(34.236.244.39) 您好!臺灣時間:2021/03/09 19:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾泓幃
論文名稱:系統農藥益達胺對成年斑馬魚運動與社交行為的影響
論文名稱(外文):Effects of Imidacloprid, A Systemic Pesticide, on Motor and Social Behavior of Adult Zebrafish
指導教授:陳麗文陳麗文引用關係吳忠信吳忠信引用關係
指導教授(外文):Chen, Li-WenWu, Chung-Hsin
口試委員:林豊益鍾國棟陳瑩玲
口試委員(外文):Lin, Li-YihChung, Kou-ToungChen, Ying-Ling
口試日期:2020-06-07
學位類別:碩士
校院名稱:國立臺中教育大學
系所名稱:科學教育與應用學系碩士在職專班
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:60
中文關鍵詞:系統農藥益達胺生物毒性運動行為社交行為斑馬魚
外文關鍵詞:systematic pesticidesimidaclopridbiotoxicitymotor behaviorsocial behaviorzebrafish
相關次數:
  • 被引用被引用:0
  • 點閱點閱:44
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目的是顯示系統農藥益達胺對成年斑馬魚的運動與社交行為的影響,並探討可否作為水中毒性物質的一種指標。斑馬魚是一種群居魚類,會表現出明顯的群聚、侵略、恐懼、或是警戒等行為,因此斑馬魚的行為表現可以作為重要的行為研究指標。本研究利用行為軌跡追蹤分析技術檢視斑馬魚運動行為,我們分析了單一斑馬魚在乾淨水域以及含有不同濃度益達胺水域環境中的運動軌跡。實驗結果顯示斑馬魚在不同濃度益達胺的水域環境中,均會顯著降低運動能力,而且隨著系統農藥益達胺濃度的增加或是浸泡天數的增加,斑馬魚的運動能力也會而呈現逐步降低的趨勢。
另外,我們進一步檢視益達胺對於成年斑馬魚社交行為的影響,透過分析兩個相鄰魚缸中斑馬魚的運動軌跡,在含益達胺水域環境中,不論是雌魚與雄魚間的吸引行為,或是雄魚與雄魚間的警戒行為均明顯降低。這些結果說明了成年斑馬魚在含益達胺的水域環境中確實會大大降低運動與社交的行為與能力,換言之,透過分析成年斑馬魚的運動與社交行為,應該可以作為偵測水中毒性物質的一種指標。
This study is aim to demonstrate that the effect of the pesticide imidacloprid in the motor and social behavior of adult zebrafish. We hope that the motor and social behavior of adult zebrafish could be used as a standard indicator in detecting toxic substances in water. Zebrafish is a fish that can exhibit clustering, aggression, fear, or alertness.
Therefore, zebrafish behavior can be used as an important behavioral research indicator. The study used the zebrafish behavior trajectory tracking analysis technology to check the motor and social behavior of adult zebrafish. To examine effects of imidacloprid in the motor behavior of adult zebrafish, we analyzed the trajectories of single zebrafish in the environment of clean water or contaminated water with different concentrations of imidacloprid. Our results showed those male and female zebrafish in contaminated water with different concentrations significantly decreased their motor ability than those of zebrafish in clean water. It was also found that the degree of reduction of the motor behavior of adult zebrafish was increased with both increase of the concentration of imidacloprid and the durations of exposed in contaminated water with imidacloprid.
We further examined the effect of imidacloprid in the social behavior of adult zebrafish. We found that mutual attraction was shown when the female and the male see each other, while mutual vigilance was shown when male and the male see each other. We further found that either mutual attraction or mutual vigilance was significantly reduced when zebrafish in contaminated water with imidacloprid. These results suggest that motor and social behavior of adult zebrafish can be an ideal animal model as a standard indicator in detecting toxic substances in water.
論文目錄
誌謝……Ⅰ
中文摘要……Ⅱ
ABSTRACT……Ⅲ
論文目錄……Ⅳ
圖目錄……Ⅴ
表目錄……Ⅶ
第一章 緒論……1
第二章 文獻探討……4
第三章 材料與方法……12 第四章 實驗結果……18 第五章 討論……29 第六章 結論……35 參考文獻……37 附錄 實驗圖表……48
圖目錄
圖2-2-1 斑馬魚行為觀察示意圖……9 圖3-0-1 實驗流程圖……13
圖3-3-1 第一階段記錄段示意圖……15 圖3-3-2 第二階段記錄段示意圖……15 圖3-4-1 給藥時間與觀察時間點示意圖(1) ……16 圖3-4-2 給藥時間與觀察時間點示意圖(2) ……16 圖4-1-1 雄性斑馬魚浸泡在不同濃度益達胺後的運動行為表現……20 圖4-1-2 雌性斑馬魚浸泡在不同濃度益達胺後的運動行為表現……21 圖4-1-3 雄性斑馬魚浸泡在10ppm益達胺連續五天之運動行為表現……23 圖4-1-4 雌性斑馬魚浸泡在10ppm益達胺連續五天之運動行為表現……24 圖4-1-5 雄性與雌性斑馬魚浸泡在10ppm益達胺12小時後之社交行為表現……26 圖4-1-6 雄性與雄性斑馬魚浸泡在10ppm益達胺12小時後之社交行為表現……27 附圖1 成年雄性斑馬魚浸泡在不同濃度益達胺之運動行為記錄……49 附圖2 成年雌性斑馬魚浸泡在不同濃度益達胺之運動行為記錄……51 附圖3 成年雄性斑馬魚浸泡在固定濃度(10ppm)益達胺連續5天後之運動行為記錄……53 附圖4 成年雌性斑馬魚浸泡在固定濃度(10ppm)益達胺連續5天後之運動行為記錄……55 附圖5 益達胺對成年雌性斑馬魚與雄性斑馬魚之間的社會互動行為之記錄……57 附圖6 益達胺對成年雄性斑馬魚之間的社會互動(警戒)行為之記錄……59
表目錄
表2-1-1 益達胺分子結構、分子式、分子量表 ……7
表4-1-1 雄性斑馬魚在乾淨水域(Sham)及在含有1pp、10ppm和50 ppm濃度之益達胺的水域環境中12小時後的運動記錄……19 表4-1-2 雌性斑馬魚在乾淨水域(Sham)及在含有1pp、10ppm和50 ppm濃度之益達胺的水域環境中12小時後的運動記錄……21 表4-1-3 成年雄性斑馬魚浸泡在固定濃度(10ppm)益達胺連續5天後之運動記錄……23 表4-1-4 成年雌性斑馬魚浸泡在固定濃度(10ppm)益達胺連續5天後之運動記錄……24 表4-2-5 益達胺對成年雌性斑馬魚與雄性斑馬魚之間的社會互動行為之運動記錄……25 表4-2-6 益達胺對成年雄性斑馬魚之間的社會互動行為之運動記錄……27 附表1 雄性斑馬魚在乾淨水域(Sham)及在含有1pp、10ppm和50 ppm濃度之益達胺的水域環境中12小時後的運動記錄……49 附表2 雌性斑馬魚在乾淨水域(Sham)及在含有1pp、10ppm和50 ppm濃度之益達胺的水域環境中12小時後的運動記錄……51 附表3 成年雄性斑馬魚浸泡在固定濃度(10ppm)益達胺連續5天後之運動記錄……53 附表4 成年雌性斑馬魚浸泡在固定濃度(10ppm)益達胺連續5天後之運動記錄……55 附表5 益達胺對成年雌性斑馬魚與雄性斑馬魚之間的社會互動行為之運動記錄……57 附表6 益達胺對成年雄性斑馬魚之間的社會互動行為之運動記錄……59
Altenhofen, S., Nabinger, D.D., Bitencourt, P.E.R., Bonan, C.D. (2019) Dichlorvos alters morphology and behavior in zebrafish (Danio rerio) larvae. Environmental Pollution. Vol. 245: 1117-1123. doi: 10.1016/j.envpol.2018.11.095.
Anderson, J.C., Dubetz, C., Palace, V.P. (2015) Neonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effects. Science of The Total Environment. Vol. 505: 409-422. doi: 10.1016/j.scitotenv.2014.09.090
Audira, G., Sarasamma, S., Chen, J.R., Juniardi, S., Sampurna, B.P., Liang, S.T., Lai, Y.H., Lin, G.M., Hsieh, M.C., Hsiao, C.D. (2018) Zebrafish Mutants Carrying Leptin a (lepa) Gene Deficiency Display Obesity, Anxiety, Less Aggression and Fear, and Circadian Rhythm and Color Preference Dysregulation. International Journal of Molecular Sciences. Vol. 19: E4038. doi: 10.3390/ijms19124038
Audira, G., Sampurna, B.P., Juniardi, S., Liang, S.T., Lai, Y.H., Hsiao, C.D. (2018) A Versatile Setup for Measuring Multiple Behavior Endpoints in Zebrafish. Inventions. Vol. 3: 75 doi: 10.3390/inventions3040075
Bailey, J., Oliveri, A., Levin, E.D. (2013) Zebrafish Model Systems for Developmental Neurobehavioral Toxicology. Birth Defects Res C Embryo Today. 2013; 99(1): 14–23. doi: 10.1002/bdrc.21027
Bambino, K., Zhang, C., Austin, C., Amarasiriwardena, C., Arora, M., Chu, J., Sadler, K.C. (2018) Inorganic arsenic causes fatty liver and interacts with ethanol to cause alcoholic liver disease in zebrafish. Dis Model Mech. 2018; 26;11(2):dmm031575. doi: 10.1242/dmm.031575
Barrionuevo, W.R., Burggren, W.W. (1999) O2 consumption and heart rate in developing zebrafish (Danio rerio): influence of temperature and ambient O2. American Journal of Physiology. Vol. 276: R505-R513. doi: 10.1152/ajpregu.1999.276.2.R505
Beketov, M. A., Liess, M. (2008) Acute and delayed effects of the neonicotinoid insecticide thiacloprid on seven freshwater arthropods. Environmental Toxicology and Chemistry, Vol. 27, No. 2, pp. 461–470. doi: 10.1897/07-322R.1
Blaser, R., Gerlai, R. (2006) Behavioral phenotyping in zebrafish: comparison of three behavioral quantification methods. Behav Res Methods. 2006;38:456–69. doi: 10.3758/bf03192800
Blaser, R.E., Rosemberg, D.B. (2012) Measures of Anxiety in Zebrafish (Danio rerio): Dissociation of Black/White Preference and Novel Tank Test. PLOS ONE. Vol. 7: e36931. doi: 10.1371/journal.pone.0036931
Blitzer, R. D., Gil, O., and Landau, E. M. (1990). Cholinergic stimulation enhances long-term potentiation in the CA1 region of rat hippocampus. Neurosci. Lett. 119, 207–210. doi: 10.1016/0304-3940(90)90835-w
Braida, D., Ponzoni, L., Martucci, R., Sparatore, F., Gotti, C., Sala, M. (2014) Role of neuronal nicotinic acetylcholine receptors (nAChRs) on learning and memory in zebrafish. Psychopharmacology (Berl). 2014;231(9):1975-85. doi: 10.1007/s00213-013-3340-1
Buckingham, S., Lapied, B., Corronc, H., Sattelle, F. (1997) Imidacloprid actions on insect neuronal acetylcholine receptors. Journal of Experimental Biology. Vol. 200: 2685-2692.
Burke, A.P., Niibori, Y., Terayama, H., Ito, M., Pidgeon, C., Arsenault, J., Camarero, P. R., Cummins, C. L., Mateo, R., Sakabe, K. & Hampson D. R. (2018) Mammalian Susceptibility to a Neonicotinoid Insecticide after Fetal and Early Postnatal Exposure. Scientific Reports 2018; 8: 16639. doi: 10.1038/s41598-018-35129-5
Calienni, M.N., Cagel, M., Montanari, J., Moretton, M.A., Prieto, M.J., Chiappetta, D.A., Alonso, S.D.V. (2018) Zebrafish (Danio rerio) model as an early stage screening tool to study the biodistribution and toxicity profile of doxorubicin-loaded mixed micelles. Toxicology and Applied Pharmacology. Vol. 357: 106-114. doi: 10.1016/j.taap.2018.07.019
Chambers, R. G., Chatzimichael, K., Tzouvelekas, V. (2019) Sub-lethal concentrations of neonicotinoid insecticides at the field level affect negatively honey yield: Evidence from a 6-year survey of Greek apiaries. Plos One 14(4): e0215363. doi: 10.1371/journal.pone.0215363
Chao, S.L., Casida, J.E. (1997) Interaction of Imidacloprid Metabolites and Analogs with the Nicotinic Acetylcholine Receptor of Mouse Brain in Relation to Toxicity. Pesticide Biochemistry and Physiology 58(1): 77-88. doi: 10.1006/pest.1997.2284
Cho, C.H., Woo, J.S., Perez, C.F., Lee, E.H. (2017) A focus on extracellular Ca2+ entry into skeletal muscle. Exp Mol Med. 2017;49(9):e378. doi: 10.1038/emm.2017.208
Crosby, E.B., Bailey, J.M., Oliveri, A.N., Levin, E.D. (2015) Neurobehavioral Impairments Caused by Developmental Imidacloprid Exposure in Zebrafish. Neurotoxicology and Teratology. Vol. 49: 81–90. doi: 10.1016/j.ntt.2015.04.006
Decourtye, A., Armengaud, C., Renou, M., Devillers, J., Cluzeau, S., Gauthier, M., Pham-Delègue, M. (2004). Imidacloprid impairs memory and brain metabolism in the honeybee (Apis mellifera L.). Pesticide Biochemistry and Physiology, 78, 83–92. doi: 10.1016/j.pestbp.2003.10.001
Diaz-Verdugo, C., Sun, G.J., Fawcett, C.H., Zhu, P., Fishman, M.C. (2019) Mating Suppresses Alarm Response in Zebrafish. Current Biology. Vol. 29: 2541-2546. doi: 10.1016/j.cub.2019.06.047
Dively, G.P., Embrey, M.S., Kamel, A., Hawthorne, D.J., Pettis, J.S. (2015) Assessment of chronic sublethal effects of imidacloprid on honey bee colony health. PLoS One 2015; 10(3): e0118748. doi: 10.1371/journal.pone.0118748.
Duzguner, V., Erdogan, S., (2010). Acute oxidant and inflammatory effects of imidacloprid on the mammalian central nervous system and liver in rats. Pesticide Biochemistry and Physiology 97, 13–18. doi: 10.1016/j.pestbp.2009.11.008
Duzguner, V., Erdogan, S., (2012). Chronic exposure to imidacloprid induces inflammation and oxidative stress in the liver & central nervous system of rats. Pesticide Biochemistry and Physiology 104, 58–64. doi:10.1016/j.pestbp.2012.06.011
Egan, R.J., Bergner, C.L., Hart, P.C., Cachat, J.M., Canavello, P.R., Elegante, M.F., Elkhayat, S.I., Bartels, B.K., Tien, A.K., Tien, D.H., Mohnot, S., Beeson, E., Glasgow, E., Amri, H., Zukowska, Z., Kalueff, A.V., (2009) Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behavioural Brain Research. 2009;205:38–44. doi: 10.1016/j.bbr.2009.06.022
Engeszer, R.E., Ryan, M.J., Parichy, D.M. (2004) Learned social preference in zebrafish. Curr Biol. 2004;14:881–4. doi: 10.1016/j.cub.2004.04.042
Fishman, M.C., Stainier, D.Y.R., Breitbart, R.E., Westerfield, M. (1997) Chapter 4 Zebrafish: Genetic and Embryological Methods in a Transparent Vertebrate Embryo. Methods in Cell Biology. Vol. 52: 67-82. doi: 10.1016/s0091-679x(08)60374-x
Fossen, M. 2006. Environmental fate of imidacloprid. Department of Pesticide Regulation, Environmental Monitoring, Sacramento, CA. (http://www.cdpr.ca.gov/docs/empm/pubs/fatememo/ midclprdfate2. pdf)
Foster, S.P., Cox, D., Oliphant, L., Mitchinson, S., Denholm, I. (2008) Correlated responses to neonicotinoid insecticides in clones of the peach-potato aphid, Myzus persicae (Hemiptera: Aphididae). Pest Management Science. Vol. 64: 1111-1114. doi: 10.1002/ps.1648
Gauthier, M. (2010). State of the art on insect nicotinic acetylcholine receptor function in learning and memory. In Insect Nicotinic Acetylcholine Receptors, Vol. 683 (ed. S. H. Thany), pp. 97-115. doi: 10.1007/978-1-4419-6445-8_9
Geng, Y., Peterson, R.T. (2019) The zebrafish subcortical social brain as a model for studying social behavior disorders. Dis Model Mech. 2019 Aug 6;12(8):dmm039446. doi: 10.1242/dmm.039446
Gut, P., Reischauer, S., Stainier, D.Y.R., Arnaout, R. (2017) LITTLE FISH, BIG DATA: ZEBRAFISH AS A MODEL FOR CARDIOVASCULAR AND METABOLIC DISEASE. Physiol Rev. 2017 Jul 1;97(3):889-938. doi: 10.1152/physrev.00038.2016.
Hill, A.J., Teraoka, H., Heideman, W., Peterson, R.E. (2005) Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci. 2005 Jul;86(1):6-19. doi: 10.1093/toxsci/kfi110
Hsiao, C.J., Lin, C.L., Lin, T.Y., Wang, S.E., Wu, C.H. (2016) Imidacloprid toxicity impairs spatial memory of echolocation bats via neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas. Neuroreport 27(6): 462-468. doi: 10.1097/WNR.0000000000000562
Horzmann KA, Freeman JL. (2018) Making Waves: New Developments in Toxicology With the Zebrafish. Toxicol Sci. 2018;163(1):5-12. doi: 10.1093/toxsci/kfy044
Jacob, C.R.O., Malaquias, J.B., Zanardi, O.Z., Silva, C.A.S., Jacob, J.F.O., Yamamoto, P.T. (2019) Oral acute toxicity and impact of neonicotinoids on Apis mellifera L. and Scaptotrigona postica Latreille (Hymenoptera: Apidae). Ecotoxicology. 2019 Sep;28(7):744-753. doi: 10.1007/s10646-019-02070-w
Kayser, H., Lee,C., Decock, A., Baur, M., Haettenschwiler, J., Maienfisch, P. (2004) Comparative analysis of neonicotinoid binding to insect membranes: I. A structure–activity study of the mode of [3H]imidacloprid displacement in Myzus persicae and Aphis craccivora. Vol. 60: 945-958. doi: 10.1002/ps.919
Kenna, D., Cooley, H., Pretelli, I., Rodrigues, A.R., Gill, S. D., Gill, R. J. (2019) Pesticide exposure affects flight dynamics and reduces flight endurance in bumblebees. Ecology and Evolution. 2019; 9: 5637–5650. doi: 10.1002/ece3.5143
Kumari, Y., Choo, B.K.M., Shaikh, M.F., Othman, I. (2019) Melatonin receptor agonist Piper betle L. ameliorates dexamethasone-induced early life stress in adult zebrafish. Experimental and Therapeutic Medicine. Vol. 18: 1407–1416. doi: 10.3892/etm.2019.7685
Laver, D.R. (2018) Regulation of the RyR channel gating by Ca2+ and Mg2+. Biophys Rev. 2018 Aug; 10(4): 1087–1095 doi: 10.1007/s12551-018-0433-4
Levin, E.D., Bencan, Z., Cerutti, D.T. (2007) Anxiolytic effects of nicotine in zebrafish. Physiol Behav. 2007;90:54–8. doi: 10.1016/j.physbeh.2006.08.026
Li, Z., Yu, T., Chen, Y., Heerman, M., He, J., Huang, J., Nie, H., Su, S. (2019) Brain transcriptome of honey bees (Apis mellifera) exhibiting impaired olfactory learning induced by a sublethal dose of imidacloprid. Pestic Biochem Physiol. 2019 May;156:36-43. doi: 10.1016/j.pestbp.2019.02.001
Lin, L.Y., Yeh, Y.H., Hung, G.Y., Lin, C.H., Hwang, P.P., Horng, J.L. (2018) Role of Calcium-Sensing Receptor in Mechanotransducer-Channel-Mediated Ca 2+ Influx in Hair Cells of Zebrafish Larvae. Front Physiol. 2018 May 30;9:649 doi : 10.3389/fphys.2018.00649
Lin, L.Y., Zheng, J.A., Huang, S.C., Hung, G.Y., Horng, J.L. (2020) Ammonia exposure impairs lateral-line hair cells and mechanotransduction in zebrafish embryos. Chemosphere. 2020 Oct;257:127170 doi : 10.1016/j.chemosphere.2020.127170
López J.R., Rojas, B., Gonzalez, M.A., Terzic, A. (1995) Myoplasmic Ca2+ concentration during exertional rhabdomyolysis. Lancet. 1995 Feb 18;345(8947):424-5. doi: 10.1016/s0140-6736(95)90405-0
Low, S.E., Woods, I.G., Lachance, M., Ryan, J., Schier, A.F., Saint-Amant, L. (2012) Touch responsiveness in zebrafish requires voltage-gated calcium channel 2.1b. J Neurophysiol. 2012 Jul 1; 108(1): 148–159. doi: 10.1152/jn.00839.2011
Lu, J., Liu, L., Zheng, M., Li, X., Wu, A., Wu, Q., Liao, C., Zou, J., Song, H. (2018) EKK2 and MEKK3 suppress Hedgehog pathway-dependent medulloblastoma by inhibiting GLI1 function. Oncogene. 2018 Jul;37(28):3864-3878. doi: 10.1038/s41388-018-0249-5
Matsuda, K., Buckingham, S.D., Kleier, D., Rauh, J.J., Grauso, M., Sattelle, D.B. (2001) Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends in Pharmacological Sciences. Vol. 22:573-580. doi: 10.1016/s0165-6147(00)01820-4
Matsuda, K., Shimomura, M., Ihara, M., Akamatsu, M., Sattelle, D.B., (2005). Neonicotinoids show selective and diverse actions on their nicotinic receptor targets: electrophysiology, molecular biology, and receptor modeling studies. Biosci. Biotechnol. Biochem. 69: 1442–1452. doi: 10.1271/bbb.69.1442
Mekdara, P.J., Schwalbe, M.A.B., Coughlin, L.L., Tytell, E.D. (2018) The effects of lateral line ablation and regeneration in schooling giant danios. J. Exp. Biol., 221 (2018), p. jeb175166, doi : 10.1242/jeb.175166
Miao, J., Du, Z.B., Wu, Y.Q., Gong, Z.J., Jiang, Y.L., Duan, Y., Li, T., Lei, CL. (2014) Sub-lethal effects of four neonicotinoid seed treatments on the demography and feeding behaviour of the wheat aphid Sitobion avenae. Pest Management Science. Vol. 70: 55-59. doi: 10.1002/ps.3523
Miller, N., Greene, K., Dydinski, A., Gerlai, R. (2013) Effects of nicotine and alcohol on zebrafish (Danio rerio) shoaling. Behav Brain Res. 2013 Mar 1;240:192-6. doi: 10.1016/j.bbr.2012.11.033
Morton, A.B., Norton, C.E., Jacobsen, N.L., Fernando, C.A., Cornelison, D.D.W., Segal, S.S. (2019) Barium chloride injures myofibers through calcium-induced proteolysis with fragmentation of motor nerves and microvessels. Skelet Muscle. 2019 Nov 6;9(1):27. doi: 10.1186/s13395-019-0213-2
Naranjo, D., Wen, H., Brehm, P. (2015) Zebrafish CaV2.1 Calcium Channels Are Tailored for Fast Synchronous Neuromuscular Transmission. Biophys J. 2015 Feb 3; 108(3): 578–584. doi: 10.1016/j.bpj.2014.11.3484
Pisa, L.W., Amaral-Rogers, V., Belzunces, L.P., Bonmatin, J.M., Downs, C.A., Goulson, D., Kreutzweiser, D.P., Krupke, C., Liess, M., McField, M., Morrissey, C.A., Noome, D.A., Settele, J., Simon-Delso, N., Stark, J.D., Van der Sluijs, J.P., Van Dyck, H., Wiemers, M. (2015) Effects of neonicotinoids and fipronil on non-target invertebrates. Environmental Science and Pollution Research International. Vol. 22: 68–102. doi: 10.1007/s11356-014-3471-x
Ponzoni, L., Braida, D., Pucci, L., Andrea, D., Fasoli, F., Manfredi, I., Papke, R.L., Stokes, C., Cannazza, G., Clementi, F., Gotti, C., Sala, M. (2014) The cytisine derivatives, CC4 and CC26, reduce nicotine-induced conditioned place preference in zebrafish by acting on heteromeric neuronal nicotinic acetylcholine receptors. Psychopharmacology (Berl). 2014 Dec;231(24):4681-93. doi: 10.1007/s00213-014-3619-x
Raby, M., Nowierski, M., Perlov, D., Zhao, X., Hao, C., Poirier, D.G., Sibley, P.K. (2018) Acute toxicity of 6 neonicotinoid insecticides to freshwater invertebrates. Environmental Toxicology and Chemistry. Vol. 37: 1430-1445. doi: 10.1002/etc.4088
Sampurna, B.P., Audira, G., Juniardi, S., Lai, Y.H., Hsiao, C.D. (2018) A Simple ImageJ-Based Method to Measure Cardiac Rhythm in Zebrafish Embryos. Inventions. Vol. 3: 21 doi: 10.3390/inventions3020021
Sarasamma, S., Audira, G., Juniardi, S., Sampurna, B.P., Liang, S.T., Hao, E., Lai, Y.H., Hsiao, C.D. (2018) Zinc Chloride Exposure Inhibits Brain Acetylcholine Levels, Produces Neurotoxic Signatures, and Diminishes Memory and Motor Activities in Adult Zebrafish. International Journal of Molecular Sciences. Vol. 19: E3195. doi: 10.3390/ijms19103195
Schmuck R, Lewis G. (2016) Review of field and monitoring studies investigating the role of nitro-substituted neonicotinoid insecticides in the reported losses of honey bee colonies (Apis mellifera). Ecotoxicology. 2016; 25(9): 1617–1629. doi: 10.1007/s10646-016-1734-7
Seifert, J., Stollberg, J. (2005) Antagonism of a neonicotinoid insecticide imidacloprid at neuromuscular receptors. Environ Toxicol Pharmacol. 2005 Jul;20(1):18-21. doi: 10.1016/j.etap.2004.09.011
Shi, Q., Wang, M., Shi, F., Yang, L., Guo, Y., Feng, C., Liu, J., Zhou, B. (2018) Developmental neurotoxicity of triphenyl phosphate in zebrafish larvae. Aquatic Toxicology. Vol. 203: 80-87. doi: 10.1016/j.aquatox.2018.08.001
Shukla, S., Jhamtani, R.C., Dahiya, M.S., Agarwal, R. (2017) Oxidative injury caused by individual and combined exposure of neonicotinoid, organophosphate and herbicide in zebrafish. Toxicology Reports 2017; 4: 240–244 doi: 10.1016/j.toxrep.2017.05.002
Sriapha, C., Trakulsrichai, S., Intaraprasong, P., Wongvisawakorn, S., Tongpoo, A., Schimmel, J., Wananukul, W. (2019) Imidacloprid poisoning case series: potential for liver injury. Clinical Toxicology. doi: 10.1080/15563650.2019.1616091
Stacey, S.Y., Lee, J., Stacey A. R. (2018) Effects of neonicotinoids on putative escape behavior of juvenile wood frogs (Lithobates sylvaticus) chronically exposed as tadpoles. Environmental Toxicology and Chemistry Vol. 37, Number 12—pp. 3115–3123. doi: 10.1002/etc.4284
Squire, L.R. (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99, 195–231. doi: 10.1037/0033-295x.99.2.195
Taillebois, E., Beloula, A., Quinchard, S., Jaubert-Possamai, S., Daguin, A., Servent, D., Tagu, D., Thany S.H., Tricoire-Leignel, H. (2014) Neonicotinoid binding, toxicity and expression of nicotinic acetylcholine receptor subunits in the aphid Acyrthosiphon pisum. PLOS ONE. Vol. 9: e96669. doi: 10.1371/journal.pone.0096669
Tang, Y., Mishkin, M., and Aigner, T. G. (1997). Effects of muscarinic blockade in perirhinal cortex during visual recognition. Proc. Natl. Acad. Sci. U.S.A. 94: 12667–12669. doi: 10.1073/pnas.94.23.12667
Tomizawa, M. (2004) Neonicotinoids and derivatives: effects in mammalian cells and mice. J. Pestic. Sci. 29(3): 177–183. doi: 10.1584/jpestics.29.177
Tomizawa, M., Casida, J.E. (2005) Neonicotinoid insecticide toxicology: mechanisms of selective action. Annual Review of Pharmacology and Toxicology. Vol. 45:247-268. doi: 10.1146/annurev.pharmtox.45.120403.095930
Torraca V, Mostowy S. (2018) Zebrafish Infection: From Pathogenesis to Cell Biology. Trends Cell Biol. 2018 Feb;28(2):143-156. doi: 10.1016/j.tcb.2017.10.002
Ulanovsky N, Moss CF (2011) Dynamics of hippocampal spatial representation in echolocating bats. Hippocampus 21(2):150-161. doi: 10.1002/hipo.20731
Ulanovsky, N., Moss, C.F. (2007) Hippocampal cellular and network activity in freely moving echolocating bats. Nat. Neurosci. 10: 224–233. doi: 10.1038/nn1829
Vaglenova, J., Parameshwaran, K., Suppiramaniam, V., Breese, C.R., Pandiella, N., Birru, S. (2008) Long-lasting teratogenic effects of nicotine on cognition: gender specificity and role of AMPA receptor function. Neurobiol Learn Mem. 2008 Oct;90(3):527-36. doi: 10.1016/j.nlm.2008.06.009
Vignet, C., Cappello, T., Fu, Q., Lajoie, K., De Marco, G., Clérandeau, C., Mottaz, H., Maisano, M., Hollender, J., Schirmer, K., Cachot, J. (2019) Imidacloprid induces adverse effects on fish early life stages that are more severe in Japanese medaka (Oryzias latipes) than in zebrafish (Danio rerio). Chemosphere,Vol. 225, June 2019, Pages 470-478. doi: 10.1016/j.chemosphere.2019.03.002
Vijver, M.G., van den Brink, P.J. (2014) Macro-invertebrate decline in surface water polluted with imidacloprid: a rebuttal and some new analyses. PLOS ONE. Vol. 9: e89837. doi: 10.1371/journal.pone.0089837
Vornanen, M., Hassinen, M. (2016) Zebrafish heart as a model for human cardiac electrophysiology. Channels (Austin). 2016;10(2):101-10. doi: 10.1080/19336950.2015.1121335
Wei YC, Wang SR, Jiao ZL, Zhang W, Lin JK, Li XY, Li SS, Zhang X, Xu XH (2018) Medial preoptic area in mice is capable of mediating sexually dimorphic behaviors regardless of gender. Nat Commun. 9(1):279. doi: 10.1038/s41467-017-02648-0. doi: 10.1038/s41467-017-02648-0
Wen, H., Linhoff, M.W., Hubbard, J.M., Nelson, N.R., Stensland, D., Dallman, J., Mandel, G., Brehmcorresponding, P. (2013) Zebrafish Calls for Reinterpretation for the Roles of P/Q Calcium Channels in Neuromuscular Transmission. J Neurosci. 2013 Apr 24; 33(17): 7384–7392. doi: 10.1523/JNEUROSCI.5839-12.2013
Wu, C.H., Lin, C.L., Wang, S.E., Lu, C.W. (2020) Effects of imidacloprid, a neonicotinoid insecticide, on the echolocation system of insectivorous bats. Pesticide Biochemistry and Physiology, 163, 94-101. doi: 10.1016/j.pestbp.2019.10.010
Wu, Y.Y., Luo, Q.H., Hou, C.S., Wang, Q., Dai, P.L., Gao, J., Liu, Y.J., Diao, Q.Y. (2017) Sublethal effects of imidacloprid on targeting muscle and ribosomal protein related genes in the honey bee Apis mellifera L. Sci Rep. 2017 Nov 21;7(1):15943. doi: 10.1038/s41598-017-16245-0
Yin, C., Li, X., Du, J. (2019) Optic tectal superficial interneurons detect motion in larval zebrafish. Protein & Cell. Vol. 10: 238–248. doi: 10.1007/s13238-018-0587-7
Zhang, C., Willett, C., Fremgen, T. (2003) Zebrafish: an animal model for toxicological studies. Curr Protoc Toxicol. 2003; 1:1.7. doi: 10.1002/0471140856.tx0107s17
農業藥物毒物試驗所網頁,植物保護資訊系統檢索內容(民109年8月9日)。檢自https://otserv2.tactri.gov.tw/PPM/ (Aug.9, 2020)
謝再添 (2007)。新類尼古丁殺蟲劑殺蟲藥理作用與尼古丁-乙醯膽鹼接受器之關係。檢自https://www.tactri.gov.tw/Uploads/Item/97c2387a-c87b-4dab-92dd-3ecf11f3f5be.pdf (Aug.9, 2020)
黃基森、薛翔泰、何旻遠 (2013)。入侵紅火蟻防治藥劑-益達胺簡介。檢自http://163.21.236.12/~fireant/epaper10110/Imidacloprid.pdf (Aug.9, 2020)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔