|
Alguacil, N., & Conejo, A. J. (2000). Multiperiod optimal power flow using Benders decomposition. IEEE Transactions on Power Systems, 15(1), pp. 196 - 201. Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik, 4(1), pp. 238-252. Berry, S., Levinsohn, J., & Pakes, A. (1995). Automobile Prices in Market Equilibrium. Econometrica, 63(4), pp. 841-890. Chu, Y., & Xia, Q. (2004). Generating Benders Cuts for a General Class of Integer Programming Problems. Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problem, (pp. 127-141). Springer, Berlin, Heidelberg. Contreras, I., Cordeau, J. F., & Laporte, G. (2011). Benders Decomposition for Large-Scale Uncapacitated Hub Location. Operations Research, 59(6), pp. 1477-1490. Cordeau, J. F., Soumis, F., & Desrosiers, J. (2000). A Benders Decomposition Approach for the Locomotive and Car Assignment Problem. Transportation Science, 34(2), pp. 133-149. Cordeau, J. F., Stojković, G., Soumis, F., & Desrosiers, J. (2001). Benders Decomposition for Simultaneous Aircraft Routing and Crew Scheduling. Transportation Science, 35(4), pp. 375-388. Costa, A. M. (2005). A survey on benders decomposition applied to fixed-charge network design problems. Computers & Operations Research, 32(6), pp. 1429-1450. Dubé, J.‐P., Fox, J., & Su, C.‐L. (2012). Improving the Numerical Performance of Static and Dynamic Aggregate Discrete Choice Random Coefficients Demand Estimation. Econometrica, 80(5), pp. 2231-2267. Fakhri, A., Ghatee, M., Fragkogios, A., & Saharidis, G. (2017). Benders decomposition with integer subproblem. Expert Systems with Applications, 89, pp. 20-30. Geoffrion, A. M., & Graves, G. W. (1974). Multicommodity Distribution System Design by Benders Decomposition. Management Science, 20(5), pp. 822-844. Hansen, L. P. (1982). Large Sample Properties of Generalized Method of Moments Estimators. Econometrica, 50(4), pp. 1029-1054. Heching, A., & Hooker, J. (2016). Scheduling Home Hospice Care with Logic-Based Benders Decomposition. International Conference on AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, (pp. 187-197). Springer, Cham. Hooker, J., & Greger, O. (2003). Logic-based Benders decomposition. Mathematical Programming, 96(1), pp. 33-60. Hooker, J., & Kim, H.-J. (2002). Solving Fixed-Charge Network Flow Problems with a Hybrid Optimization and Constraint Programming Approach. Annals of Operations Research, 115(1-4), pp. 95–124. Istomin, R. (2017). Numerical Algorithm for Inverting the Pure Characteristics Model of Demand. Available at SSRN 2937543. Judd, K., & Su , C.‐L. (2012). Constrained Optimization Approaches to Estimation of Structural Models. Econometrica, 80(5), pp. 2213-2230. Luo, Z.-Q., Pang, J.-S., & Ralph, D. (1996). Mathematical Programs with Equilibrium Constraints. Cambridge University Press. McFadden, D. (1981). Econometric models of probabilistic choice. Structural analysis of discrete data with econometric applications, 198272. Pakes, A., & Berry , S. (2007). The pure characteristics demand model. International Economic Review, 48(4), pp. 1193-1225. Pang, J.-S., Su, C.-L., & Lee, Y.-C. (2015). A Constructive Approach to Estimating Pure Characteristics Demand Models with Pricing. Operations Research, 63(3), pp. 639-659. Rahmaniani, R., Crainic, T. G., Gendreau, M., & Rei, W. (2017). The Benders decomposition algorithm: A literature review. European Journal of Operational Research, 259(3), pp. 801-817. Roshanaei, V., Luong, C., Aleman, D., & Urbach, D. (2017). Propagating logic-based Benders’ decomposition approaches for distributed operating room scheduling. European Journal of Operational Research, 257(2), pp. 439-455. Song, M. (2007). Measuring consumer welfare in the CPU market: an application of the pure‐characteristics demand model. The RAND Journal of Economics, 38(2), pp. 429-446. Song, M. (2008). Estimating the Pure Characteristics Demand Model: A Computational Note. Sun, H., Su, C.-L., & Chen, X. (2017). SAA-regularized methods for multiproduct price optimization under the pure characteristics demand model. Mathematical Programming, 165(1), pp. 361–389.
|