|
Altenhofen, S., Nabinger, D.D., Bitencourt, P.E.R., Bonan, C.D. (2019) Dichlorvos alters morphology and behavior in zebrafish (Danio rerio) larvae. Environmental Pollution. Vol. 245: 1117-1123. doi: 10.1016/j.envpol.2018.11.095. Anderson, J.C., Dubetz, C., Palace, V.P. (2015) Neonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effects. Science of The Total Environment. Vol. 505: 409-422. doi: 10.1016/j.scitotenv.2014.09.090 Audira, G., Sarasamma, S., Chen, J.R., Juniardi, S., Sampurna, B.P., Liang, S.T., Lai, Y.H., Lin, G.M., Hsieh, M.C., Hsiao, C.D. (2018) Zebrafish Mutants Carrying Leptin a (lepa) Gene Deficiency Display Obesity, Anxiety, Less Aggression and Fear, and Circadian Rhythm and Color Preference Dysregulation. International Journal of Molecular Sciences. Vol. 19: E4038. doi: 10.3390/ijms19124038 Audira, G., Sampurna, B.P., Juniardi, S., Liang, S.T., Lai, Y.H., Hsiao, C.D. (2018) A Versatile Setup for Measuring Multiple Behavior Endpoints in Zebrafish. Inventions. Vol. 3: 75 doi: 10.3390/inventions3040075 Bailey, J., Oliveri, A., Levin, E.D. (2013) Zebrafish Model Systems for Developmental Neurobehavioral Toxicology. Birth Defects Res C Embryo Today. 2013; 99(1): 14–23. doi: 10.1002/bdrc.21027 Bambino, K., Zhang, C., Austin, C., Amarasiriwardena, C., Arora, M., Chu, J., Sadler, K.C. (2018) Inorganic arsenic causes fatty liver and interacts with ethanol to cause alcoholic liver disease in zebrafish. Dis Model Mech. 2018; 26;11(2):dmm031575. doi: 10.1242/dmm.031575 Barrionuevo, W.R., Burggren, W.W. (1999) O2 consumption and heart rate in developing zebrafish (Danio rerio): influence of temperature and ambient O2. American Journal of Physiology. Vol. 276: R505-R513. doi: 10.1152/ajpregu.1999.276.2.R505 Beketov, M. A., Liess, M. (2008) Acute and delayed effects of the neonicotinoid insecticide thiacloprid on seven freshwater arthropods. Environmental Toxicology and Chemistry, Vol. 27, No. 2, pp. 461–470. doi: 10.1897/07-322R.1 Blaser, R., Gerlai, R. (2006) Behavioral phenotyping in zebrafish: comparison of three behavioral quantification methods. Behav Res Methods. 2006;38:456–69. doi: 10.3758/bf03192800 Blaser, R.E., Rosemberg, D.B. (2012) Measures of Anxiety in Zebrafish (Danio rerio): Dissociation of Black/White Preference and Novel Tank Test. PLOS ONE. Vol. 7: e36931. doi: 10.1371/journal.pone.0036931 Blitzer, R. D., Gil, O., and Landau, E. M. (1990). Cholinergic stimulation enhances long-term potentiation in the CA1 region of rat hippocampus. Neurosci. Lett. 119, 207–210. doi: 10.1016/0304-3940(90)90835-w Braida, D., Ponzoni, L., Martucci, R., Sparatore, F., Gotti, C., Sala, M. (2014) Role of neuronal nicotinic acetylcholine receptors (nAChRs) on learning and memory in zebrafish. Psychopharmacology (Berl). 2014;231(9):1975-85. doi: 10.1007/s00213-013-3340-1 Buckingham, S., Lapied, B., Corronc, H., Sattelle, F. (1997) Imidacloprid actions on insect neuronal acetylcholine receptors. Journal of Experimental Biology. Vol. 200: 2685-2692. Burke, A.P., Niibori, Y., Terayama, H., Ito, M., Pidgeon, C., Arsenault, J., Camarero, P. R., Cummins, C. L., Mateo, R., Sakabe, K. & Hampson D. R. (2018) Mammalian Susceptibility to a Neonicotinoid Insecticide after Fetal and Early Postnatal Exposure. Scientific Reports 2018; 8: 16639. doi: 10.1038/s41598-018-35129-5 Calienni, M.N., Cagel, M., Montanari, J., Moretton, M.A., Prieto, M.J., Chiappetta, D.A., Alonso, S.D.V. (2018) Zebrafish (Danio rerio) model as an early stage screening tool to study the biodistribution and toxicity profile of doxorubicin-loaded mixed micelles. Toxicology and Applied Pharmacology. Vol. 357: 106-114. doi: 10.1016/j.taap.2018.07.019 Chambers, R. G., Chatzimichael, K., Tzouvelekas, V. (2019) Sub-lethal concentrations of neonicotinoid insecticides at the field level affect negatively honey yield: Evidence from a 6-year survey of Greek apiaries. Plos One 14(4): e0215363. doi: 10.1371/journal.pone.0215363 Chao, S.L., Casida, J.E. (1997) Interaction of Imidacloprid Metabolites and Analogs with the Nicotinic Acetylcholine Receptor of Mouse Brain in Relation to Toxicity. Pesticide Biochemistry and Physiology 58(1): 77-88. doi: 10.1006/pest.1997.2284 Cho, C.H., Woo, J.S., Perez, C.F., Lee, E.H. (2017) A focus on extracellular Ca2+ entry into skeletal muscle. Exp Mol Med. 2017;49(9):e378. doi: 10.1038/emm.2017.208 Crosby, E.B., Bailey, J.M., Oliveri, A.N., Levin, E.D. (2015) Neurobehavioral Impairments Caused by Developmental Imidacloprid Exposure in Zebrafish. Neurotoxicology and Teratology. Vol. 49: 81–90. doi: 10.1016/j.ntt.2015.04.006 Decourtye, A., Armengaud, C., Renou, M., Devillers, J., Cluzeau, S., Gauthier, M., Pham-Delègue, M. (2004). Imidacloprid impairs memory and brain metabolism in the honeybee (Apis mellifera L.). Pesticide Biochemistry and Physiology, 78, 83–92. doi: 10.1016/j.pestbp.2003.10.001 Diaz-Verdugo, C., Sun, G.J., Fawcett, C.H., Zhu, P., Fishman, M.C. (2019) Mating Suppresses Alarm Response in Zebrafish. Current Biology. Vol. 29: 2541-2546. doi: 10.1016/j.cub.2019.06.047 Dively, G.P., Embrey, M.S., Kamel, A., Hawthorne, D.J., Pettis, J.S. (2015) Assessment of chronic sublethal effects of imidacloprid on honey bee colony health. PLoS One 2015; 10(3): e0118748. doi: 10.1371/journal.pone.0118748. Duzguner, V., Erdogan, S., (2010). Acute oxidant and inflammatory effects of imidacloprid on the mammalian central nervous system and liver in rats. Pesticide Biochemistry and Physiology 97, 13–18. doi: 10.1016/j.pestbp.2009.11.008 Duzguner, V., Erdogan, S., (2012). Chronic exposure to imidacloprid induces inflammation and oxidative stress in the liver & central nervous system of rats. Pesticide Biochemistry and Physiology 104, 58–64. doi:10.1016/j.pestbp.2012.06.011 Egan, R.J., Bergner, C.L., Hart, P.C., Cachat, J.M., Canavello, P.R., Elegante, M.F., Elkhayat, S.I., Bartels, B.K., Tien, A.K., Tien, D.H., Mohnot, S., Beeson, E., Glasgow, E., Amri, H., Zukowska, Z., Kalueff, A.V., (2009) Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behavioural Brain Research. 2009;205:38–44. doi: 10.1016/j.bbr.2009.06.022 Engeszer, R.E., Ryan, M.J., Parichy, D.M. (2004) Learned social preference in zebrafish. Curr Biol. 2004;14:881–4. doi: 10.1016/j.cub.2004.04.042 Fishman, M.C., Stainier, D.Y.R., Breitbart, R.E., Westerfield, M. (1997) Chapter 4 Zebrafish: Genetic and Embryological Methods in a Transparent Vertebrate Embryo. Methods in Cell Biology. Vol. 52: 67-82. doi: 10.1016/s0091-679x(08)60374-x Fossen, M. 2006. Environmental fate of imidacloprid. Department of Pesticide Regulation, Environmental Monitoring, Sacramento, CA. (http://www.cdpr.ca.gov/docs/empm/pubs/fatememo/ midclprdfate2. pdf) Foster, S.P., Cox, D., Oliphant, L., Mitchinson, S., Denholm, I. (2008) Correlated responses to neonicotinoid insecticides in clones of the peach-potato aphid, Myzus persicae (Hemiptera: Aphididae). Pest Management Science. Vol. 64: 1111-1114. doi: 10.1002/ps.1648 Gauthier, M. (2010). State of the art on insect nicotinic acetylcholine receptor function in learning and memory. In Insect Nicotinic Acetylcholine Receptors, Vol. 683 (ed. S. H. Thany), pp. 97-115. doi: 10.1007/978-1-4419-6445-8_9 Geng, Y., Peterson, R.T. (2019) The zebrafish subcortical social brain as a model for studying social behavior disorders. Dis Model Mech. 2019 Aug 6;12(8):dmm039446. doi: 10.1242/dmm.039446 Gut, P., Reischauer, S., Stainier, D.Y.R., Arnaout, R. (2017) LITTLE FISH, BIG DATA: ZEBRAFISH AS A MODEL FOR CARDIOVASCULAR AND METABOLIC DISEASE. Physiol Rev. 2017 Jul 1;97(3):889-938. doi: 10.1152/physrev.00038.2016. Hill, A.J., Teraoka, H., Heideman, W., Peterson, R.E. (2005) Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci. 2005 Jul;86(1):6-19. doi: 10.1093/toxsci/kfi110 Hsiao, C.J., Lin, C.L., Lin, T.Y., Wang, S.E., Wu, C.H. (2016) Imidacloprid toxicity impairs spatial memory of echolocation bats via neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas. Neuroreport 27(6): 462-468. doi: 10.1097/WNR.0000000000000562 Horzmann KA, Freeman JL. (2018) Making Waves: New Developments in Toxicology With the Zebrafish. Toxicol Sci. 2018;163(1):5-12. doi: 10.1093/toxsci/kfy044 Jacob, C.R.O., Malaquias, J.B., Zanardi, O.Z., Silva, C.A.S., Jacob, J.F.O., Yamamoto, P.T. (2019) Oral acute toxicity and impact of neonicotinoids on Apis mellifera L. and Scaptotrigona postica Latreille (Hymenoptera: Apidae). Ecotoxicology. 2019 Sep;28(7):744-753. doi: 10.1007/s10646-019-02070-w Kayser, H., Lee,C., Decock, A., Baur, M., Haettenschwiler, J., Maienfisch, P. (2004) Comparative analysis of neonicotinoid binding to insect membranes: I. A structure–activity study of the mode of [3H]imidacloprid displacement in Myzus persicae and Aphis craccivora. Vol. 60: 945-958. doi: 10.1002/ps.919 Kenna, D., Cooley, H., Pretelli, I., Rodrigues, A.R., Gill, S. D., Gill, R. J. (2019) Pesticide exposure affects flight dynamics and reduces flight endurance in bumblebees. Ecology and Evolution. 2019; 9: 5637–5650. doi: 10.1002/ece3.5143 Kumari, Y., Choo, B.K.M., Shaikh, M.F., Othman, I. (2019) Melatonin receptor agonist Piper betle L. ameliorates dexamethasone-induced early life stress in adult zebrafish. Experimental and Therapeutic Medicine. Vol. 18: 1407–1416. doi: 10.3892/etm.2019.7685 Laver, D.R. (2018) Regulation of the RyR channel gating by Ca2+ and Mg2+. Biophys Rev. 2018 Aug; 10(4): 1087–1095 doi: 10.1007/s12551-018-0433-4 Levin, E.D., Bencan, Z., Cerutti, D.T. (2007) Anxiolytic effects of nicotine in zebrafish. Physiol Behav. 2007;90:54–8. doi: 10.1016/j.physbeh.2006.08.026 Li, Z., Yu, T., Chen, Y., Heerman, M., He, J., Huang, J., Nie, H., Su, S. (2019) Brain transcriptome of honey bees (Apis mellifera) exhibiting impaired olfactory learning induced by a sublethal dose of imidacloprid. Pestic Biochem Physiol. 2019 May;156:36-43. doi: 10.1016/j.pestbp.2019.02.001 Lin, L.Y., Yeh, Y.H., Hung, G.Y., Lin, C.H., Hwang, P.P., Horng, J.L. (2018) Role of Calcium-Sensing Receptor in Mechanotransducer-Channel-Mediated Ca 2+ Influx in Hair Cells of Zebrafish Larvae. Front Physiol. 2018 May 30;9:649 doi : 10.3389/fphys.2018.00649 Lin, L.Y., Zheng, J.A., Huang, S.C., Hung, G.Y., Horng, J.L. (2020) Ammonia exposure impairs lateral-line hair cells and mechanotransduction in zebrafish embryos. Chemosphere. 2020 Oct;257:127170 doi : 10.1016/j.chemosphere.2020.127170 López J.R., Rojas, B., Gonzalez, M.A., Terzic, A. (1995) Myoplasmic Ca2+ concentration during exertional rhabdomyolysis. Lancet. 1995 Feb 18;345(8947):424-5. doi: 10.1016/s0140-6736(95)90405-0 Low, S.E., Woods, I.G., Lachance, M., Ryan, J., Schier, A.F., Saint-Amant, L. (2012) Touch responsiveness in zebrafish requires voltage-gated calcium channel 2.1b. J Neurophysiol. 2012 Jul 1; 108(1): 148–159. doi: 10.1152/jn.00839.2011 Lu, J., Liu, L., Zheng, M., Li, X., Wu, A., Wu, Q., Liao, C., Zou, J., Song, H. (2018) EKK2 and MEKK3 suppress Hedgehog pathway-dependent medulloblastoma by inhibiting GLI1 function. Oncogene. 2018 Jul;37(28):3864-3878. doi: 10.1038/s41388-018-0249-5 Matsuda, K., Buckingham, S.D., Kleier, D., Rauh, J.J., Grauso, M., Sattelle, D.B. (2001) Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends in Pharmacological Sciences. Vol. 22:573-580. doi: 10.1016/s0165-6147(00)01820-4 Matsuda, K., Shimomura, M., Ihara, M., Akamatsu, M., Sattelle, D.B., (2005). Neonicotinoids show selective and diverse actions on their nicotinic receptor targets: electrophysiology, molecular biology, and receptor modeling studies. Biosci. Biotechnol. Biochem. 69: 1442–1452. doi: 10.1271/bbb.69.1442 Mekdara, P.J., Schwalbe, M.A.B., Coughlin, L.L., Tytell, E.D. (2018) The effects of lateral line ablation and regeneration in schooling giant danios. J. Exp. Biol., 221 (2018), p. jeb175166, doi : 10.1242/jeb.175166 Miao, J., Du, Z.B., Wu, Y.Q., Gong, Z.J., Jiang, Y.L., Duan, Y., Li, T., Lei, CL. (2014) Sub-lethal effects of four neonicotinoid seed treatments on the demography and feeding behaviour of the wheat aphid Sitobion avenae. Pest Management Science. Vol. 70: 55-59. doi: 10.1002/ps.3523 Miller, N., Greene, K., Dydinski, A., Gerlai, R. (2013) Effects of nicotine and alcohol on zebrafish (Danio rerio) shoaling. Behav Brain Res. 2013 Mar 1;240:192-6. doi: 10.1016/j.bbr.2012.11.033 Morton, A.B., Norton, C.E., Jacobsen, N.L., Fernando, C.A., Cornelison, D.D.W., Segal, S.S. (2019) Barium chloride injures myofibers through calcium-induced proteolysis with fragmentation of motor nerves and microvessels. Skelet Muscle. 2019 Nov 6;9(1):27. doi: 10.1186/s13395-019-0213-2 Naranjo, D., Wen, H., Brehm, P. (2015) Zebrafish CaV2.1 Calcium Channels Are Tailored for Fast Synchronous Neuromuscular Transmission. Biophys J. 2015 Feb 3; 108(3): 578–584. doi: 10.1016/j.bpj.2014.11.3484 Pisa, L.W., Amaral-Rogers, V., Belzunces, L.P., Bonmatin, J.M., Downs, C.A., Goulson, D., Kreutzweiser, D.P., Krupke, C., Liess, M., McField, M., Morrissey, C.A., Noome, D.A., Settele, J., Simon-Delso, N., Stark, J.D., Van der Sluijs, J.P., Van Dyck, H., Wiemers, M. (2015) Effects of neonicotinoids and fipronil on non-target invertebrates. Environmental Science and Pollution Research International. Vol. 22: 68–102. doi: 10.1007/s11356-014-3471-x Ponzoni, L., Braida, D., Pucci, L., Andrea, D., Fasoli, F., Manfredi, I., Papke, R.L., Stokes, C., Cannazza, G., Clementi, F., Gotti, C., Sala, M. (2014) The cytisine derivatives, CC4 and CC26, reduce nicotine-induced conditioned place preference in zebrafish by acting on heteromeric neuronal nicotinic acetylcholine receptors. Psychopharmacology (Berl). 2014 Dec;231(24):4681-93. doi: 10.1007/s00213-014-3619-x Raby, M., Nowierski, M., Perlov, D., Zhao, X., Hao, C., Poirier, D.G., Sibley, P.K. (2018) Acute toxicity of 6 neonicotinoid insecticides to freshwater invertebrates. Environmental Toxicology and Chemistry. Vol. 37: 1430-1445. doi: 10.1002/etc.4088 Sampurna, B.P., Audira, G., Juniardi, S., Lai, Y.H., Hsiao, C.D. (2018) A Simple ImageJ-Based Method to Measure Cardiac Rhythm in Zebrafish Embryos. Inventions. Vol. 3: 21 doi: 10.3390/inventions3020021 Sarasamma, S., Audira, G., Juniardi, S., Sampurna, B.P., Liang, S.T., Hao, E., Lai, Y.H., Hsiao, C.D. (2018) Zinc Chloride Exposure Inhibits Brain Acetylcholine Levels, Produces Neurotoxic Signatures, and Diminishes Memory and Motor Activities in Adult Zebrafish. International Journal of Molecular Sciences. Vol. 19: E3195. doi: 10.3390/ijms19103195 Schmuck R, Lewis G. (2016) Review of field and monitoring studies investigating the role of nitro-substituted neonicotinoid insecticides in the reported losses of honey bee colonies (Apis mellifera). Ecotoxicology. 2016; 25(9): 1617–1629. doi: 10.1007/s10646-016-1734-7 Seifert, J., Stollberg, J. (2005) Antagonism of a neonicotinoid insecticide imidacloprid at neuromuscular receptors. Environ Toxicol Pharmacol. 2005 Jul;20(1):18-21. doi: 10.1016/j.etap.2004.09.011 Shi, Q., Wang, M., Shi, F., Yang, L., Guo, Y., Feng, C., Liu, J., Zhou, B. (2018) Developmental neurotoxicity of triphenyl phosphate in zebrafish larvae. Aquatic Toxicology. Vol. 203: 80-87. doi: 10.1016/j.aquatox.2018.08.001 Shukla, S., Jhamtani, R.C., Dahiya, M.S., Agarwal, R. (2017) Oxidative injury caused by individual and combined exposure of neonicotinoid, organophosphate and herbicide in zebrafish. Toxicology Reports 2017; 4: 240–244 doi: 10.1016/j.toxrep.2017.05.002 Sriapha, C., Trakulsrichai, S., Intaraprasong, P., Wongvisawakorn, S., Tongpoo, A., Schimmel, J., Wananukul, W. (2019) Imidacloprid poisoning case series: potential for liver injury. Clinical Toxicology. doi: 10.1080/15563650.2019.1616091 Stacey, S.Y., Lee, J., Stacey A. R. (2018) Effects of neonicotinoids on putative escape behavior of juvenile wood frogs (Lithobates sylvaticus) chronically exposed as tadpoles. Environmental Toxicology and Chemistry Vol. 37, Number 12—pp. 3115–3123. doi: 10.1002/etc.4284 Squire, L.R. (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99, 195–231. doi: 10.1037/0033-295x.99.2.195 Taillebois, E., Beloula, A., Quinchard, S., Jaubert-Possamai, S., Daguin, A., Servent, D., Tagu, D., Thany S.H., Tricoire-Leignel, H. (2014) Neonicotinoid binding, toxicity and expression of nicotinic acetylcholine receptor subunits in the aphid Acyrthosiphon pisum. PLOS ONE. Vol. 9: e96669. doi: 10.1371/journal.pone.0096669 Tang, Y., Mishkin, M., and Aigner, T. G. (1997). Effects of muscarinic blockade in perirhinal cortex during visual recognition. Proc. Natl. Acad. Sci. U.S.A. 94: 12667–12669. doi: 10.1073/pnas.94.23.12667 Tomizawa, M. (2004) Neonicotinoids and derivatives: effects in mammalian cells and mice. J. Pestic. Sci. 29(3): 177–183. doi: 10.1584/jpestics.29.177 Tomizawa, M., Casida, J.E. (2005) Neonicotinoid insecticide toxicology: mechanisms of selective action. Annual Review of Pharmacology and Toxicology. Vol. 45:247-268. doi: 10.1146/annurev.pharmtox.45.120403.095930 Torraca V, Mostowy S. (2018) Zebrafish Infection: From Pathogenesis to Cell Biology. Trends Cell Biol. 2018 Feb;28(2):143-156. doi: 10.1016/j.tcb.2017.10.002 Ulanovsky N, Moss CF (2011) Dynamics of hippocampal spatial representation in echolocating bats. Hippocampus 21(2):150-161. doi: 10.1002/hipo.20731 Ulanovsky, N., Moss, C.F. (2007) Hippocampal cellular and network activity in freely moving echolocating bats. Nat. Neurosci. 10: 224–233. doi: 10.1038/nn1829 Vaglenova, J., Parameshwaran, K., Suppiramaniam, V., Breese, C.R., Pandiella, N., Birru, S. (2008) Long-lasting teratogenic effects of nicotine on cognition: gender specificity and role of AMPA receptor function. Neurobiol Learn Mem. 2008 Oct;90(3):527-36. doi: 10.1016/j.nlm.2008.06.009 Vignet, C., Cappello, T., Fu, Q., Lajoie, K., De Marco, G., Clérandeau, C., Mottaz, H., Maisano, M., Hollender, J., Schirmer, K., Cachot, J. (2019) Imidacloprid induces adverse effects on fish early life stages that are more severe in Japanese medaka (Oryzias latipes) than in zebrafish (Danio rerio). Chemosphere,Vol. 225, June 2019, Pages 470-478. doi: 10.1016/j.chemosphere.2019.03.002 Vijver, M.G., van den Brink, P.J. (2014) Macro-invertebrate decline in surface water polluted with imidacloprid: a rebuttal and some new analyses. PLOS ONE. Vol. 9: e89837. doi: 10.1371/journal.pone.0089837 Vornanen, M., Hassinen, M. (2016) Zebrafish heart as a model for human cardiac electrophysiology. Channels (Austin). 2016;10(2):101-10. doi: 10.1080/19336950.2015.1121335 Wei YC, Wang SR, Jiao ZL, Zhang W, Lin JK, Li XY, Li SS, Zhang X, Xu XH (2018) Medial preoptic area in mice is capable of mediating sexually dimorphic behaviors regardless of gender. Nat Commun. 9(1):279. doi: 10.1038/s41467-017-02648-0. doi: 10.1038/s41467-017-02648-0 Wen, H., Linhoff, M.W., Hubbard, J.M., Nelson, N.R., Stensland, D., Dallman, J., Mandel, G., Brehmcorresponding, P. (2013) Zebrafish Calls for Reinterpretation for the Roles of P/Q Calcium Channels in Neuromuscular Transmission. J Neurosci. 2013 Apr 24; 33(17): 7384–7392. doi: 10.1523/JNEUROSCI.5839-12.2013 Wu, C.H., Lin, C.L., Wang, S.E., Lu, C.W. (2020) Effects of imidacloprid, a neonicotinoid insecticide, on the echolocation system of insectivorous bats. Pesticide Biochemistry and Physiology, 163, 94-101. doi: 10.1016/j.pestbp.2019.10.010 Wu, Y.Y., Luo, Q.H., Hou, C.S., Wang, Q., Dai, P.L., Gao, J., Liu, Y.J., Diao, Q.Y. (2017) Sublethal effects of imidacloprid on targeting muscle and ribosomal protein related genes in the honey bee Apis mellifera L. Sci Rep. 2017 Nov 21;7(1):15943. doi: 10.1038/s41598-017-16245-0 Yin, C., Li, X., Du, J. (2019) Optic tectal superficial interneurons detect motion in larval zebrafish. Protein & Cell. Vol. 10: 238–248. doi: 10.1007/s13238-018-0587-7 Zhang, C., Willett, C., Fremgen, T. (2003) Zebrafish: an animal model for toxicological studies. Curr Protoc Toxicol. 2003; 1:1.7. doi: 10.1002/0471140856.tx0107s17 農業藥物毒物試驗所網頁,植物保護資訊系統檢索內容(民109年8月9日)。檢自https://otserv2.tactri.gov.tw/PPM/ (Aug.9, 2020) 謝再添 (2007)。新類尼古丁殺蟲劑殺蟲藥理作用與尼古丁-乙醯膽鹼接受器之關係。檢自https://www.tactri.gov.tw/Uploads/Item/97c2387a-c87b-4dab-92dd-3ecf11f3f5be.pdf (Aug.9, 2020) 黃基森、薛翔泰、何旻遠 (2013)。入侵紅火蟻防治藥劑-益達胺簡介。檢自http://163.21.236.12/~fireant/epaper10110/Imidacloprid.pdf (Aug.9, 2020)
|