|
[1] Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe, E. D., Gutierrez, J. B., & Kochut, K., “A brief survey of text mining: Classification, clustering and extraction techniques”, arXiv preprint arXiv:1707.02919, 2017. [2] Balabanović, M., “An adaptive web page recommendation service”, In: Proceedings of the first international conference on Autonomous agents, 1997. [3] Beebe, B., “Trademark Law: An Open-Source Casebook”, Available at: http://tmcasebook.org/wp-content/uploads/2019/07/BeebeTMLaw-6.0-Full-Book.pdf, 2019. [4] Bellogín, A., & Said, A., “Information Retrieval and Recommender Systems”, In: Data Science in Practice, Springer, pp. 79-96, 2018. [5] Belt, W. W., Kiker, D. R., & Shetterly, D. E., “Technology-Assisted Document Review: Is It Defensible?”, 18 Rich. J.L. & TECH. 10, 2012. [6] Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C., “A neural probabilistic language model”, Journal of machine learning research, pp. 1137-1155, 2003. [7] Blei, D. M., & Lafferty, J. D., “Dynamic topic models”, In: Proceedings of the 23rd international conference on Machine learning, pp. 113-120, 2006. [8] Blei, D. M., Ng, A. Y., & Jordan, M. I., “Latent dirichlet allocation”, Journal of machine Learning research, 3, pp. 993-1022, 2003. [9] Bouchoux, D. E., “Intellectual Property: The Law of Trademarks, Copyrights, Patents, and Trade Secrets”, Cengage Learning, 2012. [10] Burk, D. L., “Algorithmic Fair Use”, 86 U. Chi. L. Rev. 283, 2019. [11] Calo, R., “Robots as Legal Metaphors”, Harvard Journal of Law and Technology, 30, pp. 209-237, 2016. [12] Chandrasekaran, B., Josephson, J. R., & Benjamins, V. R., “What Are Ontologies, and Why Do We Need Them,” IEEE Intelligent Systems, 14 (1), pp. 20-26, 1999. [13] Chen, C. H., “Improved TFIDF in big news retrieval: An empirical study”, Pattern Recognition Letters, 93, pp. 113-122, 2017. [14] Chen, Y. L., Liu, Y. H., & Ho, W. L., “A Text Mining Approach to Assist the General Public in the Retrieval of Legal Documents”, Journal of the American Society for Information Science and Technology, 64(2), pp. 280–290, 2013. [15] Chughtai, G. R., Lee, J., Shahzadi, M., Kabir, A., & Hassan, M. A. S., “An efficient ontology-based topic-specific article recommendation model for best-fit reviewers”, Scientometrics, 122, pp. 249–265, 2020. [16] CompuMark, “The trademark ecosystem”, Available at: https://clarivate.com/compumark/wp-content/uploads/sites/6/dlm_uploads/2020/01/2020-trademark-ecosystem.pdf, 2020. [17] Conrad, J. G., “E-Discovery revisited: the need for artificial intelligence beyond information retrieval”, Artificial Intelligence and Law, 18, pp. 321-345, 2010. [18] Cruz, C. M., Porcel, C., Moreno, J. B., & Viedma, E. H., “A model to represent users trust in recommender systems using ontologies and fuzzy linguistic modeling”, Information Sciences, 311, pp.102-118, 2015. [19] Dabass, J., & Dabass, B. S., “Scope of Artificial Intelligence in Law”, arXiv preprint arXiv: 201806.0474.v1, 2018. [20] Dai, A. M., Olah, C., & Le, Q. V., “Document Embedding with Paragraph Vectors”, arXiv preprint arXiv:1507.07998, 2015. [21] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R., “Indexing by latent semantic analysis”, Journal of the American society for information science, 41(6), pp. 391-407, 1990. [22] Deng, N., Chen, X., & Li, D., “Intelligent recommendation of Chinese traditional medicine patents supporting new medicine’s R&D”, Journal of Computational and Theoretical Nanoscience, 13(9), pp. 5907-5913, 2016. [23] Endo, S. K., “Technological Opacity & Procedural Injustice”, 59 B.C. L. Rev. 821, 2018. [24] Fikes, R., & Kehler, T., “The role of frame-based representation in reasoning”, In Communications of the ACM, 28(9), pp. 904-920, 1985. [25] Friedl, J. E., Mastering regular expressions, O'Reilly Media, 2006. [26] Govindarajan, U. H., Trappey, A. J., & Trappey, C. V., “Intelligent collaborative patent mining using excessive topic generation”, Advanced Engineering Informatics, 42, pp.100955, 2019. [27] Grimmelmann, J., “Regulation by software”, 114 Yale LJ, pp. 1719-1758, 2005. [28] Gruber, T. R., “A translation approach to portable ontology specifications”, Knowledge acquisition, 5(2), pp.199-220, 1993. [29] Haggerty, J., “LexisNexis versus Westlaw revisited”, Available at: https://lac-group.com/blog/lexisnexis-versus-westlaw-revisited/, 2018. [30] Hildebrandt, M., “The meaning and the mining of legal texts”, Understanding Digital Humanities, Palgrave Macmillan, pp. 145-160, 2012. [31] Hofmann, T., “Probabilistic latent semantic analysis”, In: Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence, pp. 289-296, 1999. [32] Kant, G., Singh, V. K., Darbari, M., Yagyasen, D., & Shukla, P., “Legal Semantic Web-A Recommendation System”, International Journal of Applied Information Systems (IJAIS), 7, pp. 21-27, 2014. [33] Kerikmäe, T., Hoffmann, T., & Chochia, A., “Legal technology for law firms: determining roadmaps for innovation”, Croatian International Relations Review, 24 (81), pp. 91-112, 2018. [34] Lin, K., “Knowledge Representation and Intelligent Recommender System for Trademark Protection and Litigation Analysis”, Master's thesis, National Tsing Hua University, Hsinchu, Taiwan, 2018. [35] Kuo, M. H., Chen, L. C., & Liang, C. W., “Building and evaluating a location-based service recommendation system with a preference adjustment mechanism”, Expert Systems with Applications, 36(2), pp. 3543-3554, 2009. [36] Lai, S., Liu, K., He, S., & Zhao, J., ”How to generate a good word embedding”, IEEE Intelligent Systems, 31(6), pp. 5-14, 2016. [37] Lau, J. H., & Baldwin, T., “An empirical evaluation of doc2vec with practical insights into document embedding generation”, arXiv preprint arXiv:1607.05368, 2016. [38] Lin, J., “Divergence measures based on the Shannon entropy”, IEEE Transactions on Information theory, 37(1), pp. 145-151, 1991. [39] Le, Q., & Mikolov, T., “Distributed representations of sentences and documents”, In: Proceedings of the 31th International Conference on Machine Learning, ICML 2014. [40] Liddy, E. D., “Natural language processing”, 2001. [41] Li, A. A. S., Trappey, A. J., & Trappey, C. V., “Intelligent Identification of Trademark Case Precedents Using Semantic Ontology”, In: TE 2020 Conference, 2020 (Accepted). [42] Li, A. A. S., Trappey, A. J., Trappey, C. V., & Fan, C. Y., “E-discover State-of-the-art Research Trends of Deep Learning for Computer Vision”, In: 2019 IEEE International Conference on Systems, Man, and Cybernetics, Bari, 2019. [43] Liu, H., Kong, X., & Bai, X., “Context-based collaborative filtering for citation recommendation”, IEEE Access, 3, pp. 1695-1703, 2015. [44] Lu, Q., & Conrad, J. G., “Bringing Order to Legal Documents: An Issue-based Recommendation System via Cluster Association”, In: International Conference on Knowledge Engineering and Ontology Development, 2012. [45] Ma, S., Zhang, C. & Liu, X., “A review of citation recommendation: from textual content to enriched context”, Scientometrics, 122, pp. 1445–1472, 2020. [46] Mandel, R. S., & Schmidt, J. K., “Trade mark litigation in the United States: overview”, Available at: https://uk.practicallaw.thomsonreuters.com/w-009-7807?transitionType=Default&contextData=(sc.Default), 2017. [47] Mehri, A., Jamaati, M., & Mehri, H., “Word ranking in a single document by Jensen–Shannon divergence”, In Physics Letters A, 379(28-29), pp. 1627-1632, 2015. [48] Mikolov, T., Chen, K., Corrado, G., & Dean, J., “Efficient estimation of word representations in vector space”, arXiv preprint arXiv:1301.3781, 2013. [49] Minsky, M., “A framework for representing knowledge”, 1974. [50] Montaner, M., López, B., & Rosa, J. L. D. L., “A taxonomy of recommender agents on the internet”, Artificial Intelligence Review, 19, pp. 285–330, 2003. [51] Munir, K., & Anjum, M. S., “The use of ontologies for effective knowledge modelling and information retrieval”, Applied Computing and Informatics, 14(2), pp. 116-126, 2018. [52] Oard, D. W., & Webber, W., “Information retrieval for e-discovery”, Foundations and Trends® in Information Retrieval, 7(2-3), pp. 99-237, 2013. [53] Park, D. H., Kim, H. K., Choi, I. Y., & Kim, J. K., “A literature review and classification of recommender systems on academic journals”, Journal of intelligence and information systems, 17(1), pp. 139-152, 2011. [54] Park, Y., & Yoon, J., “Application technology opportunity discovery from technology portfolios: Use of patent classification and collaborative filtering”, Technological Forecasting and Social Change, 118, pp. 170-183, 2017. [55] Poelmans, J., Ignatov, D. I., Kuznetsov, S. O., & Dedene, G., “Formal concept analysis in knowledge processing: A survey on applications”, Expert systems with applications, 40(16), pp. 6538-6560, 2013. [56] Qaiser, S., & Ali, R., “Text mining: use of TF-IDF to examine the relevance of words to documents”, International Journal of Computer Applications, 181(1), pp. 25-29, 2018. [57] Rashid, P. Q., “Semantic network and frame knowledge representation formalisms in artificial intelligence”, Eastern Mediterranean University (EMU)-Doğu Akdeniz Üniversitesi (DAÜ), 2015. [58] Ritz, B. L. S., “Will This Dog Hunt?: An Attorney's Guide To Predictive Coding”, 57 S. Tex. L. Rev. 345, 2016. [59] Robertson, S., “Understanding inverse document frequency: on theoretical arguments for IDF”, Journal of documentation, 60(5), pp. 503-520, 2004. [60] Robertson, S., & Zaragoza, H. “The probabilistic relevance framework: BM25 and beyond”, Now Publishers Inc, 2009. [61] Röder, M., Both A., & Hinneburg, A., “Exploring the space of topic coherence measures”, In: Proceedings of the eighth ACM international conference on Web search and data mining, pp. 399-408, 2015. [62] Rogers, E. S., “The Lanham Act and the Social Function of Trade-Marks”, Law & Contemp. Probs., 14, pp. 173-184, 1949. [63] Roitblat, H. L., Kershaw, A., & Oot, P., “Document categorization in legal electronic discovery: computer classification vs. manual review”, Journal of the American Society for Information Science and Technology, 61(1), pp. 70-80, 2010. [64] Russell, S., Dewey, D., & Tegmark, M., “Research priorities for robust and beneficial artificial intelligence”, Ai Magazine, 36(4), pp. 105-114, 2015. [65] Sanfilippo, E. M., Belkadi, F., Bernard, A., “Ontology-based knowledge representation for additive manufacturing”, Computers in Industry, 109, pp. 182-194, 2019. [66] Sharma, M., & Mann, S., “A survey of recommender systems: approaches and limitations”, International Journal of Innovations in Engineering and Technology, 2(2), pp. 8-14, 2013. [67] Shishehchi, S., Banihashem, S. Y., Zin, N. A. M., Noah, S. A. M., & Malaysia, K., “Ontological approach in knowledge based recommender system to develop the quality of e-learning system”, Australian Journal of Basic and Applied Sciences, 6(2), pp. 115-123, 2012. [68] Staab, S., & Studer, R., “What is an ontology?”, Handbook on ontologies, Springer Science & Business Media, pp. 1-17, 2013. [69] Studer, R., Benjamins, V. R., & Fensel, D., “Knowledge engineering: principles and methods”, Data & knowledge engineering, 25(1-2), pp. 161-197, 1998. [70] Surden, H., “Machine Learning and Law”, 89 Wash. L. Rev. 87, pp. 87-115, 2014. [71] Trappey, C. V., Chang, A. C., & Trappey, A. J. C., “Building an internet based knowledge ontology for trademark protection”, Journal of Global Information Management (JGIM), 2019 (Accepted). [72] Trappey, A. J. C., Trappey, C. V., & Hsieh, H. I., “Development of a smart patent recommendation system with natural language processing capabilities”, In: Proceedings of the 48th International Conference on Computers and Industrial Engineering (CIE 48), Auckland, New Zealand, Dec. 2-5, 2018. [73] Trappey, A. J. C., Trappey, C. V., & Lin, B. H., “Identify trademark legal case precedents - Using machine learning to enable semantic analysis of judgments,” World Patent Information, 2020 (Accepted). [74] Trappey, A. J. C., Trappey, C. V., Wu, C. Y., Fan, C. Y., & Lin, Y. L., “Intelligent patent recommendation system for innovative design collaboration”, Journal of Network and Computer Applications, 36(6), pp. 1441-1450, 2013. [75] Trstenjak, B., Mikac, S., & Donko, D., “KNN with TF-IDF based framework for text categorization”, Procedia Engineering, 69, pp. 1356-1364, 2014. [76] World Intellectual Property Organization (WIPO), “Statistical Country Profiles”, Available at: https://www.wipo.int/ipstats/en/statistics/country_profile/profile.jsp?code=US, 2020. [77] United States Patent and Trademark Office (USPTO), “Basic Facts About Trademarks”, Available at: https://www.uspto.gov/sites/default/files/documents/BasicFacts.pdf, 2020. [78] Vijayarani, S., Ilamathi, M. J., & Nithya, M., “Preprocessing techniques for text mining-an overview”, International Journal of Computer Science & Communication Networks, 5(1), pp. 7-16, 2015. [79] Wang, B., Liu, S., Ding, K., Liu, Z., & Xu, J., “Identifying technological topics and institution-topic distribution probability for patent competitive intelligence analysis: a case study in LTE technology”, Scientometrics, 101, pp. 685–704, 2014. [80] Wang, Q., Du, W., Ma, J., & Liao, X., “Recommendation Mechanism for Patent Trading Empowered by Heterogeneous Information Networks”, International Journal of Electronic Commerce, 23(2), pp. 147-178, 2019. [81] Weiss, S. M., Indurkhya, N., & Zhang, T., “Information Retrieval and Text Mining”, In: Fundamentals of Predictive Text Mining, Springer, pp.75-90, 2010. [82] Wheeler, L., The Art of Regular Expressions, 2016. [83] Yang, S. Y., “Developing an ontology-supported information integration and recommendation system for scholars”, Expert Systems with Applications, 37(10), pp. 7065–7079, 2010. [84] Zhang, D., Xu, H., Su, Z., & Xu, Y., “Chinese comments sentiment classification based on word2vec and SVMperf”, Expert Systems with Application, 42, pp. 1857-1863, 2014.
|