跳到主要內容

臺灣博碩士論文加值系統

(44.192.254.59) 您好!臺灣時間:2023/01/27 19:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:艾哈邁德 福阿德 穆薩
研究生(外文):Musa, Ahmed Fouad Abuelhadid
論文名稱:PbSe,SnSe,SexTe1-x,SnTe,和SnTe1-xSex熱電材料與鎳擴散阻障層之界面反應與其相關相圖
論文名稱(外文):Interfacial reactions between Ni barrier layer and thermoelectric PbSe, SnSe, SexTe1-x, SnTe, and SnTe1-xSex alloys and their related phase diagrams
指導教授:陳信文陳信文引用關係
指導教授(外文):Chen, Sinn-wen
口試委員:吳子嘉胡啟章吳欣潔陳信文
口試委員(外文):Wu, Albert THu, Chi-changWu, Hsin-jayChen, Sinn-wen
口試日期:2020-06-08
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:115
中文關鍵詞:界面反應熱電材料相圖界面反應熱電材料相圖
外文關鍵詞:Interfacial ReactionsThermoelectric MaterialsPhase DiagramsInterfacial ReactionsThermoelectric MaterialsPhase Diagrams
相關次數:
  • 被引用被引用:0
  • 點閱點閱:68
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
因為在提高能源使用效率與再生能源開發二大重要能源議題上的重要性,熱電材料吸引了全世界的關注。熱電模組通常由P-N接面的陣列組成,當中也因此存在著許多接點。PbSe和包含SnSe與SnTe的Se‒Sn‒Te系統的熱電材料,是極具潛力的熱電材料。Ni常作為阻障層,以避免熱電基材和銲料間的顯著反應。因為Ni阻障層與熱電基材直接相接, 因此關於Ni層與熱電基材間的界面反應的了解,對熱電模組的開發以及可靠度評估將十分重要。相圖提供相平衡資訊。相圖除了是材料的重要基礎知識外,也是探討界面反應非常有用的工具。本研究評估文獻中的相關組成系統的相圖與相平衡資料,提出了相關材料系統的等溫恆截面相圖。本研究系統性的探討了Ni/PbSe, Ni/SnSe, Ni/SexTe1-x (x=0.1, and 0.2), Ni/SnTe, 與Ni/SnTe0.9Se0.1 反應偶的界面反應。熱電基材是由組成的純物質製備,然後以電鍍方法鍍上Ni層。製備好的反應偶封於抽真空的石英管中,再經不同時間的熱處理。以實驗量測反應偶中的反應生成相,並配合相關材料系統相圖,以解釋與了解其反應路徑。在300℃, 350℃ 及 400℃的Ni/PbSe反應偶中生成了Ni3Pb2Se2相,但是在250℃則無明顯界面反應。 Ni/PbSe 的反應路徑為Ni/Ni3Pb2Se2/PbSe 。Ni/SnSe在250℃ 及 300℃的反應路徑為Ni/Ni3Sn/Ni3Sn2/NiSe/Ni5.62SnSe2/Ni3SnSe/ NiSnSe/SnSe。NiSnSe 及 Ni3SnSe是首次發現的三元相,它們是因Ni快速擴散所生的界穩相。Ni/SexTe1-x在200℃的反應路徑為Ni/Ni3Te2/NiTe2/SexTe1-x。Ni/SnTe 在400℃的反應路徑為Ni/Ni3Sn/Ni3Sn2/Ni5.78SnTe2/Ni3SnTe2/SnTe。Ni/SnTe0.9Se0.1 在400℃的反應路徑與Ni/SnTe的反應路徑相似。界面反應速率隨溫度降低而減小,反應層厚度隨著反應時間拉長而增厚。從反應偶的微結構與相生成順序,推知Ni是上述這些反應偶中擴散最快的元素。
Thermoelectric (TE) materials have attracted worldwide attention because of their importance in enhancing energy usage efficiency and developing reliable renewable energy sources which are considered the two pillars of sustainable energy. Thermoelectric modules are usually made with arrays of P-N junctions, and there are various joints in thermoelectric modules. PbSe compound and Se‒Sn‒Te-based materials including SnSe and SnTe compounds are among the most promising thermoelectric materials. Ni is usually used as a barrier layer to prevent significant interfacial reactions between joining materials and thermoelectric substrates. Since Ni barrier layer is in direct contact with thermoelectric substrates, knowledge of interfacial reactions between Ni barrier layer and thermoelectric materials is thus fundamentally important for development and reliability assessment of thermoelectric modules. Phase diagrams provide phase equilibria information. Besides they are important basic knowledge, they are very useful in the illustrations of interfacial reactions. Phase diagrams of related materials systems are proposed in this study based on the phase diagrams of their constituent systems and related phase equilibria results in the literatures. This study systematically examines the interfacial reactions in Ni/PbSe, Ni/SnSe, Ni/SexTe1-x (x=0.1, and 0.2), Ni/SnTe, and Ni/SnTe0.9Se0.1 couples. The thermoelectric substrates are prepared with pure constituent elements and electroplated with Ni layer. The couples were encapsulated in vacuumed quartz tubes and heat-treated for various lengths of time. The reaction phases are experimentally determined. The reaction paths are illustrated based on the reaction phases and the proposed phase diagrams. One reaction phase, Ni3Pb2Se2, is formed in the Ni/PbSe couples reacted at 300℃, 350℃ and 400℃, but no interfacial reaction at 250℃. The reaction path is Ni/Ni3Pb2Se2/PbSe in the Ni/PbSe couples. The reaction paths in the Ni/SnSe couple reacted at 250℃ and 300℃, are both Ni/Ni3Sn/Ni3Sn2/NiSe/Ni5.62SnSe2/Ni3SnSe/NiSnSe/SnSe. Both NiSnSe and Ni3SnSe are ternary phases observed for the first time. They are metastable phases formed by rapid diffusion of Ni into the SnSe substrate. The reaction path in the Ni/SexTe1-x couple reacted at 200℃ is Ni/Ni3Te2/NiTe2/ SexTe1-x and in the Ni/SnTe couple reacted at 400℃, is Ni/ Ni3Sn/Ni3Sn2/Ni5.78SnTe2/Ni3SnTe2/SnTe. In the Ni/SnTe0.9Se0.1 couple reacted at 400℃, the reaction path is the same as that of Ni/SnTe. The reaction rates decrease with lower reaction temperatures, and the reaction zone grows thicker with longer reaction time. Based on the microstructure analysis and the reaction phase sequences, it is concluded that Ni is the fastest diffusion species in all these couples.
Acknowledgement I
Abstract II
摘要 IV
Contents V
List of Symbols IX
List of Tables X
List of Figures XI
Chapret 1 Introduction 1
1.1 Background 1
1.2 Thermoelectric effects and thermoelectric materials 3
1.3 Pb‒Se‒Sn‒Te‒based thermoelectric materials 9
1.4 Ni as diffusion barrier layer and its criteria 9
Chapret 2 Literature Review 11
Phase Diagrams 11
Interfacial Reactions 11
2.1 Ni‒Pb System 12
2.1.1 Ni‒Pb Phase Diagram 12
2.1.2 Ni/Pb Interfacial Reactions 12
2.2 Ni‒Se System 14
2.2.1 Ni‒Se Phase Diagram 14
2.2.2 Ni/Se Interfacial Reactions 14
2.3 Ni‒Pb‒Se System 16
2.3.1 Phase diagrams related to Ni‒Pb‒Se Ternary system 16
2.3.1.1 Pb‒Se Binary System 16
2.3.1.2 Ni‒Pb‒Se Ternary System 16
2.3.2 Ni/PbSe Interfacial Reactions 16
2.4 Ni‒Sn System 18
2.4.1 Ni‒Sn Phase Diagram 18
2.4.2 Ni/Sn Interfacial Reactions 18
2.5 Ni‒Te System 22
2.5.1 Ni‒Te Phase Diagram 22
2.5.2 Ni/Te Interfacial Reactions 22
2.6 Ni‒Se‒Sn System 26
2.6.1 Phase diagrams related to Ni‒Se‒Sn 26
2.6.1.1 Se‒Sn Binary System 26
2.6.1.2 Ni‒Se‒Sn Ternary System 26
2.6.2 Ni/SnSe Interfacial Reactions 26
2.7 Ni‒Se‒Te System 31
2.7.1 Phase diagrams related to Ni‒Se‒Te 31
2.7.1.1 Se‒Te Binary System 31
2.7.1.2 Ni‒Se‒Te Ternary System 31
2.7.2 Ni/Se‒Te Interfacial Reactions 32
2.8 Ni‒Sn‒Te System 34
2.8.1 Phase diagrams related to Ni‒Sn‒Te 34
2.8.1.1 Sn‒Te Binary System 34
2.8.1.2 Ni‒Sn‒Te Ternary System 34
2.8.2 Ni/SnTe Interfacial Reactions 35
2.9 Ni‒Se‒Sn‒Te System 38
2.9.1 Phase diagrams related to Ni‒Se‒Sn‒Te 38
2.9.1.1 Se‒Sn‒Te Ternary System 38
2.9.1.2 Ni‒Se‒Sn‒Te Quaternary System 39
2.9.2 Ni/Se‒Sn‒Te Interfacial Reactions 39
Chapret 3 Methodology 42
3.1 Thermoelectric materials preparation 42
3.1.1 PbSe substrate 42
3.1.2 SnSe substrate 42
3.1.3 SexTe1-x substrate 42
3.1.4 SnTe substrate 43
3.1.5 SnTe0.9Se0.1 substrate 43
3.2 Thermoelectric materials characterization 43
3.3 Ni electroplating 44
3.4 Interfacial reactions 44
Chapret 4 Results and Discussion 45
4.1 Interfacial reactions in Ni/PbSe couple 45
4.1.1 Ni/PbSe couple 45
4.1.2 Ni/PbSe interfacial reactions 48
4.1.3 Ni‒Pb‒Se isothermal section at 350℃ 53
4.2 Interfacial reactions in Ni/SnSe couple 56
4.2.1 Ni/SnSe interfacial reactions at 250℃ 59
4.2.2 Ni/SnSe interfacial reactions at 300℃ 62
4.2.3 Ni‒Se‒Sn phase equilibria isothermal section at 300℃ 65
4.3 Interfacial reactions in Ni/SexTe1-x couple 67
4.3.1 Ni/Se-90.0at. %Te 67
4.3.2 Ni/ Se-90.0 at. %Te reactions at 200℃ 70
4.3.3 Ni/ Se-80.0at. %Te reactions at 200℃ 77
4.3.4 Ni‒Se‒Te phase equilibria isothermal section at 200℃ 82
4.4 Interfacial reactions in Ni/SnTe couple 84
4.4.1 Ni/SnTe couple 84
4.4.2 Ni/SnTe interfacial reactions at 250℃, 300℃, and 350℃ 87
4.4.3 Ni/SnTe reactions at 400℃ and 500℃ 91
4.4.4 Ni‒Sn‒Te phase equilibria isothermal section at 400℃ 97
4.5 Interfacial reactions in Ni/SnTe0.9Se0.1 couple 99
4.5.1 Ni/SnTe0.9Se0.1 couple 99
4.5.2 Ni/SnTe0.9Se0.1 interfacial reaction 102
4.5.3 Ni‒Se‒Sn‒Te phase equilibria at 400℃ 105
Chapret 5 Conclusions 107
References 108
[1] Fitriani, R. Ovik, B. D. Long et al., "A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery," Renewable and Sustainable Energy Reviews, vol. 64, pp. 635-659, (2016).
[2] L.L.N.L, Estimated U.S. Energy Consumption in 2019. (2019).
[3] M. H. Elsheikh, D. A. Shnawah, M. F. Sabri et al., "A review on thermoelectric renewable energy: Principle parameters that affect their performance," Renewable and Sustainable Energy Reviews, vol. 30, pp. 337-355, (2014).
[4] V. Fthenakis and H. C. Kim, "Life-cycle uses of water in U.S. electricity generation," Renewable and Sustainable Energy Reviews, vol. 14, no. 7, pp. 2039-2048, (2010).
[5] T. Wang, Y. Zhang, Z. Peng et al., "A review of researches on thermal exhaust heat recovery with Rankine cycle," Renewable and Sustainable Energy Reviews, vol. 15, no. 6, pp. 2862-2871, (2011).
[6] F. Vélez, J. J. Segovia, M. C. Martín et al., "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, vol. 16, no. 6, pp. 4175-4189, (2012).
[7] G. Shu, Y. Liang, H. Wei et al., "A review of waste heat recovery on two-stroke IC engine aboard ships," Renewable and Sustainable Energy Reviews, vol. 19, pp. 385-401, (2013).
[8] S. F. Tie and C. W. Tan, "A review of energy sources and energy management system in electric vehicles," Renewable and Sustainable Energy Reviews, vol. 20, pp. 82-102, (2013).
[9] K. R. Ullah, R. Saidur, H. W. Ping et al., "A review of solar thermal refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, vol. 24, pp. 499-513, (2013).
[10] S. B. Riffat and X. Ma, "Thermoelectrics: a review of present and potential applications," Applied Thermal Engineering, vol. 23, no. 8, pp. 913-935, (2003).
[11] L. E. Bell, "Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems," Science, vol. 321, no. 5895, p. 1457, (2008).
[12] B.-C. Qin, Y. Xiao, Y.-M. Zhou et al., "Thermoelectric transport properties of Pb–Sn–Te–Se system," Rare Metals, journal article vol. 37, no. 4, pp. 343-350, (2018).
[13] G. Tan, L.-D. Zhao, and M. G. Kanatzidis, "Rationally Designing High-Performance Bulk Thermoelectric Materials," Chemical Reviews, vol. 116, no. 19, pp. 12123-12149, (2016).
[14] Z.-S. Lin, L. Chen, L.-M. Wang et al., "A Promising Mid-Temperature Thermoelectric Material Candidate: Pb/Sn-Codoped In4PbxSnySe3," Advanced Materials, vol. 25, no. 34, pp. 4800-4806, (2013).
[15] A. Shakouri, "Recent Developments in Semiconductor Thermoelectric Physics and Materials," Annual Review of Materials Research, vol. 41, no. 1, pp. 399-431, (2011).
[16] M. G. Kanatzidis, "Nanostructured Thermoelectrics: The New Paradigm?," Chemistry of Materials, vol. 22, no. 3, pp. 648-659, (2010).
[17] J. R. Sootsman, D. Y. Chung, and M. G. Kanatzidis, "New and Old Concepts in Thermoelectric Materials," Angewandte Chemie International Edition, vol. 48, no. 46, pp. 8616-8639, (2009).
[18] G. J. Snyder and E. S. Toberer, "Complex thermoelectric materials," Nature Materials, Review Article vol. 7, p. 105, (2008).
[19] P. Pichanusakorn and P. Bandaru, "Nanostructured thermoelectrics," Materials Science and Engineering: R: Reports, vol. 67, no. 2, pp. 19-63, (2010).
[20] W. Liu, C. F. Guo, M. L. Yao et al., "Bi2S3 nanonetwork as precursor for improved thermoelectric performance," Nano Energy, vol. 4, pp. 113-122, (2014).
[21] K. Biswas, J. He, I. D. Blum et al., "High-performance bulk thermoelectrics with all-scale hierarchical architectures," Nature, vol. 489, p. 414, (2012).
[22] L.-D. Zhao, V. P. Dravid, and M. G. Kanatzidis, "The panoscopic approach to high performance thermoelectrics," Energy & Environmental Science, vol. 7, no. 1, pp. 251-268, (2014).
[23] H. Wang, Y. Pei, A. D. LaLonde et al., "Heavily Doped p-Type PbSe with High Thermoelectric Performance: An Alternative for PbTe," Advanced Materials, vol. 23, no. 11, pp. 1366-1370, (2011).
[24] H. Wang, Y. Pei, A. D. LaLonde et al., "Weak electron–phonon coupling contributing to high thermoelectric performance in n-type PbSe," Proceedings of the National Academy of Sciences, vol. 109, no. 25, p. 9705, (2012).
[25] Q. Zhang, B. Liao, Y. Lan et al., "High thermoelectric performance by resonant dopant indium in nanostructured SnTe," Proceedings of the National Academy of Sciences, vol. 110, no. 33, p. 13261, (2013).
[26] M. Zhou, Z. M. Gibbs, H Wang et al., "Optimization of thermoelectric efficiency in SnTe: the case for the light band," Physical Chemistry Chemical Physics, vol. 16, no. 38, pp. 20741-20748, (2014).
[27] L.-D. Zhao et al., "Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals," Nature, vol. 508, p. 373, (2014).
[28] C.-L. Chen, H. Wang, Y.-Y. Chen et al., "Thermoelectric properties of p-type polycrystalline SnSe doped with Ag," Journal of Materials Chememistry A, vol. 2, pp. 11171-11176,( 2014).
[29] L.-D. Zhao, G. Tan, S.-S. Hao et al., "Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe," Science, vol. 351, no. 6269, p. 141, (2016).
[30] L.-D. Zhao, S.-S. Hao, S.-H. Lo et al., "High Thermoelectric Performance via Hierarchical Compositionally Alloyed Nanostructures," Journal of the American Chemical Society, vol. 135, no. 19, pp. 7364-7370, (2013).
[31] Y. Pei, A. D. LaLonde, N. A. Heinz et al., "High Thermoelectric Figure of Merit in PbTe Alloys Demonstrated in PbTe–CdTe," Advanced Energy Materials, vol. 2, no. 6, pp. 670-675, (2012).
[32] G. Tan, M. Ohta, and M. G. Kanatzidis, "Thermoelectric power generation: from new materials to devices," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 377, no. 2152, p. 20180450, (2019).
[33] H. Sun, B. Cai, P. Zhao et al., "Enhancement of thermoelectric performance of Al doped PbTe-PbSe due to carrier concentration optimization and alloying," Journal of Alloys and Compounds, vol. 791, pp. 786-791, (2019).
[34] C. Gayner, K. K. Kar, and W. Kim, "Recent progress and futuristic development of PbSe thermoelectric materials and devices," Materials Today Energy, vol. 9, pp. 359-376, (2018).
[35] L. Yang, Z.-G. Chen, M. S. Dargusch et al., "High Performance Thermoelectric Materials: Progress and Their Applications," Advanced Energy Materials, vol. 8, no. 6, p. 1701797, (2018).
[36] C. Gayner, R. Sharma, M. K. Das et al., "Effects of Ni doping induced band modification and Ni3Se2 nanoinclusion on thermoelectric properties of PbSe," Journal of Alloys and Compounds, vol. 699, pp. 679-689, (2017).
[37] X. Shi, L. Chen, and C. Uher, "Recent advances in high-performance bulk thermoelectric materials," International Materials Reviews, vol. 61, no. 6, pp. 379-415, (2016).
[38] W.-R. Shi, M.-X. Gao, J.-P. Wei et al., "Tin Selenide (SnSe): Growth, Properties, and Applications," Advanced Science, vol. 5, no. 4, p. 1700602, (2018).
[39] N. V. Quang, J. Kim, and S. Cho, "A Review of SnSe: Growth and Thermoelectric Properties," Journal of the Korean Physical Society, vol. 72, pp. 841-857, (2018).
[40] J.-Y. Cho, S.-Y Khan, W.-C. Jin et al., "Electrical Transport and Thermoelectric Properties of SnSe–SnTe Solid Solution," Materials, vol. 12, p. 3854, (2019).
[41] M.-K. Han, J. Androulakis, S.-J. Kimet al., "Lead-Free Thermoelectrics: High Figure of Merit in p-type AgSnmSbTem+2," Advanced Energy Materials, vol. 2, no. 1, pp. 157-161, (2012).
[42] R. Zybala, K. Wojciechowski, M. Schmidt et al., "Junctions and diffusion barriers for high temperature thermoelectric modules," 11th International Conference and Exhibition of the European Ceramic Society 2009, vol. 1, pp. 341-344, (2009).
[43] M. Gu, S.-Q. Bai, J.-H. Wu et al., "A high-throughput strategy to screen interfacial diffusion barrier materials for thermoelectric modules," Journal of Materials Research, vol. 34, no. 7, pp. 1179-1187, (2019).
[44] S.-W. Chen, Z.-W. Liu, H.-S. Chu et al., "Interfacial reactions between Ni and Bi2(Se0.1Te0.9)3 and its constituent material systems," Journal of Alloys and Compounds, vol. 731, pp. 111-117, (2018).
[45] W.-A. Chen, S.-W. Chen, S.-M. Tseng et al., "Interfacial reactions in Ni/CoSb3 couples at 450°C," Journal of Alloys and Compounds, vol. 632, pp. 500-504, (2015).
[46] Y. C. Lan, D. Z. Wang, G. Chen et al., "Diffusion of nickel and tin in p-type (Bi,Sb)2Te3 and n-type Bi2(Te,Se)3 thermoelectric materials," Applied Physics Letters, vol. 92, no. 10, p. 101910,( 2008).
[47] T. Y. Lin, C. N. Liao, and A. T. Wu, "Evaluation of Diffusion Barrier Between Lead-Free Solder Systems and Thermoelectric Materials," Journal of Electronic Materials, vol. 41, no. 1, pp. 153-158,( 2012).
[48] W.-S. Liu, H.-Z. Wang, L.-J. Wang et al., "Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications," Journal of Materials Chemistry A, vol. 1, no. 42, pp. 13093-13100, (2013).
[49] R. Gupta, O. D. Lyore, K. Xiong et al., "Interface Characterization of Cobalt Contacts on Bismuth Selenium Telluride for Thermoelectric Devices," Electrochemical and Solid State Letters, vol. 12, (2009).
[50] W.-C. Lin, Y.-S. Li, and A. T. Wu, "Study of Diffusion Barrier for Solder/n-Type Bi2Te3 and Bonding Strength for p- and n-Type Thermoelectric Modules," Journal of Electronic Materials, vol. 47, no. 1, pp. 148-154, (2018).
[51] C. Yang, H. Lai, J.-D. Hwang et al., "Diffusion Soldering of Bi0.5Sb1.5Te3 Thermoelectric Material with Cu Electrode," Journal of Materials Engineering and Performance, vol. 22, (2013).
[52] T. Laurila, V. Vuorinen, and J. K. Kivilahti, "Interfacial reactions between lead-free solders and common base materials," Materials Science and Engineering: R: Reports, vol. 49, no. 1, pp. 1-60, (2005).
[53] P. J. Taylor, J. R. Maddux, G. Meissner et al., "Controlled improvement in specific contact resistivity for thermoelectric materials by ion implantation," Applied Physics Letters, vol. 103, no. 4, p. 043902, (2013).
[54] W. Liu, Q. Jie, H. S. Kim et al., "Current progress and future challenges in thermoelectric power generation: From materials to devices," Acta Materialia, vol. 87, pp. 357-376, (2015).
[55] A. A. Kodentsov, G. F. Bastin, and F. J. J. van Loo, "The diffusion couple technique in phase diagram determination," Journal of Alloys and Compounds, vol. 320, no. 2, pp. 207-217, (2001).
[56] H.-J. Wu, A. T. Wu, P.-C. Wei et al., "Interfacial reactions in thermoelectric modules," Materials Research Letters, vol. 6, no. 4, pp. 244-248, (2018).
[57] G. Ghosh, "Thermodynamic modeling of the nickel-lead-tin system," Metallurgical and Materials Transactions A, vol. 30, no. 6, pp. 1481-1494, (1999).
[58] C. P. Wang, X. J. Liu, I. Ohnuma et al., "Thermodynamic assessment of the Cu-Ni-Pb system," Calphad, vol. 24, no. 2, pp. 149-167, (2000).
[59] K. N. Tu and K. Zeng, "Tin–lead (SnPb) solder reaction in flip chip technology," Materials Science and Engineering: R: Reports, vol. 34, no. 1, pp. 1-58, (2001).
[60] R. J. Klein Wassink, “Soldering in electronics”, Electrochemical Publications, British Isles, (1989).
[61] K. L. Komarek and K. Wessely, "Die Systeme Nickel—Selen und Kobalt—Nickel-Selen," Monatshefte für Chemie / Chemical Monthly, journal article vol. 103, no. 4, pp. 923-933, (1972).
[62] B. Predel, "Ni-Se (Nickel-Selenium)," in Ni-Np – Pt-Zr, O. Madelung Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1-3, (1998).
[63] P. Nielsen and J. J. Ritsko, "Reactive diffusion and electronic structure at the nickel/selenium interface," Journal of Applied Physics, vol. 49, no. 2, pp. 632-639, (1978).
[64] M. Schneider and J. C. Guillaume, "Etude des alliages liquides du systeme plomb-selenium a l'aide de mesures electrochimiques," Journal of Physics and Chemistry of Solids, vol. 35, no. 4, pp. 471-478, (1974).
[65] J. C. Lin, R. C. Sharma, and Y. A. Chang, "The Pb-Se (lead-selenium) system," Journal of Phase Equilibria, vol. 17, no. 3, pp. 253-260, (1996).
[66] Y. Liu, Z. Kang, G. Sheng et al., "Phase Equilibria and Thermodynamic Basis for the Cd-Se and Pb-Se Binary Systems," Journal of Electronic Materials, vol. 41, p. 1915, (2012).
[67] A. I. Baranov, A. A. Isaeva, B. A. Popovkin et al., "Crystal structure and thermal stability of Ni151.5Pb24S92. Search for selenium- and tellurium-containing analogs," Russian Chemical Bulletin, vol. 51, no. 12, pp. 2139-2144, (2002).
[68] N. N. Myuller, and L. I. Sotnikova, “Lead selenide-nickel system”, Neorganicheskie Materialy, Vol. 5(11), pp. 1899-1902, (1969).
[69] K. J. Range, H. Paulus, F. Rau et al., "Crystal structure of nickel lead selenide (3/2/2), Ni3Pb2Se2," (in English), Zeitschrift für Kristallographie - Crystalline Materials, vol. 212, no. 2, pp. 136-136, (1997).
[70] P. Nash and A. Nash, "The Ni−Sn (Nickel-Tin) system," Bulletin of Alloy Phase Diagrams, journal article vol. 6, no. 4, pp. 350-359, (1985).
[71] C. Schmetterer, H. Flandorfer, K. W. Richter et al., "A new investigation of the system Ni–Sn," Intermetallics, vol. 15, no. 7, pp. 869-884, (2007).
[72] A. Leineweber, "Ordered and disordered states in NiAs/Ni2In-type Ni1+δSn: Crystallography and order formation," International Journal of Materials Research, vol. 102, no. 7, pp. 861-873, (2011).
[73] A. Zemanova, A. Kroupa, and A. Dinsdale, "Theoretical assessment of the Ni–Sn system," Monatshefte für Chemie - Chemical Monthly, journal article vol. 143, no. 9, pp. 1255-1261, (2012).
[74] J. Liu, C. Guo, C. Li et al., "Thermodynamic re-assessment of the Ni – Sn system," International Journal of Materials Research, vol. 104, no. 1, pp. 51-59, (2013).
[75] Y. Qiu, Y. Luo, X. Hu et al., "Research on Interfacial Reaction and Growth Behavior of Intermetallic Compound of Dip-Soldered Sn/Ni System," Transactions of the Indian Institute of Metals, vol. 72, no. 3, pp. 651-661, (2019).
[76] S. Kim and D. C. Johnson, "Control of Ni–Sn interfacial reactions through reactant design," Journal of Alloys and Compounds, vol. 392, no. 1, pp. 105-111, (2005).
[77] C.-M. Chen and S.-W. Chen, "Electromigration effects upon the low-temperature Sn/Ni interfacial reactions," Journal of Materials Research, vol. 18, no. 6, pp. 1293-1296, (2003).
[78] C.-H. Wang, C.-Y. Kuo, H.-H. Chen et al., "Effects of current density and temperature on Sn/Ni interfacial reactions under current stressing," Intermetallics, vol. 19, no. 1, pp. 75-80, (2011).
[79] C. C. Li, C. K. Chung, W. L. Shih et al., "Volume Shrinkage Induced by Interfacial Reaction in Micro-Ni/Sn/Ni Joints," Metallurgical and Materials Transactions A, journal article vol. 45, no. 5, pp. 2343-2346, (2014).
[80] K. Chu, Y. Sohn, and C. Moon, "A comparative study of Cn/Sn/Cu and Ni/Sn/Ni solder joints for low temperature stable transient liquid phase bonding," Scripta Materialia, vol. 109, pp. 113-117, (2015).
[81] N. Zhao, J. F. Deng, Y. Zhong et al., "Abnormal Intermetallic Compound Evolution in Ni/Sn/Ni and Ni/Sn-9Zn/Ni Micro Solder Joints Under Thermomigration," Journal of Electronic Materials, journal article vol. 46, no. 4, pp. 1931-1936, (2017).
[82] W.-M. Tang, A.-Q. He, Q. Liu et al., "Solid state interfacial reactions in electrodeposited Ni/Sn couples," International Journal of Minerals, Metallurgy, and Materials, journal article vol. 17, no. 4, pp. 459-463, (2010).
[83] S. Y. Lee and P. Nash, "Ni-Te (nickel-tellurium)," Phase Diagrams of Binary Nickel Alloys, pp. 330-338, (1991).
[84] J. Barstad, "On the Tellurides of Nickel," Acta Chemica Scandinavica, vol. 20, no. 10, pp. 2865-2879, (1966).
[85] R. B. Kok, G. A. Wiegers, and F. Jellinek, "The system nickel‐tellurium I. Structure and some superstructures of the Ni3±qTe2 phase (preliminary communication)," (in English), Recueil des Travaux Chimiques des Pays‐Bas, Article vol. 84, no. 12, pp. 1585-1588, (1965).
[86] C.-M. Arvhult, C. Guéneau, S. Gossé et al., "Thermodynamic assessment of the Ni–Te system," Journal of Materials Science, vol. 54, no. 16, pp. 11304-11319, (2019).
[87] S.-W. Chen, T.-R. Yang, H.-W. Hsiao et al., "Ni/Te and Ni/Ag2Te interfacial reactions," Materials Chemistry and Physics, vol. 180, pp. 396-403, (2016).
[88] I. Jandl, F. Boero, H. Ipser et al., "Phase equilibria and structural investigations of the general NiAs-type in the ternary system Ni–Sn–Te," Intermetallics, vol. 46, pp. 199-210, (2014).
[89] E. Aleshina, V. Zlomanov, and A. Novoselova, "Investigation of the PTX Diagram of the Sn-Se System," Inorganic Materials, vol. 18, no. 6, pp. 765-767, (1982).
[90] L. Baldé, B. Legendre, C. Souleau et al., "Capacité calorifique de l'alliage Sn0.50Se0.50 à l'état solide entre 375 et 1135 K," Journal of the Less Common Metals, vol. 80, no. 1, pp. 45-50, (1981).
[91] K. Yamaguchi, K. Kameda, Y. Takeda et al., "Measurements of High Temperature Heat Content of the II–VI and IV–VI (II: Zn, Cd IV: Sn, Pb VI: Se, Te) Compounds," Materials Transactions, JIM, vol. 35, no. 2, pp. 118-124, (1994).
[92] Y. Feutelais, M. Majid, B. Legendre et al., "Phase diagram investigation and proposition of a thermodynamic evaluation of the Tin-Selenium system," Journal of Phase Equilibria, journal article vol. 17, no. 1, pp. 40-49, (1996).
[93] R. C. Sharma and Y. A. Chang, "The Se−Sn (Selenium-Tin) system," Bulletin of Alloy Phase Diagrams, journal article vol. 7, no. 1, pp. 68-72, (1986).
[94] F. Sommer, " Association model for the describtion of thermodynamic functions of liquid alloys- 1. Basic concepts," Z Metallkd, Article vol. 73, no. 2, pp. 72-76, (1982).
[95] F. Sommer, "Association model for the describtion of thermodynamic functions of liquid alloys- 2. Numerical treatment and results," Z Metallkd, Article vol. 73, no. 2, pp. 77-86, (1982).
[96] A. I. Baranov, A. A. Isaeva, L. Kloo et al., "2D metal slabs in new nickel–tin chalcogenides Ni7−δSnQ2 (Q=Se, Te): average crystal and electronic structures, chemical bonding and physical properties," Journal of Solid State Chemistry, vol. 177, no. 10, pp. 3616-3625, (2004).
[97] S. H. Park, Y. Jin, K. Ahn et al., "Ag/Ni Metallization Bilayer: A Functional Layer for Highly Efficient Polycrystalline SnSe Thermoelectric Modules," Journal of Electronic Materials, journal article vol. 46, no. 2, pp. 848-855, (2017).
[98] Y. Kim, G. Yoon, B. J. Cho et al., "Multi-Layer Metallization Structure Development for Highly Efficient Polycrystalline SnSe Thermoelectric Devices," Applied Sciences, vol. 7, no. 11, p. 1116, (2017).
[99] Y.-S. Kim, Y.-H. Jin, G.-W. Yoon et al., "Electrical characteristics and detailed interfacial structures of Ag/Ni metallization on polycrystalline thermoelectric SnSe," Journal of Materials Science & Technology, vol. 35, no. 5, pp. 711-718, (2019).
[100] Y. Kimata, Mem. Coll. Sci., Kyoto Univ., vol. 1, (1915).
[101] M. F. Kotkata, E. A. Mahmoud, and M. K. El-Mously, "Equilibrium diagram of Selenium–Tellurium system," Acta Physica Academiae Scientiarum Hungaricae, journal article vol. 50, no. 1, p. 61, (1981).
[102] E. Grison, "Studies on Tellurium‐Selenium Alloys," The Journal of Chemical Physics, vol. 19, no. 9, pp. 1109-1113, (1951).
[103] G. Ghosh, H. L. Lukas, and L. Delaey, "A thermodynamic assessment of the Se-Te system," Calphad, vol. 12, no. 3, pp. 295-299, (1988).
[104] A. L. N. Stevels and F. Jellinek, "Metallreiche Phasen im ternären System Ni-Se-Te," Monatshefte für Chemie / Chemical Monthly, journal article vol. 102, no. 6, pp. 1679-1688, (1971).
[105] E. Røst and E. Vestersjø, “On the system Ni-Se-Te”, Acta Chemica Scandinavia, Vol. 22, pp. 2118-2234, (1968).
[106] K. Haugsten and E. Røst , “The Crystal Structyre of Ni0.55Se0.08Te0.37”, Acta Chemica Scandinavia, Vol. 26(1), pp. 410-411, (1972).
[107] A. Stevels and F. Jellinek, “Metal-Rich Phases in the Ternary System Ni-Se-Te”, Monatshefte fűr Chemie, Vol. 102, pp.1679-1688, (1971).
[108] W. Biltz and W. Mecklenburg, "Über die Zustandsdiagramme von Zinn mit Schwefel, Selen und Tellur," Zeitschrift für anorganische Chemie, vol. 64, no. 1, pp. 226-235, (1909).
[109] M. Kobayashi, "Über die Legierungen des Tellurs mit Cadmium und Zinn," Zeitschrift für anorganische Chemie, vol. 69, no. 1, pp. 1-9, (1911).
[110] R. F. Brebrick, "Deviations from stoichiometry and electrical properties in SnTe," Journal of Physics and Chemistry of Solids, vol. 24, no. 1, pp. 27-36, (1963).
[111] M. Le Bouteiller, A. M. Martre, R. Farhi, and C. Petot, "Thermodynamic measurements in liquid tin-tellurium alloys," (in English), MTB, Article vol. 8, no. 1, pp. 339-344, (1977).
[112] J. Rakotomavo, M.-C. Baron, and C. Petot, "Thermodynamic properties of liquid tin-tellurium alloys at high temperature," MTB, journal article vol. 12, no. 3, pp. 461-467, (1981).
[113] S. Kurosawa, Y. Nakamura, and M. Shimoji, "The electrical conductivity and the phase diagram of the molten tin-tellurium system," Journal of the Less Common Metals, vol. 70, no. 1, pp. 119-121, (1980).
[114] Y. Nakamura, S. Himuro, and M. Shimoji, "Thermodynamic Study on Compound-Forming Molten Alloys: The Tin-Tellurium System," Berichte der Bunsengesellschaft für physikalische Chemie, vol. 84, no. 3, pp. 240-244, (1980).
[115] P. M. Robinson and M. B. Bever, "On the Thermodynamic Properties of the Tellurides of Cadmium, Indium, Tin, and Lead," Trans. AIME, vol. 236, no. 6, pp. 814-817, (1966).
[116] A. A. Vecher, L. A. Mechkovskii, and A. S. Skoropanov, "Heats of Formation of Some Tellurides," Izv. Akad. Nauk SSSR, Neorg. Mater., vol. 10, no. 12, pp. 2140-2143, (1974).
[117] K.-C. Hsieh, M.-S. Wei, and Y. A. Chang, "Thermodynamic analysis of the tin-tellurium system and calculation of the phase diagram," (in German), Z Metallkd, Article vol. 74, no. 5, pp. 330-337, (1983).
[118] U. Kattner, H. L. Lukas, and G. Petzow, "Optimization and calculation of the Sn-Te system," Journal of the Less Common Metals, vol. 114, no. 1, pp. 129-144, (1985).
[119] R. C. Sharma and Y. A. Chang, "The Sn−Te (Tin-Tellurium) system," Bulletin of Alloy Phase Diagrams, journal article vol. 7, no. 1, pp. 72-80, (1986).
[120] M. T. Clavaguera-Mora, C. Comas, and N. Clavaguera, "Calculations of the tin-tellurium system," Calphad, vol. 18, no. 2, pp. 141-155, (1994).
[121] Y. Liu, D. Liang, and L. Zhang, "Thermodynamic Descriptions for the Sn-Te and Pb-Sn-Te Systems," Journal of Electronic Materials, vol. 39, no. 2, pp. 246-257, (2010).
[122] H. Liu and L. L. Y. Chang, "Phase relations in systems of tin chalcogenides," Journal of Alloys and Compounds, vol. 185, no. 1, pp. 183-190, (1992).
[123] M. Majid and B. Legendre, "Etude du Systeme Ternaire Se-Te-Sn," Journal of Thermal Analysis and Calorimetry, journal article vol. 54, no. 3, pp. 963-990, (1998).
[124] C.-Y. Chen, H.-J. Wu, and S.-W. Chen, "Liquidus projection and phase equilibria isothermal section of Se–Sn–Te system," Journal of Alloys and Compounds, vol. 547, pp. 100-106, (2013).
[125] J. Cui, C. Guo, L. Zou et al., "Experimental investigation and thermodynamic modeling of the Se–Sn–Te system," Journal of Alloys and Compounds, vol. 642, pp. 153-165, (2015).
[126] International Centre for Diffraction Data Powder Diffraction FileTM PbSe (PDF# 06-0354).
[127] International Centre for Diffraction Data Powder Diffraction FileTM Ni (PDF# 45-1027).
[128] International Centre for Diffraction Data Powder Diffraction FileTM Ni3Pb2Se2 (PDF# 37-1413).
[129] K. N. Reeve, J. R. Holaday, S. M. Choquette et al., "Advances in Pb-free Solder Microstructure Control and Interconnect Design," Journal of Phase Equilibria and Diffusion, vol. 37, no. 4, pp. 369-386, (2016).
[130] Y. A. Chang and C. R. Kao, "Application of thermodynamics, phase equilibria and kinetics to in-situ composite synthesis via ternary solid-state displacement reactions," (in English), Pure and Applied Chemistry, vol. 66, no. 9, pp. 1797-1806, (1994).
[131] International Centre for Diffraction Data Powder Diffraction FileTM SnSe (PDF# 48-1224).
[132] International Centre for Diffraction Data Powder Diffraction FileTM SnTe (PDF# 46-1210).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊