跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/19 00:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王逸加
研究生(外文):Wang, Yi-Jia
論文名稱:藉由多音路及反相驅動之懸臂樑振膜陣列達到壓電式微型揚聲器達到聲學性能之提升
論文名稱(外文):Multi-Way Out-of-Phase-Driving Cantilever Array for Performance Enhancement of Piezoelectric MEMS Microspeaker
指導教授:方維倫
指導教授(外文):Fang, Wei-Leun
口試委員:李昇憲吳名清
口試委員(外文):Li, Sheng-ShianWu, Ming-Ching
口試日期:2020-07-29
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:148
中文關鍵詞:微機電壓電微型揚聲器懸臂樑振膜多單體陣列反相驅動聲壓等級操作頻寬
外文關鍵詞:MEMSpiezoelectricmicrospeakercantilever diaphragmmulti-wayout-of-phase drivingsound pressure levelfrequency range
相關次數:
  • 被引用被引用:2
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
雖然MEMS製程技術發展已然成熟,然而市面上卻仍未見微機電揚聲器的流通,主因乃振膜面積的微縮使得輸出聲壓及操作頻寬受到限制。於此,本研究欲藉由高壓電係數之PZT薄膜及SOI製程實現揚聲器的製作。期望利用PZT良好的致動力並結合能承受大出平面位移之懸臂樑結構形成揚聲器之振膜以達更高的聲壓等級。此外,透過組合不同共振頻率的振膜作為不同頻段的揚聲器單體,並利用此多單體陣列的形式實現操作頻寬的延伸。在人工耳量測系統中,通以2 Vpp的交流訊號至元件上,發現懸臂樑振膜展現了良好的聲壓輸出,其最大值可達110 dB (1540 Hz),而藉由多單體的整合以及反相驅動的機制更大幅提升振膜的使用效率同時也避免了振膜反向運動所導致的聲壓抵銷。結果顯示元件在100~10k Hz頻段能有70dB以上的表現,更於500~8200 Hz達到80dB以上的表現。此外,亦能透過通入偏壓的方式減少結構翹曲,以獲得更良好的低頻表現;其中,於+11 VDC之偏壓中能在100 Hz有高達10 dBSPL的提升。相比於已發表的壓電式微機電揚聲器,在有限的面積下,元件擁有極具競爭力的聲壓等級。
Although MEMS technologies are well developed, there are no MEMS microspeakers on the market. This is mainly due to the following disadvantages such as insufficient sound pressure level and narrow frequency range. This study would like to present a microspeaker based on piezoelectric actuation and SOI process and aims to enhance the sound pressure level output through high d31 PZT and achieve large out-of-plane displacement by the cantilever diaphragm design. Furthermore, this study also aims to enhance the frequency range by integrating 4 different cantilever structures onto one chip. These cantilevers can work as the woofer or tweeter in a conventional multi-way loudspeaker because of their varying resonant frequencies. By doing so, the broadband concept can be realized. Measured in the standard ear simulator systems with 2 Vpp driving voltage, the maximum SPL of 110 dB was achieved at 1540 Hz due to the large displacement of cantilever structure. And with the out-of-phase driving design, the SPL cancelation could be prevented. Thus a broadband frequency response is obtained between 100~10k Hz with an SPL of 70 dB or higher (80 dB or higher in 500~8200 Hz). Furthermore, the SPL loss in low frequency could be improved by applying a DC bias voltage which helps to reduce the warpage to which an enhancement of 10 dBSPL was found by imposing a +11 VDC to the structure. Compared with relevant works, this study shows a competitive SPL with limited diaphragm area.
摘要 I
Abstract II
誌謝 III
目錄 V
圖目錄 IX
表目錄 XVI
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 3
1-2-1 靜電式揚聲器(Electrostatic) 4
1-2-2 動圈式揚聲器 (Electromagnetic) 6
• 封閉式振膜 7
• 懸臂彈簧式振膜 9
1-2-3 壓電式揚聲器 (Pizezoelectric) 11
• 封閉式振膜 12
• 懸臂彈簧式振膜 15
• 部分釋放式振膜 16
1-3 研究動機 20
1-4 全文架構 21
第二章 致動原理與設計考量 37
2-1 致動原理 40
2-2 設計概念與模擬分析 43
2-2-1 壓電材料選擇 44
2-2-2 振膜結構選擇 47
2-2-3 元件設計概念 50
2-3 元件性能模擬 52
2-3-1 模擬架構討論 53
2-3-2 模擬結果與討論 56
• 電極鋪設結果與討論 56
• 元件之聲壓頻率響應模擬 56
• 驅動方式之改良 59
第三章 製程結果與討論 78
3-1 製程流程簡述 78
3-1-1 壓電材料濕蝕刻製程 80
3-1-2 鉻金金屬蒸鍍及掀舉製程 81
3-1-3 正面乾蝕刻製程 82
3-1-4 底面熱氧化層蝕刻製程 84
3-1-5 矽基板層蝕刻製程 85
3-2 製程結果與討論 87
第四章 量測結果與討論 103
4-1 元件機械性質之量測 103
4-1-1 介電性質之量測 103
4-1-2 壓電性質之量測 104
• 動態壓電係數量測 105
• 靜態壓電係數量測 107
• PZT晶向之量測 107
4-2 元件聲學性質之量測 108
4-2-1 聲壓等級 (SPL) 109
4-2-2 驅動方式之改良 112
4-2-3 聲壓線性度量測 113
4-2-4 總諧波失真量測 114
4-2-5 減少聲學短路量測 115
第五章 結論與未來工作 131
5-1 結論 131
5-2 未來工作 132
5-2-1 製程以改善聲學短路 132
5-2-2 結構以改善聲學短路 133
5-2-3 新穎結構設計 134
參考文獻 143
[1] Yole Development, http://www.yole.fr
[2] I. Shahosseini, E. Lefeurve, E. Martincic, M. Woytasik, J. Moulin, S. Megherbi, R. Ravaud, and G. Lemarquand, “Microstructured silicon membrane with soft suspension beams for a high performance MEMS microspeaker,” Microsystem Technologies, vol. 18, pp. 1791-1799, 2012.
[3] G. Sassine, I. Shahosseini, M. Woytasik, E. Martincic, J. Moulin, and E. Lefeuvre, “Novel magnets configuration toward a high performance electrodynamic micro-electro-mechanical-systems microspeaker,” Journal of Applied Physics, vol. 115, no. 17, 2014
[4] Audiopixels, http://www.audiopixels.com.au
[5] USound, http://www.usound.com
[6] STMicroelectronics, https://www.st.com
[7] xMEMS, https://xmems.com
[8] J.J. Neumann Jr., and K.J. Gabriel, “CMOS-MEMS membrane for audio-frequency acoustic actuation,” Sensors and Actuators A: Physical, vol. 95, pp. 175-182, 2002.
[9] C. Glacer, R. Laur, A. Dehe, and D. Tumpold, "ilicon Microspeaker with out-of-plane Displacement," Nano/Micro Engineered and Molecular Systems, Hawaii, USA, April, 2014, pp. 12-16.
[10] D. Tumpold, M. Kaltenbacher, C. Glacer, M. Nawaz and A. Dehe, “Multi field modeling of a microelectromechanical speaker system with electrostatic driving principle,” Microsystem Technologies, vol. 20, pp. 995-1006, 2014.
[11] G. De Pasquale, L. Rufer, S. Basrour, and A. Somà, “Modeling and validation of acoustic performances of micro-acoustic sources for hearing applications,” Sensors and Actuators A: Physical, vol. 274, pp. 614-628, 2016.
[12] M.-C. Cheng, W.-S. Huang, and S. R.-S. Huang, “A silicon microspeakers for hearing instruments,” Journal of Micromechanics and Microengineering, vol. 14, pp. 859-866, 2004.
[13] S.-S. Je, and J. Chae, “A compact, low-power, and electromagnetically acutated microspeaker for hearing aids,” IEEE Electron Device Letters, vol. 29, pp. 856-858, 2008.
[14] S.-S. Je, F. Rivas, R. E. Diaz, J. Kwon, J. Kim, B. Bakkaloglu, S. Kiaei, and J. Chae, “A compact and low-cost MEMS loudspeaker for digital hearing aids,” IEEE Transactions on Biomedical Circuits and Systems, vol. 3, pp. 348-358, 2009
[15] Y.-C. Cheng, and Y.-T. Cheng, “A low-power milliwatt electromagnetic microspeaker using a PDMS membrane for hearing aids application,” IEEE MEMS, Cancun, Mexico, Jan., 2011, pp. 1213-1216.
[16] I. Shahosseini, E. Lefeurve, E. Martincic, M. Woytasik, J. Moulin, S. Megherbi, R. Ravaud, and G. Lemarquand, “Microstructured silicon membrane with soft suspension beams for a high performance MEMS microspeaker,” Microsystem Technologies, vol. 18, pp. 1791-1799, 2012.
[17] I. Shahosseini, E. Lefeurve, J. Moulin, E. Martincic, M. Woytasik, and G. Lemarquand, “Optimization and microfabrication of high performance silicon-based MEMS microspeaker,” IEEE Sensors Journal, vol. 13, pp. 273-284, 2013.
[18] S.C. Ko, Y.C. Kim, S.S. Lee, S.H. Choi, and S.R. Kim, “Micromachined piezoelectric membrane acoustic device,” Sensors and Actuators A: Physical, vol. 103, pp. 130-134, 2003.
[19] C. Luo, G.Z. Cao, and I.Y. Shen, “Enhancing displacement of lead-zirconate-titanate (PZT) thin-film membrane microactuators via a dual electrode design,” Sensors and Actuators A: Physical, vol. 173, pp. 190-196, 2012.
[20] C. Luo, G.Z. Cao, and I.Y.Shen, “Development of lead-zirconate-titanate (PZT) thin-film microactuator probe for intracochlear applications,” Sensors and Actuators A: Physical, vol. 201, pp. 1-9, 2013.
[21] S.H. Yi, and E.S. Kim, “Micromachined piezoelectric microspeaker,” Japanese Journal of Applied Physics, vol. 44, pp. 3836-3841, 2005.
[22] K.W. Seo, J.S. Park, H.J. Kim, D.K. Kim, S.C. Ur,and S.H. Yi, “Micromachined piezoelectric microspeakers fabricated with high quality aln thin film” Integrated Ferroelectrics, vol. 95, pp. 74-82, 2007.
[23] S.H. Yi, S.C. Ur, and E.S. Kim, “Performance of packaged piezoelectric microspeakers depending on the material properties,” IEEE MEMS, Sorrento, Italy, Jan., 2009, pp. 765-768.
[24] X. Chen, D. Chen, J. Pang, D. Yang, M. Huang, H. Liu, and J. Xie, “Transmitting sensitivity enhancement of pmuts via releasing residual stress by v-shaped springs,” IEEE MEMS, Belfast, Seoul, Korea, Jan., 2019, pp. 759-762.
[25] 鄭旭翔,「藉由彈簧、振膜與電極設計提升壓電式微機電揚聲器之表現」,國立清華大學碩士論文,2019。
[26] H.-H. Cheng, Z.-R. Huang, S.-C. Lo, Y.-J. Wang, M. Wu, and W. Fang, “Piezoelectric MEMS microspeaker with suspension springs and dual electrode to enhance sound pressure level,” IEEE MEMS Conference, (2019), pp. 767-770.
[27] H.-H. Cheng, Z.-R. Huang, M. Wu, and W. Fang, “Low frequency sound pressure level improvement of piezoelectric MEMS microspeaker using novel spiral spring with dual electrode,” Transducers, (2019), pp. 2013-2016.
[28] S.S. Lee, R.P. Ried, and R.M. White, “Piezoelectric cantilever microphone and microspeaker,” Journal of Microelectromechanical Systems, vol. 5, pp. 238-242, 1996.
[29] S.S. Lee, and R.M. White, “Piezoelectric cantilever acoustic transducer,” Journal of Micromechanics and Microengineering, vol. 8, pp. 230-238, 1998.
[30] S.-J. Chen, Y. Choe, L. Baumgartel, A. Lin, and E.S. Kim, “Edge-released piezoelectric MEMS acoustic transducers in array configuration,” Journal of Micromechanics and Microengineering, vol. 22, 025005, 2012.
[31] T. S. Albach and R. Lerch, “Magnetostrictive microelectromechanical loudspeaker,” The Journal of the Acoustical Society of America, vol. 134, pp.4372-4380, 2013
[32] Y. Liu, C. Luo, G.Z. Cao, and I.Y. Shen, “Feasibility study of a partially released lead-zirconate-titanate (PZT) diaphragm microe-actuator,” Sensors and Actuators A: Physical, vol. 259, pp. 1-13, 2017.
[33] F. Stoppel, C. Eisermann, S. Gu-Stoppel, D. Kaden, T. Giese and B. Wagner, “Novel membrane-less two-way MEMS loudspeaker based on piezoelectric dual-concentric actuators,” Transducers, Kaohsiung, Taiwan, Jun., 2017, pp. 2047-2050.
[34] F. Stoppel, A. Männchen, F. Niekiel, D. Beer, T. Giese and B. Wagner, “New integrated full-range MEMS speaker for in-ear applications,” IEEE MEMS, Belfast, Northern Ireland, UK, Jan., 2018, pp. 1068-1071.
[35] 白明憲(民97),工程聲學。第五版,臺北縣:全華。
[36] L. L. Beranek and Tim J. Mellow, Acoustics: Sound Fields and Transducers, 1st Ed, Elsevier, 2012
[37] G.D. Shilpa, K. Sreelakshmi, and M.G. Ananthaprasad, “PZT thin film deposition techniques, properties and its application in ultrasonic MEMS sensors: a review,” Materials Science and Enigineering, vol. 149, 012190, 2016.
[38] I. Kanno, “Piezoelectric MEMS: Ferroelectric thin film for MEMS applications,” Japanese Journal of Applied Physics, vol. 57, 040101, 2018.
[39] S.-T. Ho, “Modeling and analysis on ring-type piezoelectric transformers,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 54, pp. 2376-2384, 2007.
[40] T.D. Rossing, Springer Handbook of Acoustics, 1st Ed., New York, NY: Spring-Verlag, 2007.
[41] R. J. Littrell, “High performance piezoelectric MEMS microphones,” Dissertation, The University of Michigan, 2010.
[42] J.-L. Huang, S.-C. Lo, J.-J. Wang, C.-E. Lu, S.-H. Tseng, M. Wu, and W. Fang, “High sensitivity and high S/N microphone achieved by PZT film with central-circle electrode design,” IEEE MEMS, Las Vegas, NV, USA, Jan., 2017, pp. 1188-1191.
[43] Q.-M. Wang, Q. Zhang, B. Xu, R. Liu, and L. E. Cross, “Nonlinear piezoelectric behavior of ceramic bending mode actuators under srtong electric fields,” Journal of Applied Physics, vol. 86, pp. 3352-3360, 1999.
[44] T.-L. Ren, L.-T. Zhang, L.-T. Liu and Z.-J. Li, “Design Optimization of Beam-Like Ferroelectrics-Silicon Microphone and Microspeaker,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 49, no. 2, pp. 266-270, 2002.
[45] S. H. Chang and C. C. Chou, “Electromechanical Analysis of an Asymmetric Piezoelectric/Elastic Laminate Structure: Theory and Experiment,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 46, no. 2, pp. 441-451, 1999.
[46] COMSOL, https://www.comsol.com.
[47] ANSYS, http://www.ansys.com.
[48] D. J. Ewins, Modal Testing: Theory and Practice. England, Brüel & Kjær, 1986.
[49] G.R.A.S. Sound & Vibration A/S, https://www.gras.dk/.
[50] X. Chen, A.I. Kingon, and O. Auciello, “AC conductivity and dielectric propoerties of sol-gel PZT thin films for ferroelectric memort applications,” IEEE ISAF, Greenville, SC, USA, Aug., 1992, pp. 229-232.
[51] Q. Zuo, H.E. Ruda, B.G. Yocabi, K. Saegusa, and M. Farrell, “Dielectric properties of lead zirconate titanate thin films deposited on metal foils,” Appl. Phys. Lett., vol. 77, 1038, 2000.
[52] L. Che, J. Cheng, S. Yu, C. Chen, and Z. Meng, “Electrical properties of lead zirconate titanate thin films by a hyfrothermal method,” IEEE ISAF, Sunset Beach, NC, USA, Jul., 2006, pp. 1-4.
[53] R. Balusamy, P. Kumaravel, and N.G. Renganathan, “Dielectric and electrical properties of lead zirconate titanate,” Der Pharma Chemica, vol. 7, pp. 175-185, 2015.
[54] J.M. Dekkers, H. Boschker, Z. van Zalk, M. Nguyen, H. Nazeer, E. Houwman, and G. Rijnders, “The significance of the piezoelectric coefficient d31, eff determined from cantilever structures,” Journal of Micromechanics and Microengineering, vol. 23, 025008, 2013.
[55] Y. Tsujiura, S. Kawabe, F. Kurokawa, H. Hida, and I. Kanno, “Comparison of effective transverse piezoelectric coefficient e31, f of Pb(Zr,Ti)O3 thin films between direct and converse piezoelectric effects,” Japanese Journal of Applied Physics, vol. 54, 10NA04, 2015.
電子全文 電子全文(網際網路公開日期:20250816)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊