|
[1] Lin, Te-Hsun. (2018). The Development and Optimization of the Multi-Beam Laser Interference Lithography System. NTHU PME PhD Thesis.
[2] Wolferen, Henk van, & Abelmann, Leon. (2011). Laser Interference Lithography. Lithography: Principles, Process and Materials, 133-148.
[3] Kim, J. S., Lee, K. D., Ahn, S. W., Kim, S. H., Park, J. D., Lee, S. E., & Yoon, S. S. (2004). Fabrication of nanowire polarizer by using nanoimprint lithography. Journal of the Korean Physical Society, 45, S890-S892.
[4] Miyake, M., Chen, Y. C., Braun, P. V., & Wiltzius, P. (2009). Fabrication of Three-Dimensional Photonic Crystals Using Multibeam Interference Lithography and Electrodeposition. Advanced Materials, 21(29), 3012-+. doi:10.1002/adma.200802085
[5] Shir, D., Nelson, E. C., Chen, Y. C., Brzezinski, A., Liao, H., Braun, P. V., . . . Rogers, J. A. (2009). Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography. Applied Physics Letters, 94(1). doi:Artn 011101 10.1063/1.3036955
[6] Lin, Y. K., Harb, A., Lozano, K., Xu, D., & Chen, K. P. (2009). Five beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element. Optics Express, 17(19), 16625-16631. doi:10.1364/Oe.17.016625
[7] Kim, J. B., Kim, S. M., Kim, Y. W., Kang, S. K., Jeon, S. R., Hwang, N., . . . Chung, C. S. (2010). Light Extraction Enhancement of GaN-Based Light-Emitting Diodes Using Volcano-Shaped Patterned Sapphire Substrates. Japanese Journal of Applied Physics, 49(4). doi:Artn 042102 10.1143/Jjap.49.042102
[8] Kim, S. M., Oh, H. S., Baek, J. H., Lee, K. H., Jung, G. Y., Song, J. H., . . . Song, J. H. (2010). Effects of Patterned Sapphire Substrates on Piezoelectric Field in Blue-Emitting InGaN Multiple Quantum Wells. Ieee Electron Device Letters, 31(8), 842-844. doi:10.1109/Led.2010.2051406
[9] Xie, Q., Hong, M. H., Tan, H. L., Chen, G. X., Shi, L. P., & Chong, T. C. (2008). Fabrication of nanostructures with laser interference lithography. Journal of Alloys and Compounds, 449(1-2), 261-264. doi:10.1016/j.jallcom.2006.02.115
[10] Bagal, A., & Chang, C. H. (2013). Fabrication of subwavelength periodic nanostructures using liquid immersion Lloyd's mirror interference lithography. Optics Letters, 38(14), 2531-2534. doi:10.1364/Ol.38.002531
[11] Yang, Yin-Kuang. (2014). Design and development of real-time light shape monitor system of laser interference lithography. NTHU PME Master Thesis.
[12] Farhoud, M., Hwang, M., Smith, H. I., Schattenburg, M. L., Bae, J. M., Youcef-Toumi, K., & Ross, C. A. (1998). Fabrication of large area nanostructured magnets by interferometric lithography. Ieee Transactions on Magnetics, 34(4), 1087-1089. doi:Doi 10.1109/20.706365
[13] Xu, J., Wang, Z. B., Zhang, Z., Wang, D. P., & Weng, Z. K. (2014). Fabrication of moth-eye structures on silicon by direct six-beam laser interference lithography. Journal of Applied Physics, 115(20). doi:Artn 203101 10.1063/1.4876298
[14] Mai, Hsuan-Ying. (2017). Analysis and cancellation method of laser interference lithography vibration defects caused by environment vibration. NTHU PME Master Thesis.
[15] Dzeng, Yu-Hua. (2018). Using IoT Technology to Design Intelligent Laser Interference Lithography System. NTHU PME Master Thesis.
[16] Weiser, Mark. (1999). The Computer of the 21st Century. ACM Digital Library, 3(3), 3-11.
[17] L.Atzori, A.Iera, & G.Morabito. (2010). The Internet of Things: A survey. Comput. Netw., 54, 2787-2805.
[18] Liu, J., & Tong, W. (2010, 23-25 Sept. 2010). Dynamic Service Model Based on Context Resources in the Internet of Things. Paper presented at the 2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM).
[19] Chang, K. (2014). Bluetooth: a viable solution for IoT? [Industry Perspectives]. IEEE Wireless Communications, 21(6), 6-7. doi:10.1109/MWC.2014.7000963
[20] Yin, C., Chiu, C., & Hsieh, C. (2016). A 0.5 V, 14.28-kframes/s, 96.7-dB Smart Image Sensor With Array-Level Image Signal Processing for IoT Applications. IEEE Transactions on Electron Devices, 63(3), 1134-1140. doi:10.1109/TED.2016.2521168
[21] Friedman, R., Kogan, A., & Krivolapov, Y. (2013). On Power and Throughput Tradeoffs of WiFi and Bluetooth in Smartphones. IEEE Transactions on Mobile Computing, 12(7), 1363-1376. doi:10.1109/TMC.2012.117
[22] Muhendra, Rifki, Rinaldi, Aditya, Budimana, Maman, & Khairurrijal. (2017). Development of WiFi Mesh Infrastructure for Internet of Things Applications. Procedia Engineering, 170, 332-337.
[23] Y.Zhuang, Z.Syed, J.Georgy, & N.El-Sheimy. (2015). Autonomous smartphone-based WiFi positioning system by using access points localization and crowdsourcing. Pervasive and Mobile Computing, 18, 118-136.
[24] YongliRen, DilysSalim, Flora, MartinTomko, BrianBai, Yuntian, JeffreyChan, KaiQin, Kyle, & MarkSanderson. (2017). D-Log: A WiFi Log-based differential scheme for enhanced indoor localization with single RSSI source and infrequrnt sampling rate. Pervasive and Mobile Computing, 37, 94-114.
[25] J.W.Yoo, & K.H.Park. (2011). A Cooperative Clustering Protocol for Energy Saving of Mobile Devices with WLAN and Bluetooth Interfaces. IEEE transactions on Moblie Computing, 31(4).
[26] Kosek-Szott, Katarzyna, Gozdecki, Janusz, Loziak, Krzysztof, Atkaniec, Marek, Prasnal, Lukasz, Szott, Szymon, & Wagrowski, Michal. (2017). Coexistence Issues in Future WiFi Networks. IEEE Network, 31(4), 86-95.
[27] Morsi, K., Gao, Q., & Xiong, H. G. (2011). Analysis and modelling of interference in bluetooth device discovery. IET Communications, 5(6), 890-900. doi:10.1049/iet-com.2010.0332
[28] Yu, C., & Yu, Y. (2014). Reconfigurable Algorithm for Bluetooth Sensor Networks. IEEE Sensors Journal, 14(10), 3506-3507. doi:10.1109/JSEN.2014.2339351
[29] AliMoridi, Mohammad, Kawamura, Youhei, MostafaSharifzadeh, KnoxChanda, Emmanuel, MarkusWanger, & Okawa, Hirokazu. (2018). Performance analysis of ZigBee network topologies for underground space. Monitoring and Communication System Tunnelling and Underground Space Technology, 71, 201-209.
[30] Yi, Zefeng, Hou, Hui, Dong, Zhaoyang, He, Xiongkai, Lv, Zeyan, Wang, Chengzhi, & Tang, Aihong. (2015). ZigBee Technology Application in Wireless Communication Mesh Network of Ice Disaster. Procedia Computer Science, 52, 1206-1211. doi:https://doi.org/10.1016/j.procs.2015.05.159
[31] Razouk, Wissam, Crosby, Garth V., & Sekkaki, Abderrahim. (2014). New Security Approach for ZigBee Weaknesses. Procedia Computer Science, 37, 376-381. doi:https://doi.org/10.1016/j.procs.2014.08.056
|