跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/19 15:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇育瑩
研究生(外文):Su, Yu-Ying
論文名稱:煅燒牡蠣殼之紫外光-可見光發光性質研究
論文名稱(外文):UV-Visible Emissions from Calcined Oyster Shells
指導教授:徐文光徐文光引用關係
指導教授(外文):Hsu, Wen-Kuang
口試委員:呂杰璉林樹均連德軒呂昇益
口試委員(外文):Lu, Chieh-LienLin, Su-JienLien, Der-HsienLu, Sheng-Yi
口試日期:2020-07-29
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:60
中文關鍵詞:煅燒牡蠣殼發光材料牡蠣殼氧化鈣
外文關鍵詞:Calcined oyster shellCalcium oxideluminescent materials
相關次數:
  • 被引用被引用:0
  • 點閱點閱:364
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究論文探討煅燒牡蠣殼粉於20K及300K溫度下產生的發光性質,牡蠣殼經煅燒所產生的鈣原子與氧原子空缺為發光機制的空位色心(Hole color center),其發光強度遠大於同樣條件下的氧化鋅奈米晶粒,而煅燒牡蠣殼粉的光學躍遷透過三體機制進行,其中的非輻射遷移涉及橫向聲學聲子與光學聲子,利用市售之純氧化鈣作為比較組,發現比較組幾無發光效益,此結果歸因於1.不同製程方法之氧化鈣缺陷差異;2. 潮解對輻射機制的損害。此外,本研究利用第一原理模擬計算不同缺陷組合之氧化鈣的能帶結構與能隙,並與實驗結果的發光波長比較。
第一章 本論文之研究動機
第二章 理論背景與文獻回顧,包含牡蠣殼之應用現況、氧化鈣的電子與光學性質介紹,以及簡述理論模擬之發展與原理。
第三章 進入主題前,本章節先介紹實驗設置以及所使用的儀器、實驗步驟與本研究模擬結構設置與方法。
第四章 研究結果與討論,包含煅燒牡蠣殼粉之成分與光譜分析,以及理論模擬之能帶結構與能隙的探討。
第五章 以上章節之總結。
Calcination of oyster shells produces vacancies of Ca and O acting as color centers. Light emissions take place at 20 K and 300 K with intensity much greater than value observed in ZnO nanocrystals. Optical transitions proceed through three-body mechanisms where non-radiative processes involve transverse acoustical and optical phonons. Oxides purchased from suppliers are nearly optical silent, attributed to (i) water absorption that compromises radiative processes, (ii) use of various precursors that affect quality of crystals. Band structures and bandgaps of CaO with defects are also simulated by computer and discussed with experimental wavelengths.
Chapter 1 describes the motivation of this thesis.
Chapter 2 introduces the background of this research and literature review.
Chapter 3 describes experimental setups, characterization techniques and simulation methods.
Chapter 4 discusses results of experiments including analysis of characterization, spectra and computer simulations.
Chapter 5 concludes the experimental results.
Chapter 1 Motivation 1
Chapter 2 Introduction and Literature Review 3
2-1 Introduction of oyster shells 3
2-2 Cathodoluminescence (CL) 8
2-3 Band structure and band gap of Calcium Oxide 12
2-4 Lattice dynamics of Calcium Oxide 15
2-5 Density Functional Theory and molecular dynamic simulations 18
2-6 DFT+U Method for solving bandgap problems 19
Chapter 3 Experimental Section 21
3-1 Instrumental characterization 21
3-2 Sample preparations 23
3-3 Characteristics analysis 24
3-4 Emission analysis 24
3-5 Computer simulations setups 25
Chapter 4 Results and Discussion 33
4-1 Characterization 33
4-1-1 SEM and EDX 33
4-1-2 ICP 34
4-1-3 XRD 35
4-1-4 EPR 37
4-2 Spectra Analysis 38
4-2-1 Uv-vis absorption spectra 38
4-2-2 Cathodoluminescence analysis 39
4-3 Computer simulations 42
4-3-1 Band structure and MCD Simulations 42
4-3-2 Simulations of H2O coupling and electron density 49
Chapter 5 Conclusions 51
References 52
1. FAO, The State of World Fisheries and Aquaculture 2016. Contributing to food security and nutrition for all. 2016.
2. 葉念慈、許洛瑋、蔡慧君, 牡蠣殼高值化應用. 台灣行政院農委會水產試驗所水試專訊 2018. 064: p. 16-19.
3. Hamester, M.R.R., D. Becker, Obtenção de carbonato de cálcio a partir de conchas de mariscos. In Proceedings of the 19th Congresso Brasileiro de Engenharia e Ciência dos Materiais—CBECiMat. Campos do Jordão, 2010: p. 21-25.
4. Yang, E.-I., S.-T. Yi, and Y.-M. Leem, Effect of oyster shell substituted for fine aggregate on concrete characteristics: Part I. Fundamental properties. Cement and Concrete Research, 2005. 35(11): p. 2175-2182.
5. Hamester, M.R.R., P.S. Balzer, and D. Becker, Characterization of Calcium Carbonate Obtained from Oyster and Mussel Shells and Incorporation in Polypropylene. Materials Research-Ibero-American Journal of Materials, 2012. 15(2): p. 204-208.
6. Lee, C.-W., H.-P. Jeon, and H.-B. Kwon, Physical Properties of Pyrolized Oyster Shell Consisting of Porous CaO/CaCO3 and Phosphorus Removal Efficiency. J. Korean Ceram. Soc, 2010. 47(6): p. 524-0.
7. Paris, J.M., Roessler, J.G., Ferraro, C.C., DeFord, H.D., Townsend, T.G., A review of waste products utilized as supplements to Portland cement in concrete. Journal of Cleaner Production, 2016. 121: p. 1-18.
8. Richardson, A.E. and T. Fuller, Sea shells used as partial aggregate replacement in concrete. Structural Survey, 2013.
9. Binag, N.D., Powdered shell wastes as partial substitute for masonry cement mortar in binder, tiles and bricks production. Int. J. Eng. Res. Technol, 2016. 5: p. 70-77.
10. Teixeira, L.B., Desenvolvimento de espumas vítreas obtidas a partir de resíduos. 2016.
11. Ramakrishna, C., Thenepalli, T., Han, C. and Ahn, J.-W., Synthesis of aragonite-precipitated calcium carbonate from oyster shell waste via a carbonation process and its applications. Korean Journal of Chemical Engineering, 2017. 34(1): p. 225-230.
12. Sadeghi, K., K. Park, and J. Seo, Oyster Shell Disposal: Potential as a Novel Ecofriendly Antimicrobial Agent for Packaging: a Mini Review. Korean Journal of Packaging Science & Technology, 2019. 25(2): p. 57-62.
13. Alidoust, D., Kawahigashi, M., Yoshizawa, S., Sumida, H. and Watanabeet, M., Mechanism of cadmium biosorption from aqueous solutions using calcined oyster shells. Journal of Environmental Management, 2015. 150: p. 103-110.
14. Chiou, I., C. Chen, and Y. Li, Using oyster-shell foamed bricks to neutralize the acidity of recycled rainwater. Construction and Building Materials, 2014. 64: p. 480-487.
15. Huh, J.-H., Choi, Y.-H., Ramakrishna, C., Cheong, S.H. and Ahn, J.W. Use of calcined oyster shell powders as CO2 adsorbents in algae-containing water. Journal of the Korean Ceramic Society, 2016. 53(4): p. 429-434.
16. Djobo, Y.J.N., Elimbi, A. J. Manga, D., Djon, I.B. and Li Ndjock., Partial replacement of volcanic ash by bauxite and calcined oyster shell in the synthesis of volcanic ash-based geopolymers. Construction and Building Materials, 2016. 113: p. 673-681.
17. Henderson, B., S.E. Stokowski, and T.C. Ensign, Luminescence from F Centers in Calcium Oxide. Physical Review, 1969. 183(3): p. 826-831.
18. Zhou, W., Wang, G., Zheng, X., Yu, L., Zhang, J., Qiu, Z. and Lian, S. , Tunable colors and applications of Dy 3+ /Eu 3+ co‐doped CaO‐B2O3 ‐SiO2 glasses. Journal of the American Ceramic Society, 2019.
19. Welch, L., Hughes, A., Pells, G. and Schoenberg, A., Properties of the fa centre in magnesium-doped calcium oxide. Le Journal de Physique Colloques, 1976. 37(C7): p. C7-198-C7-202.
20. Wen, H.-C., Hung, C.-I., Tsai, H.-J., Lu, C.-K., Lai, Y.-C. and Hsu, W.-K., ZnO-coated carbon nanotubes: an enhanced and red-shifted emission band at UV-VIS wavelength. Journal of Materials Chemistry, 2012. 22(27): p. 13747-13750.
21. Liu, C.-W., Liang, C.-P., Huang, F.M., Hsueh, Y.-M., Assessing the human health risks from exposure of inorganic arsenic through oyster (Crassostrea gigas) consumption in Taiwan. Science of The Total Environment, 2006. 361(1): p. 57-66.
22. The Taiwan Malacofauna Database.
23. Vongsavat, V., P. Winotai, and S. Meejoo, Phase transitions of natural corals monitored by ESR spectroscopy. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2006. 243(1): p. 167-173.
24. Hillman, R.E., The American oyster,Crassostrea virginica gmelin. Chesapeake Science, 1965. 6(3): p. 199-199.
25. Kwon, H.-B., Lee,C.-W., Jun, B.-S., Yun, J.-D., Weon, S.-Y., Koopman, B., Recycling waste oyster shells for eutrophication control. Resources, Conservation and Recycling, 2004. 41(1): p. 75-82.
26. Samuel-Fitwi, B., Wuertz, S., Schroeder, J.P., Schulz, C., Sustainability assessment tools to support aquaculture development. Journal of Cleaner Production, 2012. 32: p. 183-192.
27. Petrielli, F.A.d.S., Viabilidade técnica e econômica da utilização comercial das conchas de ostras descartadas na localidade do Ribeirão da Ilha, Florianópolis, Santa Catarina. 2008.
28. Shumway, S.E., Shellfish Aquaculture and the Environment. 2011.
29. Rabon Jr, H. W., Roland Sr, D. A., Bryant, M., Barnes, D. G. and Laurent, S. M., Influence of sodium zeolite A with and without pullet-sized limestone or oyster shell on eggshell quality. Poultry science, 1991, 70(9), 1943-1947.
30. Moon, B., Lim, S., Choi, J. and Suh, Y., Effects of pre-or post-harvest application of liquid calcium fertilizer manufactured from oyster shell on the calcium concentration and quality in stored'Niitaka'pear fruits. Journal of the Korean Society for Horticultural Science, 2000. 41(1): p. 61-64.
31. R., Avery, M. L., Glahn, J. F., Otis, D. L., Matteson, R. E. and Nelms, C. O. , Evaluation of methyl anthranilate and starch-plated dimethyl anthranilate as bird repellent feed additives. The Journal of wildlife management, 1991: p. 182-187.
32. Akinfala, E. and O. Tewe, Supplemental effects of feed additives on the utilization of whole cassava plant by growing pigs in the tropics. Livestock Research for Rural Development, 2004. 16(10): p. 2004.
33. Lee, Y. H., Islam, S. M. A., Hong, S. J., Cho, K. M., Heo, J. Y., Kim, H. and Yun, H. D., Composted oyster shell as lime fertilizer is more effective than fresh oyster shell. Bioscience, biotechnology, and biochemistry, 2010: p. 1006282020-1006282020.
34. Ergas, S. J., Kinney, K., Fuller, M. E., and Scow, K. M., Characterization of compost biofiltration system degrading dichloromethane. Biotechnology and Bioengineering, 1994. 44(9): p. 1048-1054.
35. H Silva, T., Mesquita-Guimarães, J., Henriques, B., Silva, F. S., and Fredel, M. C., The potential use of oyster shell waste in new value-added by-product. Resources, 2019. 8(1): p. 13.
36. Chin, A.K., H. Temkin, and R.J. Roedel, Transmission cathodoluminescence: A new SEM technique to study defects in bulk semiconductor samples. Applied Physics Letters, 1979. 34(7): p. 476-478.
37. Yacobi, B.G. and D.B. Holt, Cathodoluminescence scanning electron microscopy of semiconductors. Journal of Applied Physics, 1986. 59(4): p. R1-R24.
38. Pennycook, S., A. Craven, and L. Brown, Cathodoluminescence on a scanning transmission electron microscope. Developments in Electron Microscopy and Analysis, 1977: p. 69.
39. Gatan, I. High spatial resolution cathodoluminescence. Available from: https://www.gatan.com/high-spatial-resolution-cathodoluminescence.
40. Pankove, J.I., L. Tomasetta, and B.F. Williams, Identification of Auger Electrons in GaAs. Physical Review Letters, 1971. 27(1): p. 29-32.
41. Seo, D.-K. and R. Hoffmann, Direct and indirect band gap types in one-dimensional conjugated or stacked organic materials. Theoretical Chemistry Accounts, 1999. 102(1-6): p. 23-32.
42. Ashcroft, N.W. and N.D. Mermin, Solid State Physics, Cornell University. 1976, Saunders College Publishing, Harcourt Brace Jovanovich College Publishers ….
43. Boggs, S. and D. Krinsley, Application of cathodoluminescence imaging to the study of sedimentary rocks. 2006: Cambridge University Press.
44. Bresse, J.F., G. Remond, and B. Akamatsu. Cathodoluminescence Microscopy and Spectroscopy of Semiconductors and Wide Bandgap Insulating Materials. in Microbeam and Nanobeam Analysis. 1996. Vienna: Springer Vienna.
45. Collins, A.T., Intrinsic and extrinsic absorption and luminescence in diamond. Physica B: Condensed Matter, 1993. 185(1): p. 284-296.
46. Bergh, A. and P. Dean, Light-emitting diodes. Clarendon. 1976, Oxford.
47. García de Abajo, F.J., Optical excitations in electron microscopy. Reviews of Modern Physics, 2010. 82(1): p. 209-275.
48. Elliott, S. and E. Ukar, Cathodoluminescence applications in geosciences using a Zeiss Sigma field emission SEM. 2015.
49. Götze, J., M. Plötze, and D. Habermann, Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz–a review. Mineralogy and petrology, 2001. 71(3-4): p. 225-250.
50. Whited, R.C., C.J. Flaten, and W.C. Walker, Exciton thermoreflectance of MgO and CaO. Solid State Communications, 1973. 13(11): p. 1903-1905.
51. Albuquerque, E. and M. Vasconcelos, Structural, Electronics and Optical Properties of CaO. Journal of Physics: Conference Series, 2008. 100: p. 042006.
52. Dove, M., Introduction to the theory of lattice dynamics. École thématique de la Société Française de la Neutronique, 2011. 12: p. 123-159.
53. Mahan, G.D., Condensed matter in a nutshell. Vol. 8. 2011: Princeton University Press.
54. Simon, S.H., The Oxford solid state basics. 2013: OUP Oxford.
55. Dove, M.T. and M.T. Dove, Structure and dynamics: an atomic view of materials. Vol. 1. 2003: Oxford University Press.
56. Saunderson, D. and G. Peckham, The lattice dynamics of calcium oxide. Journal of Physics C: Solid State Physics, 1971. 4(14): p. 2009.
57. Heisenberg, W., Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Zeitschrift für Physik, 1925. 33(1): p. 879-893.
58. Hartree, D.R., The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods. Proceedings of the Cambridge Philosophical Society, 1928. 24: p. 89.
59. Hohenberg, P. and W. Kohn, Inhomogeneous Electron Gas. Physical Review, 1964. 136(3B): p. B864-B871.
60. Kohn, W., Variational Methods for Periodic Lattices. Physical Review, 1952. 87(3): p. 472-481.
61. Kohn, W. and J.M. Luttinger, Quantum Theory of Electrical Transport Phenomena. Physical Review, 1957. 108(3): p. 590-611.
62. Kohn, W., Theory of Bloch Electrons in a Magnetic Field: The Effective Hamiltonian. Physical Review, 1959. 115(6): p. 1460-1478.
63. Kohn, W. and J.M. Luttinger, Ground-State Energy of a Many-Fermion System. Physical Review, 1960. 118(1): p. 41-45.
64. Kohn, W., Y. Meir, and D.E. Makarov, van der Waals Energies in Density Functional Theory. Physical Review Letters, 1998. 80(19): p. 4153-4156.
65. Kohn, W., Nobel Lecture: Electronic structure of matter---wave functions and density functionals. Reviews of Modern Physics, 1999. 71(5): p. 1253-1266.
66. Kohn, W. and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 1965. 140(4A): p. A1133-A1138.
67. Allen, M. and D. Tildesley, Oxford Science Publications. Computer Simulation of fluids, 1987.
68. Gryaznov, D., E. Heifets, and D. Sedmidubsky, Density functional theory calculations on magnetic properties of actinide compounds. Physical Chemistry Chemical Physics, 2010. 12(38): p. 12273-12278.
69. Dobson, J.F., G. Vignale, and M.P. Das, Electronic density functional theory: recent progress and new directions. 2013: Springer Science & Business Media.
70. Tolba, S. A., Gameel, K. M., Ali, B. A., Almossalami, H. A., and Allam, N. K., The DFT+ U: approaches, accuracy, and applications. Density Functional Calculations: Recent Progresses of Theory and Application, 2018: p. 1.
71. Pegg, J. T., Aparicio-Angles, X., Storr, M., and de Leeuw, N. H., DFT+U study of the structures and properties of the actinide dioxides. Journal of Nuclear Materials, 2017. 492: p. 269-278.
72. Harun, K., Salleh, N. A., Deghfel, B., Yaakob, M. K., and Mohamad, A. A., DFT + U calculations for electronic, structural, and optical properties of ZnO wurtzite structure: A review. Results in Physics, 2020. 16: p. 102829.
73. Mosey, N.J. and E.A. Carter, Ab initio evaluation of Coulomb and exchange parameters for DFT+ U calculations. Physical Review B, 2007. 76(15): p. 155123.
74. Liechtenstein, A.I., V.I. Anisimov, and J. Zaanen, Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Physical Review B, 1995. 52(8): p. R5467-R5470.
75. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J., and Sutton, A. P., Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Physical Review B, 1998. 57(3): p. 1505-1509.
76. Tran, F., Blaha, P., Schwarz, K., and Novák, P., Hybrid exchange-correlation energy functionals for strongly correlated electrons: Applications to transition-metal monoxides. Physical Review B, 2006. 74(15): p. 155108.
77. Ohbuchi, A., T. Konya, and G. Fujinawa, Improved bench-top X-ray diffractometer for crystalline phase analysis of cement. Powder Diffraction, 2013. 28(4): p. 249-253.
78. Paganini, M. C., Chiesa, M., Dolci, F., Martino, P., and Giamello, E., EPR Study of the Surface Basicity of Calcium Oxide. 3. Surface Reactivity and Nonstoichiometry. The journal of physical chemistry. B, 2006. 110: p. 11918-23.
79. Chiesa, M., Paganini, M. C., Giamello, E., and Murphy, D. M, Surface Color Centers on Calcium Oxide:  An Electron Paramagnetic Resonance Investigation. Langmuir, 1997. 13(20): p. 5306-5315.
80. Chelnokov, E., Cuba, V., Simeone, D., Guigner, J. M., Schmidhammer, U., Mostafavi, M., and Le Caër, S., Electron Transfer at Oxide/Water Interfaces Induced by Ionizing Radiation. The Journal of Physical Chemistry C, 2014. 118(15): p. 7865-7873.
81. Usui, H., Shimizu, Y., Sasaki, T., and Koshizaki, N., Photoluminescence of ZnO Nanoparticles Prepared by Laser Ablation in Different Surfactant Solutions. The Journal of Physical Chemistry B, 2005. 109(1): p. 120-124.
82. Rodriguez-Navarro, C., Ruiz-Agudo, E., Luque, A., Rodriguez-Navarro, A. B., and Ortega-Huertas, M., Thermal decomposition of calcite: Mechanisms of formation and textural evolution of CaO nanocrystals. American Mineralogist, 2009. 94(4): p. 578-593.
83. Machel, H.G., Application of Cathodoluminescence to Carbonate Diagenesis, in Cathodoluminescence in Geosciences, M. Pagel, et al., Editors. 2000, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 271-301.
84. Sumathi, V., Optical Characterization Of Calcium, Oxide Nanoparticles. International Journal of Advanced Technology in Engineering and Science, 2017. 5(02): p. 63-67.
85. Ashwini, A., S. Ramalakshmi, and G. Mary, Green Synthesis of Calcium Oxide Nanoparticles and Its Applications. International Journal of Engineering Research and Applications, 2016. 6(10): p. 27-31.
86. Bolorizadeh, M. A., Sashin, V. A., Kheifets, A. S., and Ford, M. J., Electronic band structure of calcium oxide. Journal of Electron Spectroscopy and Related Phenomena - J ELECTRON SPECTROSC RELAT PH, 2004. 141: p. 27-38.
電子全文 電子全文(網際網路公開日期:20250811)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top