跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/14 22:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:姜幃傑
研究生(外文):Wei-Jie Jiang
論文名稱:在LWA網路根據PLR的動態分流調整機制
論文名稱(外文):A Dynamic Stream Adjustment Scheme with PLR in LWA Network
指導教授:許蒼嶺
指導教授(外文):Tsang-Ling Sheu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:中文
論文頁數:70
中文關鍵詞:PLRLWAWi-FiLTEPSR
外文關鍵詞:LTEWi-FiLWAPLRPSR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:98
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
LTE與Wi-Fi整合技術(LTE-WLAN Aggregation, LWA)會在eNB中進行分流,將部分的封包透過AP傳送給一個UE,另外一部分的封包則透過eNB傳送給同一個UE,當eNB或AP其中任何一個發生網路壅塞情形時,如果使用固定比例的分流會導致UE的Throughput下降,為了解決上述的問題,本論文提出動態分流調整機制(Dynamic Stream Adjustment Scheme, DSAS),此機制在eNB中新增封包遺失率(Packet Loss Ratio, PLR)計算模組與動態分流模組,在PLR計算模組中,eNB會將每個封包的傳送介面與PDCP (Packet Data Convergence Protocol) SN (Sequence Number)記錄在資料庫中,並透過UE定期回報給eNB的PDCP 狀態報告(PDCP Status Report, PSR)來計算LTE介面與Wi-Fi介面的PLR,在動態分流模組中,我們比較兩個介面的PLR,若Wi-Fi介面的PLR大於LTE介面的PLR,eNB會指數增加LTE介面的分流比例,反之,若LTE介面的PLR大於Wi-Fi介面的PLR,eNB會指數增加Wi-Fi介面的分流比例,最後我們使用ITRI LWA實作完成DSAS機制,從量測結果中我們驗證有使用本機制LWA UE 的Throughput會有效提高而且PLR會大幅下降。
LTE-WLAN Aggregation (LWA) can perform stream-splitting in eNB. In other words, partial packets are transmitted to one UE through AP, while partial packets are transmitted to the same UE through eNB. When network congestion occurs in eNB or AP, using a fixed ratio of stream-splitting will cause the throughput of UE to drop significantly. In order to resolve the above problem, this thesis proposes a dynamic stream adjustment scheme (DSAS). In DSAS, we design and implement two modules, a packet-loss-ratio (PLR) calculation module and a dynamic stream-splitting module, in eNB. In the PLR calculation module, eNB will record the transmission interface of each packet and the sequence number (SN) of packet data convergence protocol (PDCP) to the database. eNB then calculates the PLR of the LTE interface and the Wi-Fi interface, respectively, through the PDCP Status Report (PSR) periodically reported from a UE to eNB. In the dynamic stream-splitting module, we compare the PLR of the two interfaces. If the PLR of the Wi-Fi interface is greater than the PLR of the LTE interface, eNB will exponentially increase the stream-splitting ratio in the LTE interface. On the contrary, if the PLR of the LTE interface is greater than the PLR of the Wi-Fi interface, the eNB will exponentially increase the stream-splitting ratio of the Wi-Fi interface. Finally, we use the ITRI LWA platform to implement the proposed DSAS mechanism. From the experimental measurements, we validate that the system throughput of LWA by using the DSAS mechanism can be effectively improved and the PLR of both interfaces can drop significantly.
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 viii
第一章 導論 1
1.1 研究動機 1
1.2 研究方法 1
1.3 章節介紹 2
第二章 LWA的分流機制 3
2.1 Multi-RAT 3
2.2 Wi-Fi 4
2.3 LTE 6
2.3.1 RLC Header 7
2.3.2 PDCP Header 9
2.3.3 PDCP Status Report 10
2.4 LWA 14
2.5 相關研究 15
2.6 本論文機制 17
第三章 動態分流機制 18
3.1 動態分流系統架構 18
3.2 動態分流模組 20
3.3 PLR計算模組 24
3.4 Database 27
第四章 ITRI LWA平台的實作與結果分析 29
4.1 實驗環境與設備規格 29
4.2 在ITRI LWA平台上的實作 31
4.2.1 PLR計算模組 31
4.2.2動態分流模組 38
4.3實作結果與分析 44
4.3.1 實驗內容與參數設定 44
4.3.2 結果分析 45
第五章 結論與未來工作 51
5.1 結論 51
5.2 未來工作 52
Reference 53
Acronyms 57
Index 59
[1] “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” IEEE Std. 802.11, 1999.
[2] “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 13),” France, 3GPP TS 36.300, ver.13.2.0, Jan. 2016.
[3] “Technical Specification Group Radio Access Network; Feasibility study for evolved Universal Terrestrial Radio Access (UTRA) and Universal Terrestrial Radio Access Network (UTRAN) (Release 11),” France, 3GPP TR 25.912, ver.11.0.0, Sep. 2012.
[4] “Evolved Universal Terrestrial Radio Access (E-UTRA); Packet Data Convergence Protocol (PDCP) specification (Release 13),” France, 3GPP TS 36.323, ver.13.2.1, Aug. 2016.
[5] Y. Tu, C. Lee, C. Liu, C. Chia, Y. Chen, and Y. Lin, “Deployment of the First Commercial LWA Service,” IEEE Wireless Communications, Vol. 24, No. 4, pp. 6-8, Dec. 2017.
[6] Y. Chen, M. Ding, D. Perez, J. Li, Z. Lin, and B. Vucetic, “Dynamic Reuse of Unlicensed Spectrum: An Inter-Working of LTE and WiFi,” IEEE Wireless Communications, Vol. 24, No. 5, pp. 52-59, Oct. 2017.
[7] Q. Cui, Y. Shi, X. Tao, P. Zhang, R. Liu, N. Chen, J. Hamalainen, and A. Dowhuszko, “A unified protocol stack solution for LTE and WLAN in future mobile converged networks,” IEEE Wireless Communications, Vol. 21, No. 6, pp. 24-33, Dec. 2014.
[8] D. Laselva, D. Perez, M. Rinne, and T. Henttonen, “3GPP LTE-WLAN Aggregation Technologies: Functionalities and Performance Comparison,” IEEE Communications Magazine, Vol. 56, No. 3, pp. 195-203, Mar. 2018.
[9] R. Bajracharya, R. Shrestha, R. Ali, A. Musaddiq, and S. Kim, “LWA in 5G: State-of-the-Art Architecture, Opportunities, and Research Challenges,” IEEE Communications Magazine, Vol. 56, No. 10, pp. 134-141, Oct. 2018.
[10] P. Nuggehalli, “LTE-WLAN aggregation [Industry Perspectives],” IEEE Wireless Communications, Vol. 23, No. 3, pp. 4-6, Aug. 2016.
[11] 施盈如, “Control Plane Design and Implementation for LTE-WLAN Aggregation (LWA),” 工研院資通所, Oct. 2016.
[12] 施盈如, “LTE-WLAN Aggregation (LWA) RRC/RRM,” 工研院資通所, Sep. 2017.
[13] 王立昌, “LTE-WLAN Aggregation (LWA) Introduction,” 工研院資通所, Sep. 2017.
[14] I. Balan, D. Laselva, S. Redana, and A. Lobinger, “RSRP-Based LTE-WLAN Traffic Steering,” 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), Glasgow, UK, pp. 1-5, May 11-14, 2015.
[15] Y. Lin, Y. Shih, H. Tseng, and L. Chen, “LWA Rate Adaption by Enhanced Event-Triggered Reporting,” IEEE Transactions on Vehicular Technology, Vol. 27, No. 11, pp. 10950-10959, Aug. 2018.
[16] I. Balan, E. Perez, B. Wegmann, and D. Laselva, “Self-optimizing adaptive transmission mode selection for LTE-WLAN aggregation,” 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, pp. 1-6, Sep. 4-8, 2016.
[17] K. Santhanam, U. Gurusamy, and E. Murugavalli, “LTE WLAN Aggregation — SDN Assisted: A Seamless Connectivity Approach for Heterogeneous Networks,” 2018 2nd International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, pp. 397-402, Jan. 19-20, 2018.
[18] S. Ranjan, N. Akhtar, M. Mehta, and A. Karandikar, “User-based Integrated Offloading Approach for 3GPP LTE-WLAN Network,” 2014 Twentieth National Conference on Communications (NCC), Kanpur, India, pp. 1-6, Feb. 28-Mar. 2, 2014.
[19] B. Chen, N. Pappas, Z. Chen, D. Yuan, and J. Zhang, “LTE-WLAN Aggregation with Bursty Data Traffic and Randomized Flow Splitting,” ICC 2019 - 2019 IEEE International Conference on Communications (ICC), Shanghai, China, pp.1-6, May 20-24, 2019.
[20] B. Liu, Q. Zhu, and H. Zhu, “Delay-Aware LTE WLAN Aggregation in Heterogeneous Wireless Network,” IEEE Access, Vol. 6, pp. 14544-14559, Feb. 2018.
[21] A. Abdulshakoor, M. Elmesalawy, and G. Khalaf, “Proportional Traffic Splitting for Efficient LTE-WLAN Aggregation in Multi-RAT Heterogeneous Networks,” 2019 36th National Radio Science Conference (NRSC), Port Said, Egypt, pp. 242-248, Apr. 16-18, 2019.
[22] P. Sharma, A. Brahmakshatriya, T. Pasca, B. Tamma, and A. Franklin, “LWIR: LTE-WLAN Integration at RLC Layer with Virtual WLAN Scheduler for Efficient Aggregation,” 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, pp. 1-6, Dec. 4-8, 2016.
電子全文 電子全文(網際網路公開日期:20241028)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊