。農業工程學報 55 (2): 81-94。
游景昌。1994。高改型履帶式豆類聯合收穫機簡介。高雄區農技報導7: 1-4。
黃裕銘。2000。有機質肥料的特性與應用。興大農業69: 27-32。
黃裕銘。2002。有機農業之養分管理。作物有機栽培農民訓練-進階講習班,第55-73頁。
黃瑞彰、林晉卿、陳紹崇。2010。內生菌根菌在洋香瓜生產之應用研究。臺南區農業改良場研究彙報 55:44-52。
黃瑞彰、江汶錦、林經偉、卓家榮。2011。菌根菌的特性及田間應用技術。台南區農業專訓75: 14-19。
黃維廷、張愛華、王鐘和、江志峰、簡宣裕、張明暉。2002。有機質肥料於果樹栽培上之應用。作物有機栽培:農業試驗所特刊102: 117-130。
黃樹民。2013。臺灣有機農業的發展及其限制:一個技術轉變簡史。臺灣人類學刊 11 (1): 9-34.
楊秋忠,1994。固氮菌的應用與發展。微生物肥料之開發與利用研討會專刊5-14。
楊秋忠。2000。生物肥料之研發及利用。生物技術在永續農業之應用研討會專刊:農業試驗所特刊90: 105-117。
楊秋忠。2010。土壤與肥料。農業世界叢書。台中,台灣。
楊秋忠。2015。微生物肥料在作物生長的作用機制。臺中區農業改良場特刊121: 59-68。
鄭文吉、陳玉如、徐錦泉、林招蓮、林登雄。1996。紅豆撒播作業改進試驗。雜糧試驗研究年報 p.211-216。
蔡雲鵬。1965。台灣植物害蟲名彙。台灣省檢驗局出版。278 頁。
蔡精強。2009。台灣有機農業發展概況與前景。臺中區農業改良場特刊 96: 1-8。
鄭榮瑞、王仕賢。2016。玉米穗軸炭化與應用。臺南區農業改良場-生物炭的應用與產業發展研討會。第109-132頁。
趙震慶。1999。土壤微生物之類別與角色。農業世界雜誌191: 10-15。
蕭千祐。2010。吃對五穀不生病。臺北。宏欣文化。
鍾仁賜。2004。有機栽培之土壤與肥料管理。有機栽培管理訓練班。花蓮區農業改良場,花蓮,臺灣。第51-62頁。
鍾仁賜。2008。臺灣有機農業二十年—研究與實驗。土壤與環境11: 1-11。
鍾仁賜、王俊文、王鐘和、王銀波。2014。施肥對不同生長期玉米生長與植物體中氮組成之影響。中華土壤肥料學會土壤與環境1(3): 209-226。
謝順景。2010 臺灣一百多年來的有機農業發展之歷史回顧。台中農業改良場研究彙報 107: 1-12。
簡宣裕。1999。微生物資材的選擇。農業世界雜誌191: 16-21。
羅秋雄。2005。作物需肥手冊。行政院農業委員會農糧署。31頁。
羅秋雄、李宗翰。2010。設施蔬菜有機栽培長期施用有機質肥料對土壤性質及蔬菜生育影響。桃園區農業改良場研究彙報 67: 17-32。
譚增偉、劉禎祺、陳桂暖。2005。土壤肥力與合理化施肥。合理化施肥專刊:農業試驗所特刊121: 43- 62。
蘇博信。2015。農業廢棄物稻殼多元利用之可行性研究。行政院農業委員會高雄區農業改良場「因應氣候變遷及糧食安全之農業創新研究」。
蘇德銓。2004。番荔枝果園有機質肥料的合理化施肥。豐年半月刊53 (10): 37-39。
Abel, S., C.A. Ticconi, C.A. Delatorre. 2002. Phosphate sensing in higher plants. Physiol. Plant. 115: 1-8.
Acevedo, F.E., P. Smith, M. Peiffer, A. Helms, J. Tooker, and G.W. Felton. 2019. Phytohormones in fall armyworm saliva modulate defense responses in plants. J. Chem. Ecol. 45 (7): 598-609.
Akhter, A., K. Hage-Ahmed, G. Soja, and S. Steinkellner. 2015. Compost and biochar alter mycorrhization, tomato root exudation, and development of Fusarium oxysporum f. sp. lycopersici.Front. Plant Sci. 6: 529.
Al-Kaisi, M.M., X. Yin, and M.A. Licht. 2005. Soil carbon and nitrogen changes as influenced by tillage and cropping systems in some Iowa soils. Agric. Ecosyst. Environ. 105 (4): 635-647.
Asai, H., B.K. Samson, H.M. Stephan, K. Songyikhangsuthor, K. Homma, Y. Kiyono, Y. Inoue, T. Shiraiwa, and T. Horie. 2009. Biochar amendment techniques for upland rice production in Northern Laos 1. Soil physical properties, leaf SPAD and grain yield. Field Crop Res., 111: 81-84.
Avio, L., C. Sbrana, M. Giovannetti, and S. Frassinetti. 2017. Arbuscular mycorrhizal fungi affect total phenolics content and antioxidant activity in leaves of oak leaf lettuce varieties. Sci. Hortic. 224: 265-271.
Awad, Y.M., S.S. Lee, K.-H. Kim, Y.S. Ok, and Y. Kuzyakov. 2018. Carbon and nitrogen mineralization and enzyme activities in soil aggregate-size classes: effects of biochar, oyster shells, and polymers. Chemosphere, 198: 40-48.
Azcon, R. and F. El-Atrach. 1997. Influence of arbuscular mycorrhizae and phosphorus fertilization on growth, nodulation and N2 fixation (15N) in Medicago sativa at four salinity levels. Biol. Fertil. Soils 24: 81-86.
Bahadur, A., A. Batool, F. Nasir, S. Jiang, Q. Mingsen, Q. Zhang, and H. Feng. 2019. Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants. Int. J. Mol. Sci. 20: 41-99.
Baishya, K. 2015. Impact of agricultural chemicals application on soil quality degradation a review. Int. J. Sci. Technol. Manage. 4 (1): 220-228.
Bandyopadhyay, K.K., A.K. Misra, P.K. Ghosh, and K.M. Hati. 2010. Effect of integrated use of farmyard manure and chemical fertilizers on soil physical properties and productivity of soybean. Soil and Tillage Research 110: 115-125.
Baranski, M., D. Srednicka-Tober, N. Volakakis, C. Seal, R. Sanderson, G.B. Stewart, C. Benbrook, B. Biavati, E. Markellou, C. Giotis, J. Gromadzka-Ostrowska, E. Rembiałkowska, K. Skwarło-Sonta, R. Tahvonen, D. Janovska, U. Niggli, P. Nicot, and C. Leifert. 2014. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. Br. J. Nutr. 112 (5): 794-811.
Bauer, A. and A. L. Black. 1994. Quantification of the effects of soil organic matter content on soil productivity. Soil. Sci. Soc. Amer. J. 58:193.
Bengtsson, J., J. Ahnström, and A.C. Weibull. 2005. The effects of organic agriculture on biodiversity and abundance: a meta-analysis. J. Appl. Ecol. 42: 261-269.
Bitzer, C. C. and J. T. Sims. 1988. Estimating the availability of nitrogen in poultry manure through laboratory and field studies. J. Environ. Qual. 17: 47-54.
Bolan, N., A. Kunhikrishnan, R. Thangarajan, J. Kumpiene, J. Park, T. Makino, M.B. Kirkham, and K. Scheckel. 2014. Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize? J. Hazard. Mater. 266: 141-166.
Boussadia, O., K. Steppe, H. Zgallai, E.H.S. Ben, M. Braham, R. Lemeur, and L.M. Van. 2010. Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars ‘Meski’ and ‘Koroneiki’. Sci. Hortic. 123: 336-342.
Bray, R. H., and L. T. Kurtz. 1945. Determination of total, organic and available forms of phosphorus in soil. Soil Sci. 59: 39-45.
Cakmak, I., and A.M. Yazici. 2010. Magnesium: a forgotten element in crop production. Better Crops 94: 23-25.
Carafoli, E., and M. Crompton. 1978. The regulation of intracellular calcium. Curr. Top. Membr. Transp. 10: 151-216.
Carlson, A., and E. Jaenicke. 2016. Changes in retail organic price premiums from 2004 to 2010. United States Department of Agriculture, Economic Research Report Number 209.
Chanjuan, Li. and B. Zhang. 2018. Effect of exogenous calcium on growth, nutrients uptake and plasmamembrane H+-ATPase and Ca2+-ATPase activities in soybean (Glycine max) seedlings under simulated acid rain stress. Ecotox. Environ. Saf. 165: 261-269.
Chatrath, A., P.K. Mandal, and M. Anuradha. 2000. Effect of secondary salinization on photosynthesis in Fodder Oat (Avena sativa L.) genotypes. Agro. Crop Sci. 184: 13-16.
Chaudhary, M.I., J.J. Adu-Gyamfi, H. Saneoka, N.T. Nguyen, R. Suwa, S. Kanai, H.A. El-Shemy, D.A. Lightfoot, and K. Fujita. 2008. The effect of phosphorus deficiency on nutrient uptake, nitrogen fixation and photosynthetic rate in mashbean, mungbean and soybean. Acta Physiol. Plant 30: 537-544.
Chen, X., D. Zeng, Y. Xu, and X. Fan. 2018. Perceptions, risk attitude and organic fertilizer investment: evidence from rice and banana farmers in Guangxi, China. Sustainability 10: 3715.
Choudhary, M., S.C. Panday, V.S. Meena, S. Singh, R.P. Yadav, D. Mahanta, et al. 2018. Long-term effects of organic manure and inorganic fertilization on sustainability and chemical soil quality indicators of soybean-wheat cropping system in the Indian mid-Himalayas. Agr. Ecosyst. Enviro. 257: 38-46.
Cornwell, W. K., B. L. Bedford, and C. T. Chapin. 2011. Occurrence of arbuscular mycorrhizal fungi in a phosphorus-poor wetlamd and mycorrhizal response to phosphorus fertilization. Am. J. Bot. 88(10): 1824-1829.
Cowan, J.A. 2002. Structural and catalytic chemistry of magnesium-dependent enzymes. Biometals, 15: 225-235.
Cramer, G.R., A. Lauchli, and V.S. Polito. 1985. Displacement of Ca2+ by Na+ from plasmalemma of root cells. Plant Physiol. 79 : 207-211.
Crawford, N., and B. Forde. 2002. Molecular and developmental biology of inorganic nitrogen nutrition E. Meyerowitz, C. Somerville (Eds.), Arabidopsis Book, American Society of Plant Biologists, Rockville, MD.
Dardanelli, M. S., F. J. Fernandez de Cordoba, M. R. Espuny, M. A. Rodrıguez Carvajal, Marıa E. Soria Dıaz, A. M. Gil Serrano,Y. Okon, and M. Megias. 2008. Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol. Biochem. 40: 2713-2721.
Deng, Z.S., L.F. Zhao, Z.Y. Kong, W.Q. Yang, K. Lindstrom, E.T. Wang, and G.H. Wei. 2011. Diversity of endophytic bacteria within nodules of the Sphaerophysa salsula in different regions of Loess Plateau in China. FEMS Microbiol. Ecol. 76: 463-475.
Djanaguiraman, M., J. Annie Sheeba, D. Durga Devi, and U. Bangarusamy. 2009. Cotton leaf senescence can be delayed by nitrophenolate spray through enhanced antioxidant defence system. J. Agron. Crop Sci. 195: 213-224.
Dodd, J.C., C.C. Burton, R.G. Burms, and P.J. Jeffries. 1987. Phosphatase activity associated with the roots and the rhizosphere of plants infected with vesicular-arbuscular mycorrhizal fungi. New Phytol. 107: 163-172.
Dong, X., B.P. Singh, G. Li, Q. Lin, and X. Zhao. 2019. Biochar increased field soil inorganic carbon content five years after application. Soil Tillage Res. 186: 36-41.
Doran, J.W., and M.R. Zeiss. 2000. Soil health and sustainability: managing the biotic component of soil quality. Appl. Soil Ecol. 15: 3-11.
Egamberdiyeva, D., and G. Hoflich. 2004. Effect of plant growth-promoting bacteria on growth and nutrient uptake of cotton and pea in a semi-arid region of Uzbekistan. J. Arid Environ., 56: 293-301.
Egamberdieva, D., G. Berg, K. Lindstrom, and L. Rasanen. 2010. Co-inoculation of Pseudomonas spp. with Rhizobium improves growth and symbiotic performance of fodder galega (Galega orientalis Lam.). Eur. J. Soil Biol., 46 (3-4): 269-272.
Eigenberg, R.A., J.W. Doran, J.A. Nienaber, R.B. Ferguson, and B.L. Woodbury. 2002. Electrical conductivity monitoring of soil condition and available N with animal manure and a cover crop. Agr. Ecosyst. Environ. 88: 183-193.
Fang, Z., J.C. Bouwkamp, and T. Solomos. 1998. Chlorophyllase activities and chlorophyll degradation during leaf senescence in non-yellowing mutant and wild type of Phaseolus vulgaris L. J. Exp. Bot. 49: 503-510.
FAOSTAT. 2015. http://faostat3.fao.org/compare/E(accessed 7.24.15).
Farina, M. P. and W. P. Channon. 1988. Acid-subsoil amelioration. I. A comparison of several mechanical procedures. Soil Sci. Soc. Am. J. 52: 169-175 .
Feng, Y., Y. Xu, Y. Yu, Z. Xie, and X. Lin. 2012. Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biol. Biochem. 46: 80-88.
Fierer, N., and R.B. Jackson. 2006. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA, 103 : 626-631
Frank, G.A.V., A. Zhuravel, F.C. Silva, A. Amaro, M. Ben-Hur, and J.J. Keizer. 2019. The influence of biochar particle size and concentration on bulk density and maximum water holding capacity of sandy vs sandy loam soil in a column experiment. Geoderma 347: 194-202.
Frew, A., J.R. Powell, G. Glauser, A.E. Bennett, and S.N. Johnson. 2018. Mycorrhizal fungi enhance nutrient uptake but disarm defences in plant roots, promoting plant-parasitic nematode populations. Soil Biol. Biochem. 126: 123-132.
Gavili, E., A.A. Moosavi, and A.A.K. Haghighi. 2019. Does biochar mitigate the adverse effects of drought on the agronomic traits and yield components of soybean? Ind. Crops Prod. 128: 445-454.
Ghazali, M. F., Ketut Wikantika, Agung Budi Harto, and Akihiko Kondoh. 2019. Generating soil salinity, soil moisture, soil pH fromsatellite imagery and its analysis. Information Processing in Agriculture 22: 2214-3173.
Gee, G. W. and J. W. Bauder. 1986. Particle-size analysis. In A. Klute et al., (eds) Methods of Soil Analysis. Part I, 2nd edition Agronomy. 9:404-408. ASA, Madison, Wisconsin.
George, C., M. Wagner, M. Kücke, and M.C. Rillig. 2012. Divergent consequences of hydrochar in the plant-soil system: arbuscular mycorrhizae, nodulation, plant growth and soil aggregation effects. Appl. Soil Ecol. 59: 68-72.
Glab,T., J. Palmowska, T. Zaleski, and K. Gondek. 2016. Effect of biochar application on soil hydrological properties and physicalquality of sandy soil. Geoderma 281: 11-20.
Glab, T., A. Zabinski, U. Sadowska, K. Gondek, M. Kopec, M. Mierzwa–Hersztek, and S. Tabor. 2018. Effects of co-composted maize, sewage sludge, and biochar mixtures onhydrological and physical qualities of sandy soil. Geoderma 315:27-35.
Glaser, B., J. Lehmann, and W. Zech. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol. Fert. Soils 35: 219-230.
Godfray, H.C.J., J.R. Beddington, I.R. Crute, L. Haddad, D. Lawrence, J.F. Muir, J. Pretty, S. Robinson, S.M. Thomas, and C. Toulmin. 2010. Food security: the challenge of feeding 9 billion people. Science 327: 812-818.
Gomiero, T. 2018. Food quality assessment in organic vs. conventional agricultural produce:Findings and issues. Appl. Soil Ecol. 123: 714-728.
Gomiero, T., M.G. Paoletti, and D. Pimentel. 2008. Energy and environmental issues in organic and conventional agriculture. Crit. Rev. Plant Sci. 27: 239-254.
Gomiero, T., D. Pimentel, and M.G. Paoletti. 2011a. Environmental impact of different agricultural management practices: conventional vs. organic agriculture. Crit. Rev. Plant Sci. 30: 95-124.
Gomiero, T., D. Pimentel, and M.G. Paoletti. 2011b. Is there a need for a more sustainable agriculture? Crit. Rev. Plant Sci. 30: 6-23.
Good, A.G., A.K. Shrawat, and D.G. Muench. 2004. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci. 9: 597-605.
Gout, E., F. Rebeille, R. Douce, and R. Bligny. 2014. Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: unravelling the role of Mg2+ in cell respiration. Proc. Natl. Acad. Sci. U. S. A. 111: 4560-4567.
Greenberg, A.E., J.J. Conners, and D. Jenkins. 1982. Standard Methods for the Examination of Water and Wastewater. 15th de., Amer. Pub. Health Assoc., Washington D.C. p.543-558.
Hansen, V. H. Hauggaard-Nielsen, C.T. Petersen, T.N. Mikkelsen, and D. Muller-Stover. 2016. Effects of gasification biochar on plant-available water capacity and plant growth in two contrasting soil types. Soil Tillage Res. 161: 1-9.
Hashem, A., A.A. Alqarawi, R. Radhakrishnan, A.B.F. Al-Arjani, H.A. Aldehaish, D. Egamberdieva, and E.F. Abd-Allah. 2018. Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi J. Biol. Sci. 25: 1102-1114.
Hashem, A., A. Kumar, A. M. Al-Dbass, A. A. Alqarawi, A.F. Al-Arjani, G. Singh, M. Farooq, and E. F. Abd_Allah. 2019. Arbuscular mycorrhizal fungi and biochar improves drought tolerance inchickpea. Saudi J. Biol. Sci. 26:614-624.
Hati, K.M., K.G. Mandal, A.K. Misra, P.K. Ghosh, and K.K. Bandyopadhyay. 2006. Effect of inorganic fertilizer and farmyard manure on soil physical properties, root distribution, and water-use efficiency of soybean in Vertisols of central India. Bioresour Technol 97: 2182-2188.
Hauggaard-Nielsen, H., M. Gooding, P. Ambus, G. Corre-Hellou, Y. Crozat, C. Dahlmann, A. Dibet, P. von Fragstein, A. Pristeri, M. Monti, and E.S. Jensen. 2009. Pea-barley intercropping and short-term subsequent crop effects across European organic cropping conditions. Nutr. Cycl. Agroeco. 85: 141-155.
He, X.H., C. Critchley, and C. Bledsoe. 2003. Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit. Rev. Plant Sci. 22: 531-567.
He, L., C. Li, and R. Liu. 2017. Indirect interactions between arbuscular mycorrhizal fungi and Spodoptera exigua alter photosynthesis and plant endogenous hormones. Mycorrhiza 27: 525-535.
He, L., X. Lu, J. Tian, Y. Yang, B. Li, J. Li, and S. Guo. 2012. Proteomic analysis of the effects of exogenous calcium on hypoxic-responsive proteins in cucumber roots. Proteome Sci. 10: 42.
Helyar, R., and W.M. Porter. 1989. “Soil acidification, its measurement and processes involved.”, In Robson, A.D. (ed.). Soil acidity and plant growth. Academic Press Australia, Sydney, AUS, p. 61-100.
Herridge, D., M. Peoples, and R. Boddey. 2008. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311: 1-18.
Hinsinger, P., C. Plassard, C. Tang, and B. Jaillard. 2003. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints-a review. Plant Soil 248: 43-59.
Hole, D.G., A.J. Perkins, J.D. Wilson, I.H. Alexander, P.V. Grice, and A.D. Evans. 2005. Does organic farming benefit biodiversity? Biol. Conserv. 122 (1): 113-130.
Houlton, B.Z., Y.P. Wang, P.M. Vitousek, and C.B. Field. 2008. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454: 327-330.
Hungria, M. and M.A.T. Vargas. 2000. Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Res. 65: 151-164.
Hu, J.L., F.Y. Wu, S.C. Wu, C.L. Lam, X.G. Lin, and M.H. Wong. 2014. Biochar and Glomus caledonium influence Cd accumulation of upland kangkong (Ipomoea aquatica Forsk.) intercropped with Alfred stonecrop (Sedum alfredii Hance). Sci. Rep. 4: 7.
Hu, H., and Y. Yang. 2015. Research on farmers' chemical fertilizers use based on resources substitution. J. Agro Tech. Econ. 3: 84-91.
IFOAM (International Foundation for Organic Agriculture), 2016. The World of OrganicAgriculture 2016. Research Institute of Organic Agriculture (FiBL) and IFOAM−Organics International (Available online:).
IFOAM (International Movement of Organic Agriculture Movements). 2017. Principles of Organic Agriculture. (Available online:).
Jensen, E.S., M.B. Peoples, and H. Hauggaard-Nielsen. 2010. Faba bean in cropping systems. Field Crop Res. 115: 203-216.
Jin, H. 2010. Characterization of microbial life colonizing biochar and biochar-amended soils. PhD Dissertation, Cornell University, Ithaca, NY.
Jia, H., H. Ren, M. Gu, J. Zhao, S. Sun, X. Zhang, J. Chen, P. Wu, and G. Xu. 2011. The phosphate transporter gene OsPht1 is involved in phosphate homeostasis in rice. Plant Physiol. 156: 1164-1175.
Jiang, Y., and B. Huang. 2001. Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool‐season grasses. J. Exp. Bot. 52: 341-349.
Jones, J.B. 2002.Soil pH, liming, and liming materials. Agronomic handbook management of crops, soils and their fertility (1st ed.), CRC Press, Washington DC p. 237-251.
Joseph, S. D., M. Camps-Arbestain, Y. Lin, P. Munroe, C. H. Chia, J. Hook, L. van Zwieten, S. Kimber, A. Cowie, B.P. Singh, J. Lehmann, N. Foidl, R. J. Smernik, and J. E. Amonette. 2011. An investigation into the reactions of biochar in soil. Aust. J. Soil Res. 48(7): 501-515.
Kaschuk, G., T.W. Kuyper, P.A. Leffelaar, M. Hungria, and K.E. Giller. 2009. Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrizal symbioses? Soil Biol. Biochem. 41: 1233-1244.
Karley, A.J., P.J. White. 2009. Moving cationic minerals to edible tissues: potassium magnesium, calcium. Curr. Opin. Plant Biol. 12: 291-298.
Khadem, A., and F. Raiesi. 2019. Response of soil alkaline phosphatase to biochar amendments: Changes in kinetic and thermodynamic characteristics. Geoderma 337: 44-54.
Knudsen, O., G. A. Peterson, and P. F. Pratt. 1982. Lithium, sodium and potassium. In A. L. Page et al. (ed.) Method of soil analysis. Part II, 2nd edition. Agronomy. P.225-246.
Kukavica, B., and S.V. Jovanovic. 2004. Senescence-related changes in the antioxidant status of ginkgo and birch leaves during autumn yellowing. Physiol. Plant 122: 321-327.
Kuppusamy, S. P. Thavamani, M. Megharaj, K. Venkateswarlu, and R. Naidu. 2016. Agronomic and remedial benefits and risks of applying biochar to soil: current knowledge and future research directions. Environ. Int. 87: 1-12.
Lairon, D. 2009. Nutritional quality and safety of organic food. A review. Agron. Sustain. Dev. 30(1): 33-41.
Lal, R. 2008. Carbon Sequestration. Phil. Trans. B Biol. Sci. 363 (1492): 815-830.
Lal. R. 2015. Sequestering carbon and increasing productivity by conservation agriculture. J. Soil Water Conserv. 70: 55-62.
Lampkin, N., C. Foster, S. Padel, and P. Midmore. 1999. The Policy and Regulatory Environment for Organic Farming in Europe. Organic Farming in Europe: Economics and Policy 1. Universitat Hohenheim, Stuttgart.
Lambers, H., M.W. Shane, M.D. Cramer, S.J. Pearse, and E.J. Veneklaas. 2006. Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann. Bot. 98: 693-713.
Langmeier, M., E. Frossard, M. Kreuzer, P. Mäder, D. Dubois, and A. Oberson. 2002. Nitrogen fertilizer value of cattle manure applied on soils originating from organic and conventional farming systems. Agronomie 22: 789-800.
Lauber, C.L., M. Hamady, R. Knight, and N. Fierer. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community composition at the continental scale. Appl. Environ. Microbiol. 75 : 5111-5120.
Lee, Y. and S. Lian. 2004. Contents and variations of the major constituents in the organic manures in Taiwan. J. Agir. Res. China 46:181-189.
Lehmann, J. 2007. Bio-energy in the black. Front. Ecol. Environ. 5 (7): 381-387.
Lehmann, J., and S. Joseph. 2009. ‘Biochar for environmental management. Science and technology.’ (Earthscan: London).
Lehmann, J., M.C. Rillig, J. Thies, C.A. Masiello, W.C. Hockaday, and D. Crowley. 2011. Biochar effects on soil biota–a review. Soil Biol. Biochem. 43: 1812-1836.
Leifeld, J., and L. Menichetti. 2018. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun., 9: 1-7.
Li, L., D. Tilman, H. Lambers, and F.S. Zhang. 2014. Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytol. 203: 63-69.
Li, L., M.L. McCormack, F. Chen, H. Wang, Z. Ma, and D. Guo. 2019. Different responses of absorptive roots and arbuscular mycorrhizal fungi to fertilization provide diverse nutrient acquisition strategies in Chinese fir. For. Ecol. Manage. 433 (15): 64-72.
Li, B., Y. Wang, Z. Zhang, B. Wang, A.E. Eneji, L. Duan, Z. Li, and X. Tian. 2012. Cotton shoot plays a major role in mediating senescence induced by potassium deficiency. J. Plant Physiol. 169: 327-335.
Li, L.J., and X. Z. Han. 2016. Changes of soil properties and carbon fractions after long-term application of organic amendments in Mollisols. Catena 143: 140-144.
Liang, B., J. Lehmann, S.P. Sohi, J.E. Thies, B. O’Neill, L. Trujillo, J. Gaunt, D. Solomon, J. Grossman, E.G. Neves, and F.J. Luizao. 2010. Black carbon affects the cycling of non-black carbon in soil. Org. Geochem 41 (2): 206-213.
Limpens, E., and R. Geurts. 2018. Transcriptional regulation of nutrient exchange in arbuscular mycorrhizal symbiosis. Mol. Plant 11: 1421-1423.
Liu, Li., Y. Wang, X. Yan, J. Li, N. Jiao, and S. Hu. 2017. Biochar amendments increase the yield advantage of legume-based intercropping systems over monoculture. Agr. Ecosystems and Environ. 237: 16-23.
Long, S.R. 1989. Rhizobium-legume nodulation: life together in the underground. Cell. 56:203-214.
Lynch, D.H., R. Macrae, and R.C. Martin. 2011. The carbon and global warming potential impacts of organic farming: does it have a significant role in an energy constrained world? Sustainability 3: 322-362.
Lynggaard, K. 2006. The Common Agricultural Policy and Organic Farming: An Institutional Perspective on Continuity and Change. CABI, Wallingford.
Madari, B.E., M.A.S. Silva, M.T.M. Carvalho, A.H.N. Maia, F.A. Petter, J.L.S. Santos, S.M. Tsai, W.G.O. Leal, and W.M. Zeviani. 2017. Properties of a sandy clay loam Haplic Ferralsol and soybean grain yield in a five-year field trial as affected by biochar amendment. Geoderma 305: 100-112.
Mader, P., A. Fliessbach, D. Dubois, L. Gunst, P. Fried, and U. Niggli. 2002. Soil fertility and biodiversity in organic farming. Science 296: 1694-1697.
Mafongoya, P. L., P. Barak, and J. D. Reed. 2000. Carbon, nitrogen and phosphorus mineralization of tree leaves and manure. Biol. Fertill. Soils. 30:298-305.
Mandal, K.G., K.M. Hati, and A.K. Misra. 2009. Biomass yield and energy analysis of soybean production in relation to fertilizer-NPK and organic manure. Biomass. Bioenerg. 33: 1670-1679.
Mao, J., K. Zhang, and B. Chen. 2019. Linking hydrophobicity of biochar to the water repellency and water holding capacity of biochar-amended soil. Enviro. Pollut. 253: 779-789.
Marschner, H. 1995. Mineral nutrition of higher plants. Academic, San Diego.
Marschner. H. 2012. Marschner’s Mineral Nutrition of Higher Plants. Academic Press, New York.
Marschner, B., and A. D. Nobel. 2000. Chemical and biological processes leading to the neutralisation of acidity in soil incubated with litter materials. Soil Biol. Biochem. 32: 805-813.
Martin, J. P. and D. D. Focht. 1977. Biological properties of soil. In Soils for management of organic. wastes. ed. by Elliott, L.F. et al. Madison, Wisconsin. USA. p.114-169.
Marynard, D.N., A.V. Barker, D.L. Minotti, and N.H. Peck. 1976. Nitrate accumulation in vegetables. Adv. Agron. 28: 71-118.
Masulili, A., W.H. Utomo, and M. Syechfani. 2010. Rice husk biochar for rice based cropping system in acid soil 1. The characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in West Kalimantan, Indonesia. J. Agr. Sci. 2 (1): 39.
McLean, E. Q. 1982. Soil pH and lime requirement. In A.L. Page et al. (ed.) Method of soil analysis. Part 2. 2nd ed. ASA and SSSA Madison, W1. p. 119-224.
Meng, J., W. Zhang, S. Wang, Z. Xu, and W. Chen. 2011. Development and prospect of carbonization and returning technology of agro-forestry residue. J.Shenyang Agr. Univ. 42: 387-392.
Mete, F. Z., S. Mia, F.A. Dijkstra, Md. Abuyusuf, and A. S. M. Iqbal Hossain. 2015. Synergistic effects of biochar and NPK fertilizer on soybean yield in an alkaline soil. Pedosphere 25: 713-719.
Mia, S., J.W. van Groenigen, T.F.J. van de Voorde, N.J. Oram, T.M. Bezemer, L. Mommer, and S. Jeffery. 2014. Biochar application rate affects biological nitrogen fixation in red clover conditional on potassium availability. Agr. Ecosyst. Environ. 191: 83-91.
Mie, A., E. Kesse-Guyot, J. Kahl, E. Rembiałkowska, H. Raun Andersen, P. Grandjean, and S. Gunnarsson. 2016. Brussels. Human Health Implications of Organic Food and Organic Agriculture. European Parliament Research Service (EPRS), Belgium.
Mo, Y., Y. Wang, R. Yang, J. Zheng, C. Liu, H. Li, and X. Zhang. 2016. Regulation of plant growth, photosynthesis, antioxidation and osmosis by an arbuscular mycorrhizal fungus in watermelon seedlings under well-watered and drought conditions. Front. Plant Sci. 7: 644.
Mohammad, R.M., M. Akhavan-Kharazian, W.F. Campbell, and M.D. Rumbaugh. 1991. Identification of salt and drought-tolerant Rhizobium meliloti L. strains. Plant Soil 134: 271-276.
Mohanty, P., S. Nanda, K.K. Pant, S. Naik, J.A. Kozinski, and A.K. Dalai. 2013. Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: effects of heating rate. J. Anal. Appl. Pyrol. 104: 485-493.
Mukherjee, A., and R. Lal. 2013. Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy 3 (2): 313-339.
Murrell, E.G., S. Ray, M.E. Lemmon, D.S. Luthe, and J.P. Kaye. 2019. Cover crop species affect mycorrhizae-mediated nutrient uptake and pest resistance in maize. Renew. Agr. Food Syst. p. 1-8.
Navabpour, S., K. Morris, R. Allen, E. Harrison, A. Soheila, and V. Buchanan-Wollaston. 2003. Expression of senescence- enhanced genes in response to oxidative stress. J. Exp. Bot. 54: 2285-2292.
Nayyar, H., T. Bainsb, and S. Kumara. 2005. Low temperature induced floral abortion in chickpea: relationship to abscisic acid and cryoprotectants in reproductive organs. Environ. Exp. Bot. 53: 39-47.
Nian, H., S.J. Ahn, Z.M. Yang, and H. Matsumoto. 2003. Effect of phosphorus deficiency on aluminium-induced citrate exudation in soybean (Glycine max). Physiol. Plant 117: 229-236.
Niu, Y.F., R.S. Chai, G.L. Jin, H. Wang, C.X. Tang, and Y.S. Zhang. 2013. Responses of root architecture development to low phosphorus availability: a review. Ann. Bot. 112: 391-408.
Ohsowski, B.M., K. Dunfield, J.N. Klironomos, and M.M. Hart. 2018. Plant response to biochar, compost, and mycorrhizal fungal amendments in post-mine sandpits. Restor. Ecol. 26: 63-72.
Oguntunde, P.G., M. Fosu, Ajayi E. Ayodele, and N.V.D. Giesen. 2004. Effects of charcoal production on maize yield, chemical properties and texture of soil. Biol. Fert. Soils 39: 295-299.
Ogawa, M., and Y. Okimori. 2010. Pioneering works in biochar research, Japan. Soil Res. 48: 489-500.
Oldroyd, G.E., and R. Dixon. 2014. Biotechnological solutions to the nitrogen problem. Curr. Opin. Biotechnol. 26: 19-24.
Oliveira, F. R. A. K. Patel, D. P. Jaisi, S.l Adhikari, H. Lu, and S. K. Khanal. 2017. Environmental application of biochar: Current status and perspectives. Bioresour. Technol. 246: 110-122.
Omondi, E.C., M. Ridenour, C. Ridenour, and R. Smith. 2010. The effect of intercropping annual ryegrass with pinto beans in mitigating iron deficiency in calcareous soils. J. Sustain. Agric. 34: 244-257.
Ortas, Ibrahim. 2016. The role of mycorrhizae and biochar in plant growth and soil quality. Bruckman (Ed.), Biochar Application as a Soil Amendment, Cambridge University Press, p. 336-350.
Paillet, Y., N. Cassagne, and J.J. Brun. 2010. Monitoring forest soil properties with electrical resistivity. Biol. Fertil. Soils 46: 451-460.
Panday, S.C., M. Choudhary, S. Singh, V.S. Meena, D. Mahanta, R.P. Yadav, et al. 2018. Increasing farmer’s income and water use efficiency as affected by long-term fertilization under a rainfed and supplementary irrigation in a soybean-wheat cropping system of Indian mid-Himalaya. Field Crops Res. 219: 214-221.
Pandit, N.R., J. Mulder, S.E. Hale, A.R. Zimmerman, B.H. Pandit, and G. Cornelissen. 2018. Multi-year double cropping biochar field trials in Nepal: Finding the optimal biochar dose through agronomic trials and cost-benefit analysis. Sci. Total Environ. 637:1333-1341.
Pang, J., J. Yang, H. Lambers, M. Tibbett, K.H. Siddique, and M.H. Ryan. 2015. Physiological and morphological adaptations of herbaceous perennial legumes allow differential access to sources of varyingly soluble phosphate. Physiol. Plant. 154: 511-525.
Peng, M., C. Hannam, H. Gu, Y. M. Bi, and S.J. Rothstein. 2007. A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation. Plant J. 50: 320-337.
Pettigrew, W.T. 1999. Potassium deficiency increases specific leaf weights and leaf glucose levels in field-grown cotton. Agron. J. 91: 962-968.
Pettigrew, W. 2003. Relationships between insufficient potassium and crop maturity in cotton. Agron. J. 95: 1323-1329.
Pettigrew, W., and W. Meredith. 2008. Dry matter production, nutrient uptake, and growth of cotton as affected by potassium fertilization. J. Plant Nutr. 20: 531-548.
Ponti, T.D., B. Rijk, and M.K. van Ittersum. 2012. The crop yield gap between organic and conventional agriculture. Agric. Syst. 108: 1-9.
Ponisio, L.C., L.K. M’Gonigle, K.C. Mace, J. Palomino, P. de Valpine, and C. Kremen. 2015. Diversification practices reduce organic to conventional yield gap. Proc. Royal Soc. B 282 (1799): 20141396.
Post, J., T. Conradt, F. Suckow, V. Krysanova, F. Wechsung, and F.F. Hattermann. 2008. Integrated assessment of cropland soil carbon sensitivity to recent and future climate in the Elbe River basin. Hydrol. Sci. J. 53 (5): 1043-1058.
Pranagal, J., P. Oleszczuk, D.T. Krojanska, P. Kraska, and K. Rozylo. 2017. Effect of biochar application on the physical properties of Haplic Podzol. Soil Tillage Res. 174: 92-103.
Qiu, H.G., H. Luan, J. Li, and Y.J. Wang. 2014. The influence of risk aversion on farmers' excessive application of fertilizer. Chinese. Rural. Econ. 3: 85-96.
Radcliffe, D. E., R. L. Clark and M. E. Sumner. 1986. Effect of gypsum and deep-rooting perennials on subsoil mechanical impedance. Soil Sci. Soc. Am. J. 50: 1566- 1569.
Reddy, K.R., H.F. Hodges, and J.J. Varco. 2000. Potassium Nutrition of Cotton. Agricultural and Forestry Experiment Station (AFES) 1094: 1-10.
Reeves, D. W. 1997. The role or soil organic matter in maintaining soil quality in continuous cropping systems. Soil Till. Res. 43:131-167.
Reganold, J.P., and J.M. Wachter. 2016. Organic agriculture in the twenty-first century. Nat. Plants 1: 1-8.
Remans, T., P. Nacry, M. Pervent, T. Girin, P. Tillard, M. Lepetit, and A. Gojon. 2006. A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiol. 140: 909-921.
Ren, W.Z., L.L. Hu, J. Zhang, C.P. Sun, J.J. Tang, Y.G. Yuan, X. Chen. 2014. Can positive interactions between cultivated species help to sustain modern agriculture? Front. Ecol. Environ. 12: 507-514.
Ribeiro, R.A., E. Ormeno-Orrillo, R.F. Dall'Agnol, P.H. Graham, E. Martinez-Romero, and M. Hungria. 2013. Novel Rhizobium lineages isolated from root nodules of the common bean (Phaseolus vulgaris L.) in Andean and Mesoamerican areas. Res. Microbiol. 164: 740-748.
Rigby, D., and D. Caceres. 2001. Organic farming and the sustainability of agricultural systems. Agric. Syst. 68 (1): 21-40.
Rillig, M.C., M. Wagner, M. Salem, P.M. Antunes, C. George, H.G. Ramke, M.M. Titirici, and M. Antonietti. 2010. Material derived from hydrothermal carbonization: effects on plant growth and arbuscular mycorrhiza. Appl. Soil Ecol. 45: 238-242.
Rissler, H.M., E. Collakova, D. DellaPenna, J. Whelan, and B.J. Pogson. 2002. Chlorophyll biosynthesis. Expression of a second chl I gene of magnesium chelatase in Arabidopsis supports only limited chlorophyll synthesis. Plant Physiol. 128: 770-779.
Romheld, V., and E.A. Kirkby. 2010. Research on potassium in agriculture: needs and prospects. Plant Soil 335: 155-180.
Rockstrom, J., J. Williams, G. Daily, A. Noble, N. Matthews, L. Gordon,H. Wetterstrand, F. DeClerck, M. Shah, P. Steduto, C. de Fraiture, N. Hatibu,O. Unver, J. Bird, L. Sibanda, J. Smith. 2017. Sustainable intensification of agriculture forhuman prosperity and global sustainability, Ambio 46: 4-17.
Rosenzweig, C., J. Elliott, D. Deryng, A.C. Ruane, C. Müller, A. Arneth, K.J. Boote,C. Folberth, M. Glotter, N. Khabarov, K. Neumann, F. Piontek, T.A.M. Pugh,E. Schmid, E. Stehfest, H. Yang, and J.W. Jones. 2014. Assessing agricultural risks of climatechange in the 21st century in a global gridded crop model intercomparison, Proc.Natl. Acad. Sci. 111: 3268-3273.
Rukshana, F., C. R. Butterly, J. A. Baldock, J. M. Xu, and C. Tang. 2012. Model organic compounds differ in priming effects on alkalinity release in soils through carbon and nitrogen mineralization. Soil Biol. Biochem. 51: 35-43.
Saharan, B.S., and V. Nehra. 2011. Plant growth promoting rhizobacteria: a critical review. Life Sci. Med. Res. 21 (1): 1-30.
Samouelian, A., I. Cousin, A. Tabbagh, A. Bruand, G. Richard, and A. Samoue. 2005. Electrical resistivity survey in soil science: a review. Soil Tillage Res. 83: 173-193.
Sandhu, S.S., D.A.N. Ussiri, S. Kumar, R. Chintala, S.K. Papiernik, D. D. Malo, and T.E. Schumacher. 2017. Analyzing the impacts of three types of biochar on soil carbon fractions and physiochemical properties in a corn-soybean rotation. Chemosphere 184: 473-481.
Sanchez, A. C., R. T. Gutiérrez, R. C. Santana, A. R. Urrutia, M. Fauvart, J. Michiels, and J. Vanderleyden. 2014. Effects of co-inoculation of native Rhizobium and Pseudomonas strains on growth parameters and yield of two contrasting Phaseolus vulgaris L. genotypes under Cuban soil conditions. Eur. J. Soil Biol. 62: 105-112.
Sanchez-Monedero, M. A., A. Roig, J. Martinez-Pardo, J. Cegarra, and C. Paredes. 1996. A microanalysis method for determining total organic carbon in extracts of humic substances. Relationships between total organic carbon and oxidable carbon. Biores. Technol. 57:291-295.
Schaap, M.G., F.J. Leij, and M.T. Van Genuchten. 2001. Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 251 (3–4): 163-176.
Schachtman, D.P., R.J. Reid, and S.M. Ayling. 1998. Phosphorus uptake by plants: from soil to cell. Plant Physiol. 16: 447-453.
Scharlemann, J.P.W., E.V.J. Tanner, R. Hiederer, and V. Kapos. 2014. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag 5: 81-91.
Schulze, J., G. Temple, S.J. Temple, H. Beschow, and C.P. Vance. 2006. Nitrogen fixation by white lupin under phosphorus deficiency. Ann. Bot. 98: 731-740.
Schulz, H., and B. Glaser. 2012. Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J. Plant Nutr. Soil Sci. 175 (3): 410-422.
Schwartz, M.W., J.D. Hoeksema, C.A. Gehring, N.C. Johnson, J.N. Klironomos, L.K. Abbott, and A. Pringle.2006.The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9: 501-515.
Scialabba, N.E.H., and M. Müller-Lindenlauf. 2010. Organic agriculture and climate change. Renew. Agric. Food Syst. 25: 158-169.
Seufert, V., N. Ramankutty, and J.A. Foley. 2012. Comparing the yields of organic and conventional agriculture. Nature, 485: 229-232.
Sha, A., L. Ming, and Y. Pingfang. 2016. Identification of phosphorus deficiency responsive proteins in a high phosphorus acquisition soybean (Glycine max) cultivar through proteomic analysis. Biochimica et Biophysica Acta 1864:427-434.
Shanshan,W., and G. Zhang. 2013. The impact of off-farm employment on the agricultural carbon emission behavior of farmers. Resour. Sci. 9: 1855-1862.
Shaul, O. 2002. Magnesium transport and function in plants: the tip of the iceberg. Biometals 15: 309-323.
Simon, E. 1987. Heavy metals in soils, vegetation development and heavy metal tolerance in plant populations from metalliferous areas. New Phytologist 81 (1): 175-188.
Sims, J. R. and V. A. Haby. 1971. Simplified Colorimetric Determination of Soil Organic Matter. Soil Sci. 112 (2): 137-141.
Slessarev, E.W., Y. Lin, N.L. Bingham, J.E. Johnson, Y. Dai, J.P. Schimel, and O.A. Chadwick. 2016. Water balance creates a threshold in soil pH at the global scale. Nature 540: 567-569.
Smith, S.E., and F.A. Smith. 2012. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia. 104: 1-13.
Smith, S.E., F.A. Smith, and I. Jakobsen. 2003. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol. 133 (1): 16-20.
Solaiman, Z.M., P. Blackwell, L.K. Abbott, and P. Storer. 2010. Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat. Soil Res. 48 (7): 546-554.
Sombroek, W.G. 1996. Amazon landforms and soils in relation to biological diversity. In: G.T. Prance, T.E. Lovejoy, A.B. Rylands, A.A. dos Santos, and C. Miller (eds.) Priorities for Conservation in the Amazonian Rainforests. Smithonian Institution Press, Washington. D.C. (in press).
Song, Y., M. Wang, R. Zeng, K. Groten, and I.T. Baldwin. 2019. Priming and filtering of anti‐herbivore defenses among Nicotiana attenuata plants connected by mycorrhizal networks. Plant Cell Environ 42 (11): 3-18.
Sperrazza, J.M., and L.L. Spremulli. 1983. Quantitation of cation binding to wheat germ ribosomes: influences on subunit association equilibria and ribosome activity. Nucleic Acids Res. 11: 2665-2679.
Stolz, M., M. Stolze, U. Hamm, M. Janssen, and M. Ruto. 2011. Consumer attitudes towards organic versus conventional food with specific quality attributes. NJAS – WAGEN J. LIFT SC. 58: 67-72.
Storkey, J., S. Meyer, K.S. Still, and C. Leuschner. 2012.The impact of agricultural intensification and land-use change on the European arable flora. Proc. Royal Soc. B 279: 1421-1429.
Stougaard, J. 2000. Regulators and regulation of legume root nodule development. Plant Physiol.124: 531-540.
Stevenson, F. J. 1982. Organic forms of soil nitrogen. In: F. j. Stevenson (ed.) nitrogen in Agricultural soil. America Society of Agronomy-Soil Science Society of America, Madision, Wisconson, USA, p. 67-122.
Sulieman, S., C. Van Ha, J. Schulze, and L.S.P. Tran. 2013. Growth and nodulation of symbiotic Medicago truncatula at different levels of phosphorus availability. J. Exp. Bot. 64: 2701-2712.
Sullivan, D. M., A. I. Bary, T. J. Nartea, E. A. Myrhe, C. G. Cogger, and S. C. Fransen. 2003. Nitrogen availability seven years after a high-rate food waste compost application. Compost Sci. Util.11 (3): 265-275.
Tana, Z., C.S.K. Lin, X. Ji, and T. J. Rainey. 2017. Returning biochar to fields: a review. Appl. Soil Ecol. 116 : 1-11.
Tsuda, T. 2012. Dietary anthocyanin-rich plants: biochemical basis and recent progress in health benefits studies. Mol. Nutr. Food Res. 56: 159-170.
Tubiello, F.N., R. Biancalani, M. Salvatore, S. Rossi, G. Conchedda. 2016. A worldwide assessment of greenhouse gas emissions from drained organic soils. Sustainability 8: 1-13.
Tuomisto, H.L., I.D., Hodge, P. Riordan, and D.W. Macdonald. 2012. Does organic farming reduce environmental impacts?-A meta-analysis of European research. J. Environ. Manage. 112: 309-320.
Turner, B., E. Frossard, and D. Baldwin. 2005 . Organic Phosphorus in the Environment, CABI, Wallingford, p. 133-164.
Turner, B.L., H. Lambers, L.M. Condron, M.D. Cramer, J.R. Leake, A.E. Richardson, and S.E. Smith. 2013. Soil microbial biomass and the fate of phosphorus during long-term ecosystem development. Plant Soil 367: 225-234.
Vance, C.P. 2001. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol. 127: 390-397.
Vance, C.P., and T.J. Chiou. 2011. Phosphorus focus editorial. Plant Physiol. 156: 987-988.
Vance, C.P., C. Uhde-Stone, and D.L. Allan. 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol. 157: 423-447.
Veneklaas, E.J., H. Lambers, J. Bragg, P.M. Finnegan, C.E. Lovelock, W.C. Plaxton, C.A. Price, W.-R. Scheible, M.W. Shane, P.J. White, and J.A. Raven. 2012. Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol. 195: 306-320.
Verbruggen, N., and C. Hermans. 2013. Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant Soil 368: 87-99.
Verma, J.P., J. Yadav, and K.N. Tiwari. 2012. Enhancement of nodulation and yield of chickpea by co-inoculation of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria in eastern Uttar Pradesh. Commun. Soil Sci. Plant Anal. 43: 605-621.
Vitousek, P.M., and R.W. Howarth. 1991. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13: 87-115.
Vitousek, P.M., S. Porder, B.Z. Houlton, and O.A. Chadwick. 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol. Appl. 20: 5-15.
Wang, C.Q. 2010. Exogenous calcium alters activities of antioxidant enzymes in Trifolium repens L. leaves under PEG-induced water deficit. J. Plant Nutr. 33: 1874-1885.
Wang, H., J. Xu, and L. Sheng. 2019. Study on the comprehensive utilization of resources city kitchen waste in China. Energy 173: 263-277.
Wang, Y., B. Li, M. Du, A.E. Eneji, B. Wang, L. Duan, Z. Li, and X. Tian. 2012. Mechanism of phytohormone involvement in feedback regulation of cotton leaf senescence induced by potassium deficiency. J. Exp. Bot. 63: 5887-5901.
Wang, N., H. Hua, A. Egrinya Eneji, Z. Li, L. Duan, and X. Tian. 2012. Genotypic variations in photosynthetic and physiological adjustment to potassium deficiency in cotton (Gossypium hirsutum). J. Photochem. Photobiol. B 110: 1-8.
Wang, L., C.R. Butterly, Y. Wang, H.M.S.K. Herath, Y.G. Xi, and X.J. Xiao. 2014. Effect of crop residue biochar on soil acidity amelioration in strongly acidic tea garden soils. Soil Use Manage. 30: 119-128
Wang, C., D. Alidoust, X.Yang, and A. Isoda. 2018. Effects of bamboo biochar on soybean root nodulation in multi-elementscontaminated soils. Ecotoxicol. Environ. Saf. 150: 62-69.
Wang, S., Y. Tan, H. Fan, H. Ruan, and A. Zheng. 2015. Responses of soil microarthropods to inorganic and organic fertilizers in a poplar plantation in a coastal area of eastern China. Appl. Soil Ecol. 89: 69-75.
Wang, D., C. Li, S.J. Parikh, and K.M. Scow. 2019. Impact of biochar on water retention of two agricultural soils–A multi-scaleanalysis. Geoderma 340:185-191.
Wang, H., J. Xu, L. Sheng, and X. Liu. 2018. Effect of addition of biogas slurry for anaerobic fermentation of deer manure on biogas production. Energy 165: 411-418.
Wang, H., J. Xu, X. Liu, L. Sheng, D. Zhang, L. Li, and A. Wang. 2018. Study on the pollution status and control measures for the livestock and poultry breeding industry in northeastern China. Environ. Sci. Pollut. Res. 25: 4435-4445.
Warnock, D.D., J. Lehmann,T. W. Kuyper, and M.C. Rillig. 2007. Mycorrhizal responses to biochar in soil – concepts and mechanisms. Plant and soil 300(1-2): 9-20.
Warnock, D.D., D.L. Mummey, B. McBride, J. Major, J. Lehmann, and M.C. Rillig. 2010. Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: results from growth-chamber and field experiments. Appl. Soil Ecol. 46: 450-456.
Wezel, A., M. Casagrande, F. Celette, J. F. Vian, A. Ferrer, and J. Peigne. 2014. Agroecological practices for sustainable agriculture: a review. Agron. Sustainable Dev. 34: 1-20.
Whalen, J.K., C. Chang, G.W. Clayton, and J.P. Carefoot. 2000. Cattle manure amendments can increase the pH of acid soils. Soil Sci. Soc. Am. J. 64: 962-966
Willer, H. and J. Lernoud. 2016. The World of Organic Agriculture. Statistics and Emerging Trends 2016. FiBL-IFOAM Report, FiBL, Frick, and IFOAM, Bonn.
World Health Organization(WHO), 2017. World Health Statistics 2017: Monitoring health for the SDGs.
Xin, X., J. Zhang, A. Zhu, and C. Zhang . 2016. Effects of long-term (23 years) mineral fertilizer and compost fertilizer and compost application on physical properties of fluvo-aquic soil in the North China Plain. Soil Tillage Res. 156: 166-172.
Xiong, F., F. Feng, Y. Guo, C. Jia, C. Chen, and Y. Lu. 2014. Effects of mixed application of different functional bacteria and organic fertilizer on vegetable growth and fertility properties of latosolic red earch. Guangdong Agr. Sci. 24(7): 67-70.
Xiu, Li., W. Zhang, Y. Sun, D. Wu, J. Meng, and W. Chen. 2019. Effects of biochar and straw returning on the key cultivation limitations of Albic soil and soybean growth over 2 years. Catena 173:481-793.
Xu, J.M., C. Tang, and Z.L. Chen. 2006. The role of plant residues in pH change of acid soils differing in initial pH. Soil Biol. Biochem. 38: 709-719.
Xu, Y., Y. Zou, A.M. Husaini, J. Zeng, L. Guan, Q. Liu, and W. Wu. 2011. Optimization of potassium for proper growth and physiological response of Houttuynia cordata Thunb. Environ. Exp. Bot. 71: 292-297.
Yang, Z., S. Zheng, J. Nie, Y. Liao, and J. Xie. 2014. Effects of long-term winter planted green manure on distribution and storage of organic carbon and nitrogen in water-stable aggregates of reddish paddy soil under a double-rice cropping system. J. Integr. Agr. 13(8): 1772-1781.
Yao, F. X., M. C. Arbestain, S. Virgel, F. Blanco, J. Arostegui, J. A. Macia-Agullo, and F. Macías. 2010. Simulated geochemical weathering of a mineral ash-rich biochar in a modified Soxhlet reactor. Chemosphere 80: 724- 732.
Ye, L., X. Zhao, E. Bao, K. Cao, and Z. Zou. 2019. Effects of arbuscular mycorrhizal fungi on watermelon growth, elemental uptake, antioxidant, and photosystem II Activities and stress-response gene expressions under salinity-alkalinity stresses. Front. Plant Sci. 10: 863.
Yinghua, D., et al. 2016. Long-term incorporation of manure with chemical fertilizers reduced total nitrogen loss in rain-fed cropping systems. Sci. Rep. 6: 33611.
Yoshizawa, S., Tanaka, and M. Othata. 2007. Proliferation effect of aerobic microorganisms during composting of rice bran by addition of biomass charcoal, in Proceedings of the International Agrichar Conference, Terrigal NSW, Australia, May 2007, p.26.
Yu, B., H. Gong, Y. Liu. 1998. Effects of calcium on lipid composition and function of plasma membrane and tonoplast vesicles isolated from roots of barley seedlings under salt stress. J. Plant Nutr. 21: 1589-1600.
Yu, Z., L. Chen, S. Pan, Y. Li, Y. Kuzyakov, J. Xu, P.C. Brookes, and Y. Luo. 2018. Feedstock determines biochar-induced soil priming effects by stimulating the activityof specific microorganisms: feedstock of biochar determines priming effects. Eur. J.Soil Sci. 69 (3): 521-534.
Zahran, H.H. 1999. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 63: 968-989.
Zhang, J. L. Zhang, P. Wang, Q. Huang, G. Yu, D. Li, Q. Shen, and W. Ran. 2013. The role of non-crystalline Fe in the increase of SOC after long-term organic manure application to the red soil of southern China. Eur. J. Soil Sci. 64 (6): 797-804.
Zhao, D., D. Oosterhuis, and C. Bednarz. 2001. Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants. Photosynthetica 39: 103-109.
Zhao, D., K. Raja Reddy, V.G. Kakani, J.J. Read, and G.A. Carter. 2003. Corn (Zea mays L.) growth, leaf pigment concentration, photosynthesis and leaf hyperspectral reflectance properties as affected by nitrogen supply. Plant Soil 257: 205-218.
Zhao, J., F. Zhao, G. Jian, Y. Ye, W. Zhang, J. Li, and F. Qi. 2013. Intensified Alternaria spot disease under potassium deficiency conditions results in acceleration of cotton (Gossypium hirsutum L.) leaf senescence. Aust. J. Crop Sci. 7: 241.
Zhao, Li., H. Nan, Y. Kan, Xi. Xu, H. Qiu, and Xi. Cao. 2019. Infiltration behavior of heavy metals in runoff through soil amended with biochar as bulking agent. Environ. Polluti. 254:113-143.
Zhu, D., X. Kong, and J.P. Gu. 2014. Irrational equilibrium of farmers' excessive pesticide application: evidence from farmers in southern Jiangsu province.Chin. Rural. Econ. 8: 17-29.
Zhu, N., X. Tan, M. Li, X. Pan, and Q. Shi. 2018. Effects of different organic fertilizers on growth of rice seedlings raised in straw substrates. Acta Agr. Univ. Jiangxiensis 40 (2): 286-294.
Zsofia, M., A. Tabi, and M. Csutora. 2012. Modifying the yield factor based on more efficient use of fertilizer-The environmental impacts of intensive and extensive agricultural practices. Ecol. Indicat. 16 : 58-66.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊