跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/16 09:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李岳霖
研究生(外文):Yueh-Lin Li
論文名稱:設計應用於物聯網具適切性之Wi-Fi樹狀網路演算法
論文名稱(外文):Design Adaptive Tree Topology Algorithm For Wi-Fi Wireless Network
指導教授:邱日清
指導教授(外文):Jih-Ching Chiu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:中文
論文頁數:118
中文關鍵詞:資料收集樹狀網路物聯網Wi-Fi無線網路
外文關鍵詞:Tree topologyData collection networkIoTWi-FiWireless network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
因應近年IoT概念的興起,無線網路相關技術組織紛紛提出針對物聯網的通訊技術協定,其中Wi-Fi通訊相關架構協定愈臻成熟,市面上也有許多相關模組發展成熟且價格相對低廉,現有的主要的Wi-Fi路由演算法例如被動式路由AODV其在架構上容易產生大量封包,導致在有密集節點時容易引起廣播風暴,且其建網程序較為繁複導致建網速度較慢,而主動式路由OLSR則因其在維護路由上耗費太多資源,且建網程序亦較繁複,這兩種路由則皆有其不管是在連線建網或維護上的不足。
Chiu and Lee 所提出的適用於物聯網資料收集之Wi-Fi串鏈網路演算法,此演算法提出了低碰撞度的無線路由協定與單一路由路徑及其維護與救援方式,適合應用於智慧路燈、智慧電網等路徑簡單等資料蒐集網路,然而,經過實際架設與應用發現,因其只有單一路徑拓樸,如果節點分佈為無法建立單一直鏈拓樸則將無法建網,而且在節點密集或大量節點所建構出的串鏈式網路更容易受節點斷線影響。
因此本演算法提出設計應用於物聯網具適切性之Wi-Fi樹狀網路演算法,提出由路由伺服器負責硬體及運算等路由維護資源,解決了節點對於維護路由的運算負擔,由根節點作為橋樑連接路由伺服器與無線網路,網路節點負責維護父節點及子節點路由,減輕網路設備負擔,同時樹狀拓樸提供了更有彈性的建網及更少的建網階層,解決對於串鏈式網路中節點分佈造成網路不穩定或無法建網的影響,建網機制中具適切性階層以建立更小的階層長度,解決隨意建網的可能並建構更有效率的網路,廣播註冊機制採用隨機權重演算法,降低了密集節點發生廣播風暴的可能,並限制節點有限子節點數,降低網路節點負擔,最後在NS-3平台上模擬分析網路的可行性,並提出相關目標函數與建議設置參數值。
In response to the rise of the IoT concept in recent years, wireless network-related technology organizations have proposed communication technology agreements for the Internet of Things. The Wi-Fi protocols have become more mature, and many related modules on the market have developed and are relatively inexpensive. The existing main Wi-Fi routing algorithms, such as AODV, are easy to generate a large number of packets in the system while finding route, which causes broadcast storms when there are dense nodes, and the network construction process is complicated, resulting in slow network construction. Furthermore, OLSR consumes too many resources on the maintenance route, and the network construction procedure is also complicated. Both of these routes have their shortcomings in connection networking or maintenance.
Chiu and Lee put forward Adaptive Linked-List Mechanism For Wi-Fi Wireless Network for IoT data collection. This algorithm proposes a low-impact wireless routing protocol and a single routing path and its maintenance and rescue methods. Suitable for data collection networks such as smart street lights, smart grids, etc. however, after the actual construction and application discovery, because there is only a single path topology, if the node distribution is unable to establish a single-chain topology, it will not be able to build a network successfully. Moreover, the Linked-List network constructed by nodes with dense nodes or a large number of nodes is more susceptible to node disconnection.
Therefore, this thesis proposes a Design Adaptive Tree Topology Algorithm For Wi-Fi Wireless Network, include the Routing Server is responsible for routing maintenance resources such as hardware and computing, solved the computing burden of nodes for maintaining routes. The Root acts as a bridge to connect the Routing Server to the wireless network. Other nodes are responsible for maintaining the parent node and child node routing, reducing the burden on the network device. At the same time, the tree topology provides a more flexible network and fewer hops, solving the node distribution causes the impact of network instability or network failure in a Linked-List network. Build a network with an adaptive hierarchy to create smaller hopping, dealing with the possibility of unconditional network construction and have a more efficient network. Broadcasting registration mechanism using striped random priority algorithm, reducing the possibility of broadcast storms on dense nodes. And limit the number of nodes with the limited number of nodes, reduce the burden on the network node. Finally, simulate the feasibility of the network on the NS-3 platform, and this thesis proposes object function and suggested parameter.
目錄
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vi
圖次 ix
表次 xiii
第1章 簡介 1
1.1 前言 1
1.2 研究目的 2
1.3 論文架構 2
第2章 背景知識與相關研究 3
2.1 應用於物聯網相關無線網路策略 3
2.1.1 AODV 3
2.1.2 LORA 4
2.1.3 Sigfox 6
2.1.4 NB-IoT 7
2.1.5 LTE-M 9
2.1.6 RPL 10
2.1.7 小結 12
2.2 6LoWPAN 12
2.2.1 LoWPAN Bootstrapping Protocol (LBP) 13
2.3 以軟體定義網路實現應用於物聯網之智慧交換器 15
2.3.1 減少碰撞演算法 15
2.4 適用於物聯網資料收集之Wi-Fi串鏈網路 17
2.4.1 串鏈式網路架構 17
2.4.2 實際應用 19
第3章 應用於物聯網具適切性之Wi-Fi樹狀網路演算法 21
3.1 應用於物聯網具適切性之Wi-Fi樹狀網路演算法 21
3.1.1 整體架構 21
3.1.2 節點定義 22
3.1.3 路由表定義 23
3.1.4 節點狀態 24
3.1.5 封包傳輸方式 27
3.2 封包格式 32
3.2.1 MAC & ECAT Header 32
3.2.2 演算法系統封包(0xC) 34
3.2.3 Modbus & Extend Modbus封包(0xA,0xD) 45
3.3 建網程序 46
3.3.1 開機流程 46
3.3.2 建網流程 47
3.3.3 廣播註冊機制 53
3.3.4 有限子節點回覆機制 54
3.3.5 適切性階層選擇機制 55
3.3.6 Race Condition Avoidance機制 56
3.4 維護程序 56
3.4.1 節點定義 56
3.4.2 即時連線維護機制(Alive Checking) 58
3.4.3 復原機制(Recovery) 62
3.4.4 尋找孤立子節點機制 63
3.4.5 尋找新父節點機制 66
3.4.6 更新路由機制 70
3.5 總結 74
第4章 模擬與驗證 75
4.1 模擬平台介紹 75
4.1.1 NS-3(Network Simulator 3) 75
4.1.2 應用於物聯網具適切性之Wi-Fi樹狀網路演算法模擬模組設置 77
4.2 模擬應用於物聯網具適切性之Wi-Fi樹狀網路演算法可行性 78
4.2.1 建網程序模擬 78
4.2.2 維護程序模擬 82
4.3 目標函數(Objective Function) 84
4.3.1 廣播時間 85
4.3.2 End-to-End Delay 86
4.4 模擬分析 87
4.4.1 建網時間探討 87
4.4.2 不同權重跳躍閥值下對建網時間影響 89
4.4.3 建網階層探討 92
4.4.4 有限子節點數在不同TRRT下對建網階層影響 92
4.5 總結 98
第5章 總結 100
參考文獻 102
參考文獻
[1]Jih-Ching Chiu, Tsung-Lin Lee, “Adaptive Linked-List Mechanism For Wi-Fi Wireless Network” New Trends in Computer Technologies and Applications, Page.49-Page.61, 23rd International Computer Symposium(ICS), 2018.
[2]Jih-Ching Chiu, Wen-Shin Wang, “Linked List Routing Algorithm With Wormhole Mechanism For Data Collecting Wireless Network” 2014 International Computer Symposium (ICS), 2014.
[3]Jih-Ching Chiu, Chien-Chih Liao, “Design and Implementation of Smart Switch for IOT Applications with SDN Mechanisms”, 2018.
[4]Yu-Chee Tseng, Sze-Yao Ni, Yuh-Shyan Chen, Jang-Ping Sheu, “The Broadcast Storm Problem in a Mobile Ad Hoc Network” COMPUTER SCIENCE Wireless networks, Volume 8, Page.153-Page.167, Numbers 2-3, 2002.
[5]Jih-Ching Chiu, Chien-Lung Chen, “Adaptive Linked-List Routing Algorithm With Wormhole Mechanism,” Taiwan Academic Network Conference(TANET), 2015
[6]Sigfox, https://www.sigfox.com/en
[7]LORA Alliance, https://www.lora-alliance.org/
[8]Network Simulator-3. https://www.nsnam.org/
[9]3GPP. https://www.3gpp.org/
[10]Jih-Ching Chiu, Kai-Ming Yang, Yao-Chin Huang, Ming-Shiou Wu, "Dynamic Multi-channel Multi-path Routing Protocol for Smart Grid," The 3rd FTRA International Conference on Computer Science and its Applications (CSA 2011) at Korea, Dec. 2011.
[11]IEEE Std 802.11-2016
[12]IEEE Std 802.15.4-2006
[13]Texas Instruments. SimpleLink Ethernet MSP432E401Y MCU Launchpad™ Development Kit [Online].
Available: http://www.ti.com/lit/ug/slau748b/slau748b.pdf
[14]Chavan, A. A., Kurule, D. S., & Dere, P. U. (2016). Performance Analysis of AODV and DSDV Routing Protocol in MANET and Modifications in AODV against Black Hole Attack. Procedia Computer Science, 79, 835-844. doi:10.1016/j.procs.2016.03.108
[15]Commissioning in 6LoWPAN, Network Working Group of IETF, Available: https://www.ietf.org/
[16]LBP: A Secure and Efficient Network Bootstrapping Protocol for 6LoWPAN
[17]Winter, Tim. "RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks", 2012.
[18]Pat, Kinney, Tero, Kivinen, "IEEE 802.15.4 Information Element for the IETF". Retrieved 2018-10-13.
電子全文 電子全文(網際網路公開日期:20240826)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊