跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/17 09:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳思穎
研究生(外文):Ssu-Ying Chen
論文名稱:電位及鍍液酸鹼值對電化學沉積於多晶銀基板的氧化亞銅薄膜顯微組織影響的研究
論文名稱(外文):Effect of potential and electrolyte pH value on the microstructure of Cu2O films electrodeposited on polycrystalline Ag substrates
指導教授:張六文
指導教授(外文):Liuwen Chang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:186
中文關鍵詞:電化學沉積氧化亞銅磊晶成長結晶形貌電位pH值
外文關鍵詞:Cuprous oxideElectrodepositionpH valuePotentialMorphologyEpitaxial growth
相關次數:
  • 被引用被引用:2
  • 點閱點閱:132
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以定電位電化學沉積法在乳酸和硫酸銅混合液中,於多晶銀基板上成長氧化亞銅薄膜,探討電位與鍍液pH值對氧化亞銅磊晶成長的影響,亦同時探討對薄膜表面形貌、成分和載子濃度的影響。電化學沈積使用三極式系統,於薄膜沈積前、後分別使用電子背向散射繞射技術,搭配異時原位(ex-situ)的方法,分析相同位置的基板與薄膜結晶方位分佈,藉以探討氧化亞銅與基板之間的方位關係。此外,以掃描式電子顯微鏡觀察薄膜的表面形貌,使用X光繞射分析沈積的薄膜晶體結構,使用X光光電子能譜分析薄膜成分。
二次電子影像顯示,在pH 7的鍍液中,電位為0.10 V時,沉積的氧化亞銅具有{111}的晶癖面,薄膜是由具八面體結構特徵的氧化亞銅晶體堆疊而成,在pH 13的鍍液中,電位為0.40 V時,沉積的氧化亞銅則是具有{100}的晶癖面,薄膜是由具六面體結構特徵的氧化亞銅晶體堆疊而成。除了晶體形貌的改變之外,大多數沈積的氧化亞銅均與基板間有特定的方位關係,換言之,氧化亞銅可以磊晶方式成長於銀基板上。根據EBSD分析,氧化亞銅磊晶薄膜與銀基板之間存在五種晶向關係,依序為:I:(001)Ag//(001)Cu2O,[100]Ag//[100]Cu2O、 II:(110)Ag//(100)Cu2O,[001]Ag//[001]Cu2O、III:(111)Ag//(110)Cu2O,[01-1]Ag//[1-11]Cu2O或是(111)Ag//(110)Cu2O,[-110]Ag//[001]、IV:(111)Ag//(100)Cu2O,[01-1]Ag//[01-1]。在pH7鍍液沉積的氧化亞銅與基板的方位關係以第一種(I)為主,而當鍍液pH值上升到9,第二種(II)方位關係所占的比重逐漸上升,電位增加到0.20 V時,第三種(III)方位關係亦隨之出現。當鍍液pH值升高至11時,第一種方位關係比例甚少,以第二、三種方位關係為主。最後,pH=13時,第一種方位關係不再出現,第二種方位關係偶爾出現,主要以第三、四種(III、IV)方位關係為主。X光光電子能譜分析發現,不論pH值高低,鍍層中共鍍的銅含量,均隨著電位上升先下降而後增加。此外,在過電位為50至100 mV的區間內,可以得到共鍍銅含量較低的氧化亞銅薄膜。使用Mott-Schottky量測得知電化學沉積的氧化亞銅薄膜載子型態為P型,載子濃度約為1015 ~ 1017 cm-3,且載子濃度隨鍍液pH值上升而增加。
Cuprous oxide (Cu2O) films were electrodeposited from an electrolyte containing copper sulfate and lactic acid on polycrystalline silver substrates in potentiostatic conditions. The effects of applied potential and pH value of the electrolyte on epitaxial growth of Cu2O were studied. In addition, the morphology, composition and electric properties of the deposited films were also be investigated. The crystal structure of the films was characterized by X-ray diffraction. Scanning electron microscope (SEM) and the attached electron backscatter diffraction (EBSD) system were used to analyze the morphology of the deposits and the orientation relationships between the deposits and substrate grains. Moreover, the composition of the deposits was studied by X-ray photoelectron spectroscopy.
According to the SEM observation, the film deposited in a pH 7 electrolyte was composed of cuprous oxide crystallites in an octahedral shape surrounded by {111} habit planes. The crystallites deposited from a pH 13 electrolyte were in a hexahedral shape with {100} habit planes. Five orientation relationships (ORs) between Ag and cuprous oxide were identified by EBSD analyses as I: (001)Ag//(001)Cu2O, [100]Ag//[100]Cu2O, II: (110)Ag//(100)Cu2O, [001]Ag//[001]Cu2O, III: (111)Ag//(110)Cu2O, [01-1]Ag//[1-11]Cu2O or (111)Ag//(110)Cu2O, [-110]Ag//[001]Cu2O, and IV: (111)Ag//(100)Cu2O, [01-1]Ag//[01-1]Cu2O. The films deposited from the pH 7 electrolyte mainly followed the type I OR. With increasing the pH value to 9, more crystallites were deposited following the type II OR. With increasing the potential to 0.20 V, crystallites having the type III OR with the substrate were observed. At the pH value of 11, Type II and III were the dominant ORs observed between Cu2O and Ag whereas type I is seldom observed. Finally, crystallies deposited from the electrolyte of pH=13 exhibited mainly type III and IV ORs with the underlying substrate, whereas type I OR was no longer observed. X-ray photoelectron spectroscopy results showed that copper in an elemental form (Cu0) was detected to co-exist with monovalent cuprous ions in many deposited films. It indicated that the content of the Cu0 decreased with increasing the potential and then increased again with further increasing the potential. Accordingly, films having the lowest content of Cu0 were obtained at overpotentials in a range of 50 to 100 mV. Finally, the Mott-Schottky measurements confirmed that the electrodeposited Cu2O was p-type with carrier concentrations in a range of 1015 to 10 17 cm-3, which increased with increasing electrolyte pH value.
論文審定書 i
致謝 ii
摘要 iii
Abstract v
目錄 vii
圖目錄 x
表目錄 xxiii
第一章 前言 1
第二章 基礎理論及文獻回顧 3
2.1 氧化亞銅的特性 3
2.1.1晶體結構及其特性 3
2.1.2表面結構及其特性 4
2.1.3異向薄膜的導電特性 4
2.2 電化學沉積氧化亞銅薄膜 6
2.2.1氧化亞銅的沉積機制 6
2.2.2電化學參數對氧化亞銅沉積的影響 7
2.2.3製備磊晶氧化亞銅薄膜 11
2.2.4氧化亞銅與銅共鍍之現象 13
2.3 磊晶成長 15
2.3.1 成核機制 15
2.3.2 晶格失配率 15
2.3.3 同質磊晶成長機制 16
2.3.4 異質磊晶成長機制 16
2.4 金屬與半導體的接觸 17
2.4.1 歐姆接觸與蕭基接觸 17
2.4.2 氧化亞銅的歐姆接觸 18
2.5 Mott-Schottky量測原理 18
第三章 研究方法及步驟 20
3.1 基板前處理 20
3.2 薄膜成長 20
3.3 薄膜分析方法 21
3.3.1 掃描式電子顯微鏡分析 21
3.3.2 X光繞射 22
3.3.3 X光電子能譜分析 22
3.3.4 穿透式電子顯微鏡分析 22
3.3.5 Mott Schottky 量測 22
第四章 實驗結果 24
4.1 線性掃描伏安分析 24
4.2 在pH7鍍液電化學沉積的氧化亞銅薄膜 25
4.3 在pH9鍍液電化學沉積的氧化亞銅薄膜 28
4.4 在pH11鍍液電化學沉積的氧化亞銅薄膜 31
4.5 在pH13鍍液電化學沉積的氧化亞銅薄膜 34
第五章 討論 37
5.1 鍍液 pH值和施加電位對氧化亞銅薄膜中的銅含量的影響 37
5.2鍍液 pH值和施加電位對氧化亞銅鍍層的影響 39
5.3 鍍液 pH值和施加電位對氧化亞銅載子濃度的影響 41
第六章 結論 42
參考文獻 44
附錄-圖次 51
附錄-表格 160
[1] M. A. Hossain, R. Al-Gaashani, H. Hamoudi, M. J. Al Marri, I. A. Hussein, A. Belaidi, B. A. Merzougui, F. H. Alharbi and N. Tabet, Controlled growth of Cu2O thin films by electrodeposition approach, Materials Science in Semiconductor Processing , 63 (2017) 203-211.
[2] M. Izaki, T. Shinagawa, K. T. Mizuno, Y. Ida, M. Inaba and A. Tasaka, Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device, Journal of Physics D: Applied Physics, 40 (2007) 3326-3329.
[3] M. Leng, M. Liu, Y. Zhang, Z. Wang, C. Yu, X. Yang, H. Zhang and C. Wang, Polyhedral 50-facet Cu2O microcrystals partially enclosed by {311} high-index planes: synthesis and enhanced catalytic CO oxidation activity, Journal of the American Chemical Society, 132 (2010) 17084-17087.
[4] S. T. Shishiyanu, T. S. Shishiyanu and O. I. Lupan, Novel NO2 gas sensor based on cuprous oxide thin films, Sensors and Actuators B: Chemical, 113(2006)468-476.
[5] W. Shockley and H. J. Queisser, Detailed balance limit of efficiency of p‐n junction solar cells, Journal of Applied Physics, 32 (1961) 510-519.
[6] T. K. S. Wong, S. Zhuk, S. Masudy-Panah and G. K. Dalapati, Current status and future prospects of copper oxide heterojunction solar cells, Materials, 9 (2016) 271.
[7] M. Cheon, B. Jung, S. J. Kim, J. I. Jang and S. Y. Jeong, High-quality epitaxial Cu2O films with (111)-terminated plateau grains obtained from single-crystal Cu (111) thin films by rapid thermal oxidation, Journal of Alloys and Compounds, 801 (2019) 536-541.
[8] M. Abdelfatah, J. Ledig, A. El-Shaer, A. Wagner, V. Marin-Borras, A. Sharafeev, P. Lemmens, M. M. Mosaad, A. Waag and A. Bakin, Fabrication and characterization of low cost Cu2O/ZnO: Al solar cells for sustainable photovoltaics with earth abundant materials, Solar Energy Materials and Solar Cells, 145 (2016) 454-461.
[9] M. Izaki, T. Shinagawa, K. T. Mizuno, Y. Ida, M. Inaba and A. Tasaka, Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device, Journal of Physics D, 40 (2007) 3326-3329.
[10] D. S. Darvish and H. A. Atwater, Epitaxial growth of Cu2O and ZnO/Cu2O thin films on MgO by plasma-assisted molecular beam epitaxy, Journal of Crystal Growth, 319 (2011) 39-43.
[11] M. Kracht, J. Schormann and M. Eickhoff, Plasma assisted molecular beam epitaxy of Cu2O on MgO(001): Influence of copper flux on epitaxial orientation, Journal of Crystal Growth, 436 (2016) 87-91.
[12] M. Ottosson, J. Lu and J. O. Carlsson, Chemical vapour deposition of Cu2O on MgO (100) from CuI and N2O: aspects of epitaxy, Journal of Crystal Growth, 151 (1995) 305-311.
[13] X. H. Liu, M. Xu, X. J. Zhang, W. G. Wang, X. J. Feng and A. M. Song, Pulsed-laser-deposited, single-crystalline Cu2O films with low resistivity achieved through manipulating the oxygen pressure, Applied Surface Science, 435 (2018) 305-311.
[14] R. Liu, E. W. Bohannan, J. A. Switzer, F. Oba and F. Ernst, Epitaxial electrodeposition of Cu2O films onto InP(001), Applied Physics Letters, 83 (2003) 1944-1946.
[15] E. W. Bohannan, M. G. Shumsky and J. A. Switzer, Epitaxial electrodeposition of copper(I) oxide on single-crystal gold(100), Chemistry of Materials, 11 (1999) 2289-2291.
[16] J. K. Barton, A. A. Vertegel, E. W. Bohannan and J. A. Switzer, Epitaxial electrodeposition of copper(I) oxide on single-crystal copper, Chemistry of Materials, 13 (2001) 952-959.
[17] J. A. Switzer, R. Liu, E. W. Bohannan and F. Ernst, Epitaxial electrodeposition of a crystalline metal oxide onto single-crystalline silicon, The Journal of Physical Chemistry B, 106 (2002) 12369-12372.
[18] 許雅筑,電化學沉積的氧化亞銅磊晶薄膜與元件的導電特性研究,國立中山大學材料與光電科學學系碩士論文 (2018)。
[19] 黃姵瑜,電鍍參數與基板對氧化亞銅電鍍磊晶成長的研究,國立中山大學材料與光電科學學系碩士論文 (2017)。
[20] 許智揚,表面處理對氧化亞銅表面結構與磊晶成長的影響,國立中山大學材料與光電科學學系碩士論文 (2019)。
[21] 戴大槿,氧化亞銅的電化學磊晶成長研究,國立中山大學材料與光電科學學系博士論文計畫書 (2020)。
[22] K. F. Chen, C. T. Sun, S. Y. Song and D. F. Xue, Polymorphic crystallization of Cu2O compound, CrystEngComm, 16 (2014) 5257-5267.
[23] B. K. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering, P. J. Klar, T. Sander, C. Reindl, J. Benz, M. Eickhoff, C. Heiliger, M. Heinemann, J. Blasing, A. Krost, S. Shokovets, C. Muller and C. Ronning, Binary copper oxide semiconductors: from materials towards devices, Physica Status Solidi B: Basic Solid State Physics, 249 (2012) 1487-1509.
[24] D. Dai, P. Y. Huang and L. Chang, Epitaxial Growth of Cu2O on Ag Substrate by Electrodeposition, ECS Transactions, 92 (2019) 61-67.
[25] L. C. Olsen, F. W. Addis and W. Miller, Experimental and theoretical-studies of Cu2O solar-cells, Solar Cells, 7 (1982) 247-279.
[26] J. P. Tobin, W. Hirschwald and J. Cunningham, XPS and XAES studies of transient enhancement of Cu-1 at CuO surfaces during vacuum outgassing, Applications of Surface Science, 16 (1983) 441-452.
[27] C. Gattinoni and A. Michaelides, Atomistic details of oxide surfaces and surface oxidation: the example of copper and its oxides, Surface Science Reports, 70 (2015) 424-447.
[28] K. H. Schulz and D. F. Cox, Photoemission and low-energy-electron-diffraction study of clean and oxygen-dosed Cu2O (111) and (100) surfaces, Physical Review B, 43 (1991) 1610-1621.
[29] A. Onsten, M. Gothelid and U. O. Karlsson, Atomic structure of Cu2O(111), Surface Science, 603 (2009) 257-264.
[30] N. K. Mahenderkar, Q. Chen, Y. C. Liu, A. R. Duchild, S. Hofheins, E. Chason and J. A. Switzer, Epitaxial lift-off of electrodeposited single-crystal gold foils for flexible electronics, Science, 355 (2017) 1203-1206.
[31] Y. Y. Yang, Y. N. Li and M. Pritzker, Control of Cu2O film morphology using potentiostatic pulsed electrodeposition, Electrochimica Acta, 213 (2016) 225-235.
[32] T. Chen, A. Kitada, K. Fukami and K. Murase, Determination of stability constants of copper (II)–lactate complexes in Cu2O electrodeposition baths by UV-vis absorption spectra factor analysis, Journal of The Electrochemical Society, 166 (2019) D761-D767.
[33] T. Chen, A. Kitada, Y. Seki, K. Fukami, D. T. Usmanov, L .C. Chen, K. Hiraoka and K. Murase, Identification of copper (II)–lactate complexes in Cu2O electrodeposition baths: deprotonation of the α-hydroxyl group in highly concentrated alkaline solution, Journal of The Electrochemical Society, 165 (2018) D444-D451.
[34] L. Wang, N. De Tacconi, C. Chenthamarakshan, K. Rajeshwar and M. Tao, Electrodeposited copper oxide films: effect of bath pH on grain orientation and orientation-dependent interfacial behavior, Thin Solid Films, 515 (2007) 3090-3095.
[35] K. Mizuno, M. Izaki, K. Murase, T. Shinagawa, M. Chigane, M. Inaba, A. Tasaka and Y. Awakura, Structural and electrical characterizations of electrodeposited p-type semiconductor Cu2O films, Journal of The Electrochemical Society, 152 (2005) C179-C182.
[36] K. H. Han and M. Tao, Electrochemically deposited p-n homojunction cuprous oxide solar cells, Solar Energy Materials and Solar Cells, 93 (2009) 153-157.
[37] W. Septina, S. Ikeda, M. A. Khan, T. Hirai, T. Harada, M. Matsumura and L. M. Peter, Potentiostatic electrodeposition of cuprous oxide thin films for photovoltaic applications, Electrochimica Acta, 56 (2011) 4882-4888.
[38] Y. C. Zhou and J. A. Switzer, Electrochemical deposition and microstructure of copper (I) oxide films, Scripta Materialia, 38 (1998) 1731-1738.
[39] S. Bijani, L. Martinez, M. Gabas, E. A. Dalchiele and J. R. Ramos-Barrado, Low-temperature electrodeposition of Cu2O thin films: modulation of micro-nanostructure by modifying the applied potential and electrolytic bath pH, Journal of Physical Chemistry C, 113 (2009) 19482-19487.
[40] S. S. Jeong, A. Mittiga, E. Salza, A. Masci and S. Passerini, Electrodeposited ZnO/Cu2O heterojunction solar cells, Electrochimica Acta, 53 (2008) 2226-2231.
[41] J. A. Switzer, H. M. Kothari and E. W. Bohannan, Thermodynamic to kinetic transition in epitaxial electrodeposition, Journal of Physical Chemistry B, 106 (2002) 4027-4031.
[42] J. A. Switzer, C. J. Hung, L. Y. Huang, E. R. Switzer, D. R. Kammler, T. D. Golden and E. W. Bohannan, Electrochemical self-assembly of copper/cuprous oxide layered nanostructures, Journal of the American Chemical Society, 120 (1998) 3530-3531.
[43] J. A. Switzer, C. J. Hung, E. W. Bohannan, M. G. Shumsky, T. D. Golden and D. C. Van Aken, Electrodeposition of quantum-confined metal semiconductor nanocomposites, Advanced Materials, 9 (1997) 334-338.
[44] E. W. Bohannan, L. Y. Huang, F. S. Miller, M. G. Shumsky and J. A. Switzer, In situ electrochemical quartz crystal microbalance study of potential oscillations during the electrodeposition of Cu/Cu2O layered nanostructures, Langmuir, 15 (1999) 813-818.
[45] J. A. Switzer, C. J. Hung, L. Y. Huang, F. S. Miller, Y. C. Zhou, E. R. Raub, M. G. Shumsky and E.W. Bohannan, Potential oscillations during the electrochemical self-assembly of copper cuprous oxide layered nanostructures, Journal of Materials Research, 13 (1998) 909-916.
[46] M. Z. Zhang, M. Wang, Z. Zhang, J. M. Zhu, R. W. Peng and N. B. Ming, Periodic structures of randomly distributed Cu/Cu2O nanograins and periodic variations of cell voltage in copper electrodeposition, Electrochimica Acta, 49 (2004) 2379-2383.
[47] G. W. Yu, X. B. Hu, D. Liu, D. L. Sun, J. Li, H. J. Zhang, H. Liu and J. Y. Wang, Electrodeposition of submicron/nanoscale Cu2O/Cu junctions in an ultrathin CuSO4 solution layer, Journal of Materials Research, 638 (2010) 225-230.
[48] 張六文,許智揚,戴大槿和溫孟潔,電化學沉積氧化亞銅的表面結構及表面處理的研究,中國材料科學學會年會,台南成功大學 (2019/11/15-2019/11/16)。
[49] J. E. Ayers, T. Kujofsa, P. Rago and J. Raphael, Heteroepitaxy of semiconductors: theory, growth, and characterization (2nd ed.) , CRC press, New York (2016).
[50] W. Schottky, Halbleitertheorie der sperrschicht, Naturwissenschaften, 26 (1938) 843-843.
[51] 施敏和李明逵,半導體元件物理與製作技術 (第三版),國立交通大學,新竹市 (2013)。
[52] B. Sharma, Metal-semiconductor Schottky barrier junctions and their applications (1st ed.), Springer, New York (1984).
[53] L .J. Brillson and Y. C. Lu, ZnO Schottky barriers and Ohmic contacts, Journal of Applied Physics, 109 (2011) 121301.
[54] H. B. Michaelson, The work function of the elements and its periodicity, Journal of Applied Physics, 48 (1977) 4729-4733.
[55] Z. G. Zang, Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films, Applied Physics Letters, 112 (2018) 042101-042106
[56] K. Gelderman, L. Lee and S. Donne, Flat-band potential of a semiconductor: using the Mott–Schottky equation, Journal of Chemical Education, 84 (2007) 685-688.
[57] T. H. Yang, Y. L. Ding, C. Y. Li, N. Q. Yin, X. L. Liu and P. Li, Potentiostatic and galvanostatic two-step electrodeposition of semiconductor Cu2O films and its photovoltaic application, Journal of Alloys and Compounds, 727 (2017) 14-19.
[58] D. A. Porter, K. E. Easterling and M. Y. Sherif, Phase Transformations in Metals and Alloys (3rd ed.), CRC Press, New York (2009).
[59] G. D. Barmparis, Z. Lodziana, N. Lopez and I. N. Remediakis, Nanoparticle shapes by using Wulff constructions and first-principles calculations, Beilstein Journal of Nanotechnology, 6 (2015) 361-368.
[60] A. Ashida, S. Sato, T. Yoshimura and N. Fujimura, Control of native acceptor density in epitaxial Cu2O thin films grown by electrochemical deposition, Journal of Crystal Growth, 468 (2017) 245-248.
電子全文 電子全文(網際網路公開日期:20250902)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊