跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/13 11:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪嘉駿
研究生(外文):Chia-Chun Hung
論文名稱:錳摻雜氮化鎵奈米柱時間解析螢光光譜測量:矽摻雜效應
論文名稱(外文):Time-Resolved Photoluminescence Spectroscopy of Mn:GaN Nanorods: Effects of Si-Doping
指導教授:陳永松陳永松引用關係魏得凱
指導教授(外文):Yung-Sung ChenParitosh V. Wadekar
學位類別:碩士
校院名稱:國立中山大學
系所名稱:物理學系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:64
中文關鍵詞:奈米柱光致螢光時間解析光譜生命週期紅移光致發光
外文關鍵詞:NanorodLifetimeRedshiftTime-resolved photoluminescencePhotoluminescence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
使用光致螢光時間解析光譜(Time-resolved Photoluminescence,TRPL)對四塊不同摻雜的氮化鎵納米柱樣品的光生電荷載流子的散射動力學進行研究。其樣品為摻雜錳與矽,可以將樣品歸類為兩個是100個週期的調製錳摻雜超晶格,另外兩塊樣品為不摻雜錳卻摻雜矽或無摻雜的樣品作為比較。TRPL探測必須先從光致發光(Photoluminescence,PL)光譜中觀察發光光子能量的特徵峰位置。 錳摻雜的樣品在特徵峰中並沒有顯示出隨溫度升高而紅移的跡象。相反,在沒有錳摻雜的情況下觀察到這種红移,這與聲子散射在光生帶電子的作用有關。同時,發現矽摻雜使得納米棒晶體生長中的結構更完善。矽和錳摻雜的相互作用主要是使用雙指數來分析,並且根據電子-空穴複合的生命週期(LifeTime)來解釋的。量測到的數據大多都在紫外光至可見光譜的範圍內,其生命週期(LifeTime)則落在亞納秒範圍內,但也觀測到生命週期在數十與數百皮秒的複合過程,雖然沒有通過測量來證實,但此測量明顯超出量測的光譜範圍,揣測為遠紅外光區的輻射複合。
An investigation was conducted on the scattering dynamics of photo-generated charge carriers as revealed in time-resolved photoluminescence spectroscopy (TRPL) for four types of gallium nitride nanorod samples with various doping profiles. Largely categorized by whether they are Mn-delta-doped or silicon-doped, two are modulation Mn-delta-doped superlattice of 100 periods, while as a control for comparison, the other two are of no Mn-doping but doped with Si or not doped at all. To be consistent with their origin of luminescence, the TRPL probing followed the characteristic peak positions of the luminescent photon energy seen from the traditional time-averaged photoluminescence (PL) spectra. The Mn-doped samples showed no sign of red shifts in the characteristic peaks as a function of increasing temperatures. This red shift, by contrast, was observed in their counterparts without Mn-doping, which are associated with the increasingly significant roles that phonon scattering plays in dissipating energies of the photo-generated charged particles. Meanwhile, the Si-doping that was meant to introduce conduction charge carriers were found to promote structural perfections in the nanorod crystal growth. The interplays of the Si- and Mn-doping are interpreted in accordance with the scales of lifetime in electron-hole recombination mostly via dual exponential functional analyses. While the majority of the acquired data are in the UV-visible spectral range for which the lifetimes fall in the sub-nanosecond time domain, a conspicuous recombination process of much shorter lifetimes is also observed, which, though not yet confirmed by measurement, is either nonradiative or radiative beyond the measured spectral range.
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 x
第1章 導論 1
1.1 前言 1
1.2 氮化鎵奈米柱簡介 2
1.3 文獻探討 3
第2章 基本原理介紹 7
2.1 導電帶載子輻射複合與能量釋放 7
2.2 電子與電洞的複合方式 9
2.3 光致螢光光譜(PL)與時間解析螢光光譜(TRPL) 10
2.4 氮化鎵摻雜的載子躍遷 10
第3章 實驗儀器與架設 13
3.1 光路架設 13
3.2 PL量測參數整理 14
3.3 TRPL量測參數整理 14
第4章 結果與討論 15
4.1 樣品介紹 15
4.2 光致螢光發光光譜 16
4.2.1 光致發光的物理特性 19
4.2.2 紅移現象 22
4.2.3 有無摻雜矽發光光譜的變化 25
4.3 時間解析螢光光譜(Time-Resolved Photoluminescence) 26
4.3.1 內部量子效率(Internal Quantum Efficiency,IQE) 27
4.3.2 氮化鎵奈米柱時間解析光譜 27
4.3.3 氮化鎵摻雜矽奈米柱時間解析光譜 34
4.3.4 氮化錳鎵奈米柱時間解析光譜 39
4.3.5 氮化錳鎵摻雜矽奈米柱時間解析光譜 39
4.4 整理發光光譜與時間解析光譜 46
4.4.1 雙複合的權重比 46
4.4.2 紅移與長時間解析光譜 47
4.4.3 超快複合數據 48
第5章 總結 51
參考資料 52
[1]N.Theodoropoulou et al., “Magnetic and structural properties of Mn-implanted GaN,” Appl. Phys. Lett., vol. 78, no. 22, pp. 3475–3477, 2001.
[2]Y. H.Kwon, S. K.Shee, G. H.Gainer, G. H.Park, S. J.Hwang, andJ. J.Song, “Time-resolved study of yellow and blue luminescence in Si- and Mg-doped GaN,” Appl. Phys. Lett., vol. 76, no. 7, pp. 840–842, 2000.
[3]G. D.Chen et al., “Fundamental optical transitions in GaN,” Appl. Phys. Lett., vol. 68, no. 20, pp. 2784–2786, 1996.
[4]R. A.Mair, J.Li, S. K.Duan, J. Y.Lin, andH. X.Jiang, “Time-resolved photoluminescence studies of an ionized donor-bound exciton in GaN,” Appl. Phys. Lett., vol. 74, no. 4, pp. 513–515, 1999.
[5]F. J.Sa et al., “,” vol. 62, no. 24, pp. 826–834, 2000.
[6]Y.Shon et al., “ Diluted magnetic semiconductor of p -type GaN epilayers implanted with Mn+ ions ,” J. Appl. Phys., vol. 93, no. 3, pp. 1546–1549, 2003.
[7]E.Oh, J. H.Choi, H. K.Seong, andH. J.Choi, “Optical properties of GaN and GaMnN nanowires grown on sapphire substrates,” Appl. Phys. Lett., vol. 89, no. 9, pp. 11–14, 2006.
[8]H. Y.Xing, Z. C.Xu, M. Q.Cui, Y. X.Xie, andG. Y.Zhang, “Mid-gap photoluminescence and magnetic properties of GaMnN films grown by metal - Organic chemical vapor deposition,” Chinese Phys. B, vol. 23, no. 10, pp. 7–10, 2014.
[9]M. P.Charles Kittel, Introduction To Solid State Physics. New Jersey, 2004.
[10] etalJames W. Robinson, James H. Rice, “Time-resolved dynamics in single InGaN quantum dots,” Appl. Phys. Lett. 83, 2674, 2003.
[11]J.Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, Second enl. 1999.
[12]氮化錳鎵稀磁性半導體陣列奈米柱之 分子束磊晶成長與特性研究, 許政霖. 2019.
[13]Y. P.Varshni, Temperature dependence of the energy gap in semiconductors. Physica 34. 149, 1967.
[14]A.You, M. A. Y.Be, andI.In, “photoluminescence in ZnO epilayers grown on by metalorganic vapor phase epitaxy,” vol. 3223, no. 2004, pp. 1–4, 2005.
[15]H. F.Liu, W.Liu, A. M.Yong, X. H.Zhang, S. J.Chua, andD. Z.Chi, “Effects of annealing on structural and optical properties of InGaN / GaN multiple quantum wells at emission wavelength of 490 nm Effects of annealing on structural and optical properties of InGaN / GaN multiple quantum wells at emission wavelength of 490 nm,” no. September, 2011.
電子全文 電子全文(網際網路公開日期:20250901)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊