跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/15 11:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張瀚哲
研究生(外文):Han-Che Chang
論文名稱:針對某類擾動欠致動系統結合步階回歸與順滑模態控制之控制器設計
論文名稱(外文):A Unifying Design of Backstepping and Sliding Mode Controllers for a Class of Perturbed Underactuated Systems
指導教授:鄭志強鄭志強引用關係
指導教授(外文):Chih-Chiang Cheng
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:62
中文關鍵詞:非匹配擾動適應控制步階回歸控制欠致動系統類李亞普諾夫引理擾動估測
外文關鍵詞:Lyapunov-like lemmaunderactuated systemsunmatched perturbationsadaptive controlbackstepping controlperturbation estimation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:94
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對一類具有匹配和非匹配擾動的欠致動系統,提出了一種將步階回歸控制與順滑模態控制相結合的控制方法,以解決本文中的追蹤問題。首先,通過非線性狀態變換將欠致動系統的動態方程式轉化為兩個子系統。其次,設計順滑面函數以確保可以實現追蹤目標。最後則是利用步階回歸控制方法根據所設計的順滑面函數設計控制器。由於採用了適應機制,設計者們在設計過程中不需要知道所有擾動和擾動估計誤差的上界。所提出之控制系統中的所有信號都是有界的,並且追蹤誤差是漸近穩定的。最後,給出了兩個數值範例和一個實際應用,證明了所提出之控制方法的可行性。
A control methodology of combining backstepping control with sliding mode is proposed for a class of underactuated systems with matched and unmatched perturbations to solve tracking problems in this thesis. First of all, the dynamic equations of the underactuated system are transformed to two subsystems through nonlinear state transformation. Then one designs the sliding surface function to ensure that the tracking objective can be achieved. The third is to utilize the backstepping control method to design the controller in accordance with the designed sliding surface function. The designers do not need to know the upper bounds of all perturbations and perturbation estimation errors during the design process due to the employed adaptive mechanisms. All the signals in the proposed control system are bounded, and the tracking errors are asymptotic stable. Finally, a numerical example and a practical application are given for demonstrating the feasibility of the proposed control scheme.
論文審定書 …………………………………………………………............................……....… i
誌謝 ……………………………………………………………………..........................………....... ii
中文摘要 …………………………………………………………………........................…......… iii
Abstract ………………………………………………………………..............................…....… iv
List of Figures ……………………………………………………..............................…....… vii
Chapter 1 Introduction 1
1.1 Introduction ……………………………………………………………….....................…. 1
1.2 Brief Sketch of the Contents ………………………………………………............ 3
Chapter 2 Design of the Adaptive Backstepping Controllers 5
2.1 System Descriptions and Problem Formulations ...………………….. 5
2.2 Transformation ………......………………………………………….…...............…….. 6
2.3 Design of the Virtual Control ……………………………………….........……….. 14
2.4 Design of the Controllers and Stability Analysis ……….……………... 17
Chapter 3 Computer Simulation and Practical Application 24
4.1 Numerical Example ………………………………………………….................…..… 24
4.2 Practical Application …………………………………………………................….... 37
Chapter 4 Conclusions 44
Bibliography 45
Appendix 51
[1] I. Fantoni and R. Lozano, Non-linear Control for Underactuated Mechanical Systems, Springer, Berlin, 2001.
[2] J.-X. Xu, Z.-Q. Guo, and T. H. Lee, “Design and implementation of integral sliding-mode control on an underactuated two-wheeled mobile robot,” IEEE Transactions on Industrial Electronics, vol. 61, no. 7, pp. 3671-3681, 2014.
[3] L.Wu,W. Luo, Y. Zeng, F. Li, and Z. Zheng, “Fault detection for underactuated manipulators modeled by Markovian jump systems,” IEEE Transactions on Industrial Electronics, vol. 63, no. 7, pp. 4387-4399, 2016.
[4] X. Lai, Y. Wang, M. Wu, and W. Cao, “Stable control strategy for planar three-link underactuated mechanical system,” IEEE/ASME Transactions on Mechatronics, vol. 21, no. 3, pp. 1345-1356, 2016.
[5] Y. Fang, B. Ma, P.Wang, and X. Zhang, “A motion planning-based adaptive control method for an underactuated crane system,” IEEE Transactions on Control Systems Technology, vol. 20, no. 1, pp. 241-248, 2012.
[6] R. Xu and Özgüner, “Sliding mode control of a class of underactuated systems,” Automatica, vol. 44, no. 1, pp. 233-241, 2008.
[7] H. Ashrafiuon and R. S. Erwin, “Sliding mode control of underactuated multibody systems and its application to shape change control,” International Journal of Control, vol. 81, no. 12, pp. 1849-1858, 2008.
[8] V. Sankaranarayanan and A. D. Mahindrakar, “Control of a class of underactuated mechanical systems using sliding modes,” IEEE Transactions on Robotics, vol. 25, no. 2, pp. 459-467, 2009.
[9] B. Lu, Y. Fang, and N. Sun, “Continuous sliding mode control strategy for a class of nonlinear underactuated systems,” IEEE Transactions on Automatic Control, vol. 63, no. 10, pp. 3471-3478, 2018.
[10] W. Wang, X. D. Liu, and J. Q. Yi, “Structure design of two types of sliding-mode controllers for a class of under-actuated mechanical systems,” IET Control Theory & Applications, vol. 1, no. 1, pp. 163-172, 2007.
[11] M. Zhang, X. Ma, R. Song, X. Rong, G. Tian, X. Tian, and Y. Li, “Adaptive proportional-derivative sliding mode control law with improved transient performance for underactuated overhead crane systems,” IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 3, pp. 683-690, 2018.
[12] J. Ghommam, F. Mnif, and N. Derbel, “Global stabilisation and tracking control of underactuated surface vessels,” IET Control Theory & Applications, vol. 4, no. 1, pp. 71-88, 2010.
[13] W. Hao,W. Dan, P. Zhouhua, and W.Wei, “Adaptive dynamic surface control for cooperative path following of underactuated marine surface vehicles via fast learning,” IET Control Theory & Applications, vol. 7, no. 15, pp. 1888-1898, 2013.
[14] Z. Liu, “Practical backstepping control for underactuated ship path following associated with disturbances,” IET Intelligent Transport Systems, vol. 13, no. 5, pp. 834-840, 2019.
[15] A. S. Shiriaev, L. B. Freidovich, and S. V. Gusev, “Transverse linearization for controlled mechanical systems with several passive degrees of freedom,” IEEE Transactions on Automatic Control, vol. 55, no. 4, pp. 893-906, 2010.
[16] A. M. Bloch, D. E. Chang, N. E. Leonard, and J. E. Marsden, “Controlled Lagrangians and the stabilization of mechanical systems II : potential shaping,” IEEE Transactions on Automatic Control, vol. 46, no. 10, pp. 1556-1571, 2001.
[17] Y. Zhang, S. Li, and X. Liu, “Adaptive near-optimal control of uncertain systems with application to underactuated surface vessels,” IEEE Transactions on Control Systems Technology, vol. 26, no. 4, pp. 1204-1218, 2018.
[18] R. Jafari, F. B. Mathis, R. Mukherjee, and H. Khalil, “Enlarging the region of attraction of equilibria of underactuated systems using impulsive inputs,” IEEE Transactions on Control Systems Technology, vol. 24, no. 1, pp. 334-340, 2016.
[19] T.-S. Wu, M. Karkoub, H. Wang, H.-S. Chen, and T.-H. Chen, “Robust tracking control of MIMO underactuated nonlinear systems with dead-zone band and delayed uncertainty using an adaptive fuzzy control,” IEEE Transactions on Fuzzy Systems,
vol. 25, no. 4, pp. 905-918, 2017.
[20] C.-L. Hwang, C.-C. Chiang, and Y.-W. Yeh, “Adaptive fuzzy hierarchical sliding-mode control for the trajectory tracking of uncertain underactuated nonlinear dynamic systems,” IEEE Transactions on Fuzzy Systems, vol. 22, no. 2, pp. 286-299, 2014.
[21] C. Yang, Z. Li, R. Cui, and B. Xu, “Neural network-based motion control of underactuated wheeled inverted pendulum models,” IEEE Transactions on Neural Networks and Learning Systems, vol. 25, no. 11, pp. 2004-2016, 2014.
[22] X. Yang and X. Zheng, “Swing-up and stabilization control design for an underactuated rotary inverted pendulum system theory and experiments,” IEEE Transactions on Industrial Electronics, vol. 65, no. 9, pp. 7229-7238, 2018.
[23] J. Wu, J. She, Y. Wang, and C.-Y. Su, “Position and posture control of planar four link underactuated manipulator based on neural network model,” IEEE Transactions on Industrial Electronics, vol. 67, no. 6, pp. 4721-4728, 2020.
[24] K. Wang, Y. Liu, and L. Li, “Vision-based tracking control of underactuated water surface robots without direct position measurement,” IEEE Transactions on Control Systems Technology, vol. 23, no. 6, pp. 2391-2399, 2015.
[25] Y. Lu, G. Zhang, L. Qiao, and W. Zhang, “Adaptive output-feedback formation control for underactuated surface vessels,” International Journal of Control, vol. 93, no. 3, pp. 400-409, 2020.
[26] J.Y. Hung, W. Gao, and J.C. Hung, “Variable structure control : a survey,” IEEE Transactions on Industrial Electronics, vol. 40, no. 1, pp. 2-22, 1993.
[27] Y.-S. Lin and C.-C. Cheng, “Design of terminal block backstepping controllers for perturbed systems in semi-strict feedback form,” International Journal of Control, vol. 88, no. 10, pp. 2107-2116, 2015.
[28] Y.-J. Liu, S. Lu, D. Li, and S. Tong, “Adaptive controller design-based ABLF for a class of nonlinear time-varying state constraint systems,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no.7, pp. 1546-1553, 2017.
[29] Y.-L. Gu and Y. Xu, “A normal form augmentation approach to adaptive control of space robot systems,” [1993] Proceedings IEEE International Conference on Robotics and Automation, pp. 731-737, Atlanta, 1993.
[30] H. K. Khalil, Nonlinear Systems, Prentice-Hall, New Jersey, 1996.
[31] W. M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, New York, 1975.
[32] R. Olfati-Saber, “Cascade normal forms for underactuated mechanical systems,” Proceedings of the 39th IEEE Conference on Decision and Control, vol. 3, no. 2, pp. 2162-2167, Sydney, 2000.
[33] R. Olfati-Saber, “Normal forms for underactuated mechanical systems with symmetry,” IEEE Transactions on Automatic Control, vol. 47, no. 2, pp. 305-308, 2002.
[34] C.-C. Cheng, Y.-C. Chiang, and P.-C. Huang, “Design of adaptive block backstepping controllers with perturbations estimation for nonlinear state-delayed systems in semi-strict feedback form,” Asian Journal of Control, vol. 19, no. 3, pp. 1-18, 2017.
[35] J.-J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice-Hall, New Jersey, 1991.
[36] N. Sun, Y. Fang, Y. Zhang, and B.Ma, “A novel kinematic coupling-based trajectory planning method for overhead cranes,” IEEE/ASME Transactions on Mechatronics, vol. 17, no. 1, pp. 166-173, 2012.
[37] C.-C. Cheng and M.-W. Chang, “Design of derivative estimator using adaptive sliding mode technique,” 2006 American Control Conference, pp. 2611-2615, Minneapolis, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊