跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/17 10:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林志嘉
研究生(外文):Chih-Chia Lin
論文名稱:開發動力學機理預測乙烯火焰和異丁醇火焰中多環芳香烴的形成
論文名稱(外文):Developing Kinetic Mechanisms for Predicting Formation of Polycyclic Aromatic Hydrocarbons in Ethylene Flames and Isobutanol Flames
指導教授:林洸銓許聖彥
指導教授(外文):Kuang C. LinSheng-Yen Hsu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:英文
中文關鍵詞:多環芳香烴乙烯異丁醇非預混火焰化學動力學機理計算流體力學
外文關鍵詞:EthyleneI-butanolCFDNon-premixed flamePolycyclic Aromatic Hydrocarbons (PAHs)Kinetic mechanism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了預測乙烯在非預混火焰燃燒中所產生的烴類及多環芳香烴產物,我們將開發一組乙烯精簡機理來驗證實驗所量測到的產物。首先收集包含乙烯氧化反應的詳細機理,並透過模擬延遲點火時間及火焰速度來驗證機理的火焰特性,再選擇表現最好的機理進行下一步的驗證。為了驗證多環芳香烴的形成,將該機理與其它包含多環芳香烴子機理做合併,透過替換反應常數與熱數據改善其預測的精準度,再透過路徑通量分析簡化該機理,得到了含有123個化學種類及803個化學反應且僅包含乙烯燃料的精簡機理。此精簡機理在一維層流管狀火焰和對衝擴散火焰所量測的多環芳香烴產物驗證中都呈現準確的預測。於此前提下,此精簡機理結合二維計算流體力學模型,首次驗證了共伴流火焰實驗透過質譜儀量測的烴類及多環芳香烴產物分佈,透過產率分析揭示了乙烯燃燒形成多環芳香烴的反應路徑。
同樣地,為了預測異丁醇在非預混火焰燃燒中所產生的烴類及多環芳香烴產物,依循著上述相同的方法,開發一組含有138個化學種類及1040個化學反應且僅包含異丁醇燃料的精簡機理。此精簡機理結合一維對衝擴散火焰模型,驗證了透過質譜儀測量的多環芳香烴產物,同時也揭示了異丁醇在對衝擴散火焰燃燒形成多環芳香烴的反應路徑。
The first part of this thesis begins with identifying a published multi-fuel kinetic mechanism capable of predicting ethylene oxidation in a wide range of ignition delay time (T = 800-1400 K, P = 1-50 atm, ϕ = 0.3-2.0) and flame speeds conditions (Tu = 298 K, P = 1-3 atm, ϕ = 0.4-2.2). The mechanism is further added with missing species in order for comprehensively predicting unsaturated normal chain hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) in a tubular premixed flame and an opposed diffusion flame. The rate constants and thermal data are updated for refinement of the species profile prediction accuracy. This multi-fuel detailed mechanism with 664 species and 3582 reactions is reduced to 123 species and 803 reactions where ethylene is the only fuel and PAH description up to four rings is fully kept. For the first time, previously measured mole fractions of 22 hydrocarbons in the coflow flame by gas-chromatography mass spectrometry are well verified by the present 2-D CFD model coupled with the 123-species skeletal mechanism. The reaction pathways leading to PAHs from ethylene decomposition is unveiled in this 2-D co-flow flame.
The second part of this thesis begins with identifying a published multi-fuel kinetic mechanism capable of predicting ethylene oxidation in a wide range of ignition delay time (T = 740-1850 K, P = 1-30 atm, ϕ = 0.5-2.0) and flame speeds conditions (Tu = 353 K, P = 1-2 atm, ϕ = 0.5-2.0). The mechanism is further added with missing species in order for comprehensively predicting unsaturated normal chain hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) in an opposed diffusion flame. The rate constants and thermal data are updated for refinement of the species profile prediction accuracy. This multi-fuel detailed mechanism with 285 species and 1791 reactions is reduced to 138 species and 1040 reactions where i-butanol is the only fuel and PAH description up to four rings is fully reserved. For the first time, previously 10 measured concentrations of hydrocarbons and aromatic hydrocarbons compounds up to C16 in the opposed diffusion flame by gas-chromatography mass spectrometry are well verified by the present 1-D CFD model coupled with the 138-species skeletal mechanism.
Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Table of Contents vi
List of Figures viii
List of Tables xi
Nomenclature xiii
1 Introduction 1
1.1 Background 1
1.1.1 PAH formation in oxidation of ethylene 1
1.1.2 PAH formation in oxidation of i-butanol 1
1.2 Literature review 2
1.2.1 Chemical kinetics of ethylene 2
1.2.2 Chemical kinetics of i-butanol 4
1.3 Objective of this study 5
2 Methodology 5
2.1 Mechanism construction 5
2.1.1 Mechanism construction for ethylene 5
2.1.2 Mechanism construction for i-butanol 9
2.2 Mechanism reduction 14
2.3 Ignition delay time 17
2.4 Flame speed 19
2.5 1-D premixed laminar tubular flame 20
2.6 1-D opposed diffusion flame 23
2.7 2-D co-flow flame 25
3 Results and Discussion 29
3.1 PAH formation in oxidation of ethylene 29
3.1.1 Mechanism construction and reduction 29
3.1.2 Ignition delay time 29
3.1.3 Flame speed 31
3.1.4 1-D premixed laminar tubular flame 32
3.1.5 1-D opposed diffusion flame 35
3.1.6 2-D co-flow flame 37
3.2 PAH formation in oxidation of i-butanol 46
3.2.1 Mechanism construction and reduction 46
3.2.2 Ignition delay time 46
3.2.3 Flame speed 48
3.2.4 1-D opposed diffusion flame 49
4 Conclusion 55
4.1 Ethylene-PAH mechanism 55
4.2 i-butanol-PAH mechanism 56
5 References 57
Appendix 62
Ethylene mechanism 62
I-buranol mechanism 86
[1] K. Srogi, Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review, Environmental Chemistry Letters 5 (2007) 169-195.

[2] U.S.E.P. Agency, Health assessment document for diesel engine exhaust, (2002).

[3] H. Richter, J.B. Howard, Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways, Progress in Energy and Combustion Science 26 (2000) 565-608.

[4] D.R. Tree, K.I. Svensson, Soot processes in compression ignition engines, Progress in Energy and Combustion Science 33 (2007) 272-309.

[5] S.B. Dworkin, Q. Zhang, M.J. Thomson, N.A. Slavinskaya, U. Riedel, Application of an enhanced PAH growth model to soot formation in a laminar coflow ethylene/air diffusion flame, Combustion and Flame 158 (2011) 1682-1695.

[6] N.A. Slavinskaya, U. Riedel, S.B. Dworkin, M.J. Thomson, Detailed numerical modeling of PAH formation and growth in non-premixed ethylene and ethane flames, Combustion and Flame 159 (2012) 979-995.

[7] C. Saggese, S. Ferrario, J. Camacho, A. Cuoci, A. Frassoldati, E. Ranzi, H. Wang, T. Faravelli, Kinetic modeling of particle size distribution of soot in a premixed burner-stabilized stagnation ethylene flame, Combustion and Flame 162 (2015) 3356-3369.

[8] P. Geng, E. Cao, Q. Tan, L. Wei, Effects of alternative fuels on the combustion characteristics and emission products from diesel engines: A review, Renewable and Sustainable Energy Reviews 71 (2017) 523-534.

[9] H. Mahmudul, F. Hagos, R. Mamat, A.A. Adam, W. Ishak, R. Alenezi, Production, characterization and performance of biodiesel as an alternative fuel in diesel engines–A review, Renewable and Sustainable Energy Reviews 72 (2017) 497-509.

[10] S. Kumaravel, A. Murugesan, A. Kumaravel, Tyre pyrolysis oil as an alternative fuel for diesel engines–A review, Renewable and Sustainable Energy Reviews 60 (2016) 1678-1685.
[11] A. Murugesan, C. Umarani, R. Subramanian, N. Nedunchezhian, Bio-diesel as an alternative fuel for diesel engines—A review, Renewable and Sustainable Energy Reviews 13 (2009) 653-662.

[12] C. Bae, J. Kim, Alternative fuels for internal combustion engines, Proceedings of the Combustion Institute 36 (2017) 3389-3413.

[13] N. Yilmaz, Comparative analysis of biodiesel–ethanol–diesel and biodiesel–methanol–diesel blends in a diesel engine, Energy 40 (2012) 210-213.

[14] M. Karabektas, M. Hosoz, Performance and emission characteristics of a diesel engine using isobutanol–diesel fuel blends, Renewable Energy 34 (2009) 1554-1559.
[15] P. Dürre, Biobutanol: an attractive biofuel, Biotechnology Journal: Healthcare Nutrition Technology 2 (2007) 1525-1534.

[16] S. Li, J. Liu, F. Wang, Y. Li, M. Wei, H. Xiao, Z. An, Effects of gasoline and iso-butanol addition on combustion and pollutant emissions of a common-rail diesel engine at different injection timing, Fuel 256 (2019) 115853.

[17] M.J. Castaldi, N.M. Marinov, C.F. Melius, J. Huang, S.M. Senkan, W.J. Pit, C.K. Westbrook, Experimental and modeling investigation of aromatic and polycyclic aromatic hydrocarbon formation in a premixed ethylene flame, Symposium (International) on Combustion 26 (1996) 693-702.

[18] N. Olten, S. Senkan, Formation of polycyclic aromatic hydrocarbons in an atmospheric pressure ethylene diffusion flame, Combustion and Flame 118 (1999) 500-507.

[19] C.S. McEnally, L.D. Pfefferle, Comparison of non-fuel hydrocarbon concentrations measured in coflowing nonpremixed flames fueled with small hydrocarbons, Combustion and Flame 117 (1999) 362-372.

[20] H. Richter, S. Granata, W.H. Green, J.B. Howard, Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame, Proceedings of the Combustion Institute 30 (2005) 1397-1405.

[21] W.J. Grieco, A.L. Lafleur, K.C. Swallow, H. Richter, K. Taghizadeh, J.B. Howard, Fullerenes and PAH in low-pressure premixed benzene/oxygen flames, Symposium (International) on Combustion 27 (1998) 1669-1675.

[22] C.V. Naik, K.V. Puduppakkam, A. Modak, E. Meeks, Y.L. Wang, Q. Feng, T.T. Tsotsis, Detailed chemical kinetic mechanism for surrogates of alternative jet fuels, Combustion and Flame 158 (2011) 434-445.

[23] E. Ranzi, A. Frassoldati, R. Grana, A. Cuoci, T. Faravelli, A. Kelley, C.K. Law, Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels, Progress in Energy and Combustion Science 38 (2012) 468-501.
[24] Y. Wang, A. Raj, S.H. Chung, A PAH growth mechanism and synergistic effect on PAH formation in counterflow diffusion flames, Combustion and Flame 160 (2013) 1667-1676.

[25] C.-W. Zhou, Y. Li, U. Burke, C. Banyon, K.P. Somers, S. Ding, S. Khan, J.W. Hargis, T. Sikes, O. Mathieu, An experimental and chemical kinetic modeling study of 1, 3-butadiene combustion: Ignition delay time and laminar flame speed measurements, Combustion and Flame 197 (2018) 423-438.

[26] C. Togbé, A. Mzé-Ahmed, P. Dagaut, Kinetics of oxidation of 2-butanol and isobutanol in a jet-stirred reactor: experimental study and modeling investigation, Energy & Fuels 24 (2010) 5244-5256.

[27] M. Schenk, N. Hansen, H. Vieker, A. Beyer, A. Gölzhäuser, K. Kohse-Höinghaus, PAH formation and soot morphology in flames of C4 fuels, Proceedings of the Combustion Institute 35 (2015) 1761-1769.

[28] P. Singh, C.-J. Sung, PAH formation in counterflow non-premixed flames of butane and butanol isomers, Combustion and Flame 170 (2016) 91-110.

[29] A. Frassoldati, R. Grana, T. Faravelli, E. Ranzi, P. Oßwald, K. Kohse-Höinghaus, Detailed kinetic modeling of the combustion of the four butanol isomers in premixed low-pressure flames, Combustion and Flame 159 (2012) 2295-2311.

[30] P. Oßwald, H. Gueldenberg, K. Kohse-Hoeinghaus, B. Yang, T. Yuan, F. Qi, Combustion of butanol isomers–a detailed molecular beam mass spectrometry investigation of their flame chemistry, Combustion and Flame 158 (2011) 2-15.

[31] S.M. Sarathy, S. Vranckx, K. Yasunaga, M. Mehl, P. Oßwald, W.K. Metcalfe, C.K. Westbrook, W.J. Pitz, K. Kohse-Höinghaus, R.X. Fernandes, A comprehensive chemical kinetic combustion model for the four butanol isomers, Combustion and Flame 159 (2012) 2028-2055.

[32] J. Camacho, S. Lieb, H. Wang, Evolution of size distribution of nascent soot in n-and i-butanol flames, Proceedings of the Combustion Institute 34 (2013) 1853-1860.
[33] J. Cai, W. Yuan, L. Ye, Z. Cheng, Y. Wang, W. Dong, L. Zhang, Y. Li, F. Zhang, F. Qi, Experimental and kinetic modeling study of i-butanol pyrolysis and combustion, Combustion and Flame 161 (2014) 1955-1971.

[34] S. Saxena, M. Kahandawala, S.S. Sidhu, A shock tube study of ignition delay in the combustion of ethylene, Combustion and Flame 158 (2011) 1019-1031.

[35] F. Egolfopoulos, D. Zhu, C.K. Law, Experimental and numerical determination of laminar flame speeds: Mixtures of C2-hydrocarbons with oxygen and nitrogen, Symposium (International) on Combustion 23 (1991) 471-478.

[36] M. Hassan, K. Aung, O. Kwon, G. Faeth, Properties of laminar premixed hydrocarbon/air flames at various pressures, Journal of Propulsion and Power 14 (1998) 479-488.

[37] G. Jomaas, X. Zheng, D. Zhu, C.K. Law, Experimental determination of counterflow ignition temperatures and laminar flame speeds of C2–C3 hydrocarbons at atmospheric and elevated pressures, Proceedings of the Combustion Institute 30 (2005) 193-200.

[38] L. Pan, Y. Zhang, Z. Tian, F. Yang, Z. Huang, Experimental and kinetic study on ignition delay times of iso-butanol, Energy & Fuels 28 (2014) 2160-2169.

[39] W. Liu, A.P. Kelley, C.K. Law, Non-premixed ignition, laminar flame propagation, and mechanism reduction of n-butanol, iso-butanol, and methyl butanoate, Proceedings of the Combustion Institute 33 (2011) 995-1002.

[40] F. Wu, C.K. Law, An experimental and mechanistic study on the laminar flame speed, Markstein length and flame chemistry of the butanol isomers, Combustion and Flame 160 (2013) 2744-2756.

[41] T. Lu, C.K. Law, A directed relation graph method for mechanism reduction, Proceedings of the Combustion Institute 30 (2005) 1333-1341.

[42] P. Pepiot-Desjardins, H. Pitsch, An efficient error-propagation-based reduction method for large chemical kinetic mechanisms, Combustion and Flame 154 (2008) 67-81.

[43] T. Lu, C. Law, J. Chen, Development of non-stiff reduced mechanisms for direct numerical simulations, 46th AIAA Aerospace Sciences Meeting and Exhibit, (2008) 1010.

[44] X. Gou, W. Sun, Z. Chen, Y. Ju, A dynamic multi-timescale method for combustion modeling with detailed and reduced chemical kinetic mechanisms, Combustion and Flame 157 (2010) 1111-1121.

[45] W. Sun, Z. Chen, X. Gou, Y. Ju, A path flux analysis method for the reduction of detailed chemical kinetic mechanisms, Combustion and Flame 157 (2010) 1298-1307.

[46] T. Lu, C.K. Law, On the applicability of directed relation graphs to the reduction of reaction mechanisms, Combustion and Flame 146 (2006) 472-483.

[47] C. San Diego, USA, CHEMKIN-CFD, Reaction Design Inc, 2010.

[48] K.C. Lin, C.-T. Chiu, A compact skeletal mechanism of propane towards applications from NTC-affected ignition predictions to CFD-modeled diffusion flames: Comparisons with experiments, Fuel 203 (2017) 102-112.

[49] K.C. Lin, T.-W. Lee, Skeletal Mechanism of Ethyl Propionate Oxidation for CFD Modeling to Predict Experimental Profiles of Unsaturated Products in a Nonpremixed Flame, Energy & Fuels 32 (2017) 855-866.

[50] M.M. Kopp, N.S. Donato, E.L. Petersen, W.K. Metcalfe, S.M. Burke, H.J. Curran, Oxidation of ethylene–air mixtures at elevated pressures, part 1: experimental results, Journal of Propulsion and Power 30 (2014) 790-798.
[51] M.M. Kopp, E.L. Petersen, W.K. Metcalfe, S.M. Burke, H.J. Curran, Oxidation of Ethylene—Air Mixtures at Elevated Pressures, Part 2: Chemical Kinetics, Journal of Propulsion and Power 30 (2014) 799-811.

[52] K. Kumar, G. Mittal, C.-J. Sung, C.K. Law, An experimental investigation of ethylene/O2/diluent mixtures: Laminar flame speeds with preheat and ignition delays at high pressures, Combustion and Flame 153 (2008) 343-354.

[53] B.W. Weber, C.-J. Sung, Comparative autoignition trends in butanol isomers at elevated pressure, Energy & Fuels 27 (2013) 1688-1698.

[54] H. Jin, Y. Wang, K. Zhang, H. Guo, F. Qi, An experimental study on the formation of polycyclic aromatic hydrocarbons in laminar coflow non-premixed methane/air flames doped with four isomeric butanols, Proceedings of the Combustion Institute 34 (2013) 779-786.
電子全文 電子全文(網際網路公開日期:20240830)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊