跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/14 23:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施睿綺
研究生(外文):Shih, Ruei-Ci
論文名稱:多孔性堆疊薄膜界面破裂能量模擬方法之建立與驗證
論文名稱(外文):Establishment and Verification of Interfacial Fracture Energy Simulation Methodology for Porous Stacked Thin Films
指導教授:李昌駿李昌駿引用關係
指導教授(外文):Lee, Chang-chun
口試委員:屈子正蕭文澤曾釋鋒
口試委員(外文):Chiu, Tz-ChengHsiao, Wen-TseTseng, Shih-Feng
口試日期:2020-07-14
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:105
中文關鍵詞:電漿表面處理石墨烯導電油墨多孔性材料低介電材料界面黏著性能量釋放率有限元素法破壞力學J積分
外文關鍵詞:Plasma Surface TreatmentGraphene Conductive InkPorous MaterialLow Dielectric MaterialInterfacial AdhesionEnergy Release RateFinite Element MethodFracture MechanicsJ-integral Approach
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
有鑒於多孔性低介電材料之具低界面黏著性的特徵,本研究聚焦於相異材料間界面黏著力之估算方法的建立。在實驗部分方面,首先規劃一系列實驗,將石墨烯導電油墨塗布於PI基板,量測PI基板與石墨烯導電油墨之黏著性,並探討對PI基板進行電漿表面處理是否能增加其與石墨烯導電油墨之黏著性。其中,利用水滴接觸角實驗量測PI基板親疏水性的變化;利用XPS分析PI基板表面分子組態的變化;利用拉拔實驗與剪切實驗量測其界面黏著性。最後,藉由彎曲實驗觀察其脫層現象,並與有限元素模擬之結果進行比對與驗證。
另一方面,在界面黏著性分析部分,則是利用有限元素模擬建立四點彎曲實驗之模型,並在所關注之薄膜接合界面埋入界面裂縫與孔洞,利用J積分理論計算界面裂縫尖端之能量釋放率。針對J積分模擬分析之可行性,則進行收斂性分析以獲得J積分路徑規劃與網格大小之選擇準則。此外,本研究亦探討界面孔洞的尺寸、孔洞與裂縫尖端的距離等設計參數對於裂縫尖端能量釋放率的影響。進一步地,利用實驗設計方法決定影響能量釋放率之因子影響程度與充分作用之關係。最後,利用蒙地卡羅方法探討多孔性材料其孔隙率與孔洞分佈情況對於界面黏著性的影響。
研究結果指出藉由PI基板表面進行電漿表面處理能夠增加其與石墨烯導電油墨之黏著性。其機制歸因於PI基板表面之含氧官能基比例的增加。另一方面,針對界面孔洞與裂縫之分析,研究結果顯示若裂縫尖端附近具有孔洞存在,將會造成裂縫尖端產生較大之能量釋放率;且當孔洞距離愈靠近裂縫尖端,亦或孔洞尺寸較大時,引致之裂縫尖端能量釋放率則愈高。此外,多孔性材料之孔隙率增加亦會造成材料結構剛性降低,產生類似應力緩衝層的效應,予以舒緩裂縫尖端之應力集中現象,降低界面破裂能量。
In view of the low interfacial adhesion characteristics of porous low-dielectric materials, this research focuses on the establishment of estimated methodology for the interfacial adhesion between dissimilar materials. In the experimental part, the graphene conductive ink is coated on the PI substrate to measure the adhesion between the concerned stacked films. A systematic arrangement of experimental split is implemented to discuss whether the plasma surface treatment on the PI substrate can enhance the interfacial adhesion or not. The test with regard to contact angle of water drop is utilized to judge the surface of PI substrate is either hydrophilicity or hydrophobicity. In addition, a change in the molecular configuration of PI surface is analyzed by XPS analysis. Furthermore, both the pull-off and shearing tests are performed to measure the critical interfacial adhesion. Finally, the delamination phenomenon is observed and validated through the use of bending tests and compared with the results of finite element simulation.
On the other hand, in order to develop the simulated methodology with regarding to cracking energy estimation of concerned interface having porous geometry features, the vehicle of four-point bending model is constructed to perform and to validate the proposed simulated approach. It is noticed that an interfacial crack and vacancy are simultaneously embedded in the bonded interface of dissimilar materials. To quantify the interfacial energy release rate of crack tip, the J-integral approach combined the convergence analysis of numerical calculation is performed to acquire the selection criteria of J-integral path and the suitable element size around the cracked tip. In addition, this research also discusses the influences of designed parameters, composed of the vacancy size along the concerned interface hole and the distance between the vacancy and the crack tip, on the variation of energy release rate of the crack tip. In addition, design of experiment approach is considered to find the influenced significance and interaction of design factors for the above-mentioned energy release rate. Finally, the Monte Carlo method is presented to investigate the effects of the porosity and void distribution for porous film materials on the interfacial adhesion.
The analytic results indicate that the plasma surface treatment of PI substrate surface can increase its adhesion to the graphene conductive ink. This mechanism is attributed to the increase in the proportion of oxygen-containing functional groups on the PI surface. On the other hand, the results regarding fractured analysis of concerned interfacial crack having vacancies show that a larger cracking energy is induced when a vacancy is close to the crack tip. In addition, the occurrence of that vacancy is closer to the crack tip or the vacancy size becomes larger would like to introduce a higher energy release rate. Furthermore, It is found that an increase in porosity of the porous material would deteriorate the structural rigidity itself and provide a capability similar to the stress buffer layer. In other words, the stress concentration at the crack tip and the interfacial fracture energy are simultaneously relieved and reduced.
摘要 I
ABSTRACT III
目錄 VI
表目錄 IX
圖目錄 X
第一章 緒論 1
1.1研究背景 1
1.2研究動機 2
1.3文獻回顧 4
1.3.1 Low-k 材料發展 4
1.3.2多孔性材料破裂力學相關研究回顧 6
1.4研究目標 13
第二章 基礎理論 15
2.1 蒙地卡羅方法與隨機亂數 15
2.2 相異材料界面破裂能計算 18
2.3 虛擬裂縫閉合技術(Virtual Crack Closure Method, VCCT) 23
2.4 J積分於有限元素分析之應用 28
2.4.1 J積分介紹 28
2.4.2 J積分應用於均質材料內部含裂縫與異質材料/孔洞 32
2.4.3 J積分應用於相異材料含界面裂縫與異質材料/孔洞 33
2.5 實驗設計法 35
2.5.1 全因子實驗設計 36
2.5.2 變異數分析(Analysis of Variance,ANOVA) 36
第三章 界面破裂能模擬估算方法驗證 40
3.1 實驗設備 40
3.2 試片製作 42
3.2.1 PI基板楊氏係數測定實驗 42
3.2.2 石墨烯導電油墨楊氏係數測定實驗 42
3.2.3 水滴接觸角量測實驗與XPS分析 43
3.2.4 拉拔實驗與剪切實驗 44
3.2.5 彎曲負載實驗 45
3.3 實驗步驟 45
3.3.1 楊氏係數量測實驗 45
3.3.2 水滴接觸角量測實驗與XPS分析 46
3.3.3 拉拔實驗與剪切實驗 47
3.3.4 彎曲負載實驗 48
3.4 實驗結果 49
3.4.1 PI基板楊氏係數量測實驗 49
3.4.2 石墨烯導電油墨之楊氏係數量測實驗 50
3.4.3 接觸角量測與XPS分析實驗 51
3.4.4 PI/石墨烯導電油墨堆疊薄膜之界面黏著性量測 55
3.4.5 彎曲負載實驗結果與有限元素模擬驗證 58
第四章 多孔性材料之界面破裂能量 63
4.1 三點彎曲模擬驗證 63
4.2 J積分路徑與網格收斂性分析 68
4.2.1 載具模型之模擬驗證 68
4.2.2 網格與J積分路徑收斂性分析 72
4.3 界面裂縫成長分析 76
4.4 堆疊薄膜界面之孔洞大小與距離交互作用 82
4.5 材料孔隙率與界面破裂行為之關係 89
第五章 結論與未來展望 95
參考文獻 97
[1] G. E. Moore, ‘‘Cramming More Components onto Integrated Circuits,” Electronics, Vol. 38, pp. 114-117, 1965.
[2] G. E. Moore, ‘‘Progress in Digital Integrated Electronics,” Electron Devices Meeting, Vol. 21, pp. 11-13, 1975.
[3] B. D. Hatton, K. Landskron, W. J. Hunks, M.R. Bennett, D. Shukaris, D. D. Perovic, and G. A. Ozin, ‘‘Materials Chemistry for Low-K Materials,” Materials Today, Vol. 9, No. 3, pp. 22-31, 2006.
[4] D. Shamiryan, T. Abell, F. Iacopi, and K. Maex, ‘‘Low-k Dielectric Materials,” Materials Today, Vol. 7, No. 1, pp. 34–39, 2004.
[5] J. Im, P. H. Townsend, J. Curphy, C. Karas, and E. O. Shaffer II, ‘‘Mechanical Properties of Cured SiLK Low-K Dielectric Films,” Metallization of Polymers, Vol. 2, pp. 53-60, 2002.
[6] H. S. Lee, A. S. Lee, K. Y. Baek, and S. S. Hwang, ‘‘Low Dielectric Materials for Microelectronics,” Dielectric Material, IntechOpen, pp. 59-76, 2012.
[7] K. Maex, M. R. Baklanov, D. Shamiryan, F. Lacopi, S. H. Brongersma, and Z. S. Yanovitskaya, ‘‘Low Dielectric Constant Materials for Microelectronics,” Journal of Applied Physics, Vol. 93, No. 11, pp. 8793-8841, 2003.
[8] D. Scansen, R. Haythornthwaite, and S. Brown, “Impact of Low-k Dielectrics on Microelectronics Reliability,” Canadian Conference on Electrical and Computer Engineering, IEEE, 2005.
[9] T. L. Alford, J. Li, J. W. Mayer, and S. Wang, ‘‘Copper-Based Metallization and Interconnects for Ultra-Large-Scale Integration Applications,” Thin Solid Films, Vol. 262, No. 1-2, pp. 7-8, 1995.
[10] M. Moussavi, ‘‘Recent Progress on Advanced Interconnects,” 30th European Solid-State Device Research Conference, IEEE, 2000.
[11] M. Morgen, E. T. Ryan, J. H. Zhao, C. Hu, T. Cho, and P. Ho, ‘‘Low Dielectric Constant Materials for ULSI Interconnects,” Annual Review of Materials Science, Vol. 30, No. 1, pp. 645-680, 2000.
[12] T. Schiml, S. Biesemans, G. Brase, L. Burrell, A. Cowley, K. C. Chen, A. v. Ehrenwall, B. v. Ehrenwall, P. Felsner, J. Gill, F. Grellner, F. Guarin, L. K. Han, M. Hoinkis, E. Hsiung, E. Kaltalioglu, P. Kim, G. Knoblinger, S. Kulkami, A. Leslie, T. Mono, T. Schafbauer, U. Schroeder, K. Schruefer, T. Spooner, D. Warner, C. Wang, R. Wong, E. Demm, P. Leung, M. Stetter, C. Wann, J. K. Chen, and E. Crabbt, “A 0.13/spl mu/m CMOS platform with Cu/low-k interconnects for system on chip applications, “A 0.13 μm CMOS Platform with Cu/low-k Interconnects for System on Chip Applications,” 2001 Symposium on VLSI Technology. Digest of Technical Papers, IEEE, 2001.
[13] W. Volksen, R. D. Miller, and G. Dubois, “Low Dielectric Constant Materials,” Chemical Reviews, Vol. 110, No. 1, pp. 56-110, 2010.
[14] E. Sacher, “Metallization of Polymers 2,” Kluwer /Plenum Publishers, New York, 2002.
[15] C. E. Mohler, B. G. Landes, G. F. Meyers, B. J. Kern, K. B. Ouellette, and S. Magonov, “Porosity Characterization of Porous SiLK™ Dielectric Films,” Proceedings of the AIP Conference, Vol. 683, No. 1, pp. 562-566, 2003.
[16] J. Lin, and X. Wang, “New Type of Low-Dielectric Composites Based on o-cresol Novolac Epoxy Resin and Mesoporous Silicas: Fabrication and Performances,” Journal of Materials Science, Vol. 43, No. 13, pp. 4455-4465, 2008.
[17] W. Volksen, K. Lionti, T. Magbitang, and G. Dubois, “Hybrid Low Dielectric Constant Thin Films for Microelectronics,” Scripta Materialia, Vol. 74, pp. 19-24, 2014.
[18] R. J. O. M. Hoofman, G. J. A. M. Verheijden, J. Michelon, F. Iacopi, Y. Travaly, M. R. Baklanov, Zs. TĘkei, and G. P. Beyer, “Challenges in the Implementation of Low-k Dielectrics in the Back-end of Line,” Microelectronic Engineering, Vol. 80, pp. 337-344, 2005.
[19] K. Vanstreels, C. Wu, and M. R. Baklanov, “Mechanical Stability of Porous Low-k Dielectrics,” ECS Journal of Solid State Science and Technology, Vol. 4, No. 1, pp. N3058-N3064, 2015.
[20] T. M. Moore, C. D. Hartfield, J. M. Anthony, B. T. Ahlburn, P. S. Ho, and M. R. Miller, “Mechanical Characterization of Low-k Dielectric Materials,” Proceedings of the AIP Conference, Vol. 550, No. 1, pp. 431-439, American Institute of Physics, 2001.
[21] T. Kim, and R. H. Dauskardt, “Integration Challenges of Nanoporous Low Dielectric Constant Materials,” IEEE Transactions on Device and Materials Reliability, Vol. 9, No. 4, pp. 509-515, 2009.
[22] M. Damayanti, Z. H. Gan, T. Sritharan, S. G. Mhaisalkar, A. Naman, J. Widodo, and H. S. Tan, “Effect of Porosity and Adhesion Promoter Layer on Adhesion Energy of Nanoporous Inorganic Low-k,” Thin Solid Films, Vol. 504, No. 1-2, pp.213-217, 2006.
[23] A. V. Kearney, C. S. Litteken, C. E. Mohler, M. E. Mills, and R. H. Dauskardt, “Pore Size Scaling for Enhanced Fracture Resistance of Nanoporous Polymer Thin Films,” Acta Materialia, Vol. 56, No. 20, pp. 5946-5953, 2008.
[24] K. Vanstreels, M. Pantouvaki, A. Ferchichi, P. Verdonck, T. Conard, Y. Ono, M. Matsutani, K. Nakatani, and M. R. Baklanov, “Effect of Bake/Cure Temperature of an Advanced Organic Ultra Low-k Material on the Interface Adhesion Strength to Metal Barriers,” Journal of Applied Physics, Vol. 109, No. 7, pp. 074301-1-074301-5, 2011.
[25] X. Xiao, H. Qi, X. Sui, and T. Kikkawa, “Evaluation and Criterion Determination of the Low-k Thin Film Adhesion by the Surface Acoustic Waves with Cohesive Zone Model,” Applied Surface Science, Vol. 399, pp. 599-607, 2017.
[26] A. A. Griffith, ‘‘VI. The Phenomena of Rupture and Flow in Solids,” Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character 221, pp. 163-198, 1921.
[27] G. R. Irwin, ‘‘Analysis of Stresses and Strains Near the End of a Crack Transversing a Plate,” Journal of Applied Mechanics, Transactions ASME, Vol. 24, pp. 361-364, 1957.
[28] M. L. Williams, “The Stresses Around a Fault or Crack in Dissimilar Media,” Bulletin of the Seismological Society of America, Vol. 49, No. 2, pp. 199-204, 1959.
[29] F. Erdogan, “Stress Distribution in a Nonhomogeneous Elastic Plane with Cracks,” Journal of Applied Mechanics, Vol. 30, pp. 232-236, 1963.
[30] D. L. Clements, “A Crack Between Dissimilar Anisotropic Media,” International Journal of Engineering Science, Vol. 9, No. 2, pp.257-265, 1971.
[31] J. R. Willis, “Fracture Mechanics of Interfacial Cracks,” Journal of the Mechanics and Physics of Solids, Vol. 19, No. 6, pp. 353-368, 1971.
[32] T. C. T. Ting, “Explicit Solution and Invariance of the Singularities at an Interface Crack in Anisotropic Composites,” International Journal of Solids and Structures, Vol. 22, No. 9, pp. 965-983, 1986.
[33] Z. Suo, and J. W. Hutchinson, “Interface Crack Between Two Elastic Layers,” International Journal of Fracture, Vol. 43, No. 1, pp. 1-18, 1990.
[34] Z. Suo, “Singularities, Interfaces and Cracks in Dissimilar Anisotropic Media,” Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, Vol. 427, pp. 331-358, 1990.
[35] J. W. Hutchinson, and Z. Suo, “Mixed Mode Cracking in Layered Materials,” Advances in Applied Mechanics, Vol. 29, pp. 63-191, 1991.
[36] J. R. Rice, ‘‘A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks,” Journal of Applied Mechanics, Vol. 35, pp. 379-386, 1968.
[37] S. Weichen, and Z. B. Kuang, “J-integral of Dissimilar Anisotropic Media,” International Journal of Fracture, Vol. 96, pp. 37-42, 1999.
[38] S. G. Lekhnitskiĭ, “Theory of Elasticity of an Anisotropic Elastic Body,” Holden-Day Series in Mathematical Physics, 1963.
[39] W. Y. Tian, and Y. H. Chen, “A Semi-Infinite Interface Crack Interacting with Subinterface Matrix Cracks in Dissimilar Anisotropic Materials. I. Fundamental Formulations and the J-Integral Analysis,” International Journal of Solids and Structures, Vol. 37, No. 52, pp. 7717-7730, 2000.
[40] W. Y. Tian, and Y. H. Chen, “A Semi-Infinite Interface Crack Interacting with Subinterface Matrix Cracks in Dissimilar Anisotropic Materials. II. Numerical Results and Discussion,” International Journal of Solids and Structures, Vol. 37, No. 52, pp. 7731-7742, 2000.
[41] W. Y. Tian, K. T. Chau, and Y. H. Chen, “J-integral Analysis of the Interaction Between an Interface Crack and Parallel Subinterface Cracks in Dissimilar Anisotropic Materials,” International Journal of Fracture, Vol. 111, No. 4, pp. 305-325, 2001.
[42] J. H. Chang, and Y. J. Huang, “Surface Energy for Formation of Inclined and Interface Cracks Terminating at a Bimaterial Interface,” Journal of Engineering Mechanics, Vol. 143, No. 9, pp. 04017091, 2017.
[43] H. Yamane, S. Arikawa, S. Yoneyama, Y. Watanabe, T. Asai, K. Shiokawa, and M. Yamashita, “J-integral Evaluation for an Interface Crack Using Digital Image Correlation,” Journal of the Japanese Society for Experimental Mechanics, Vol. 14, pp. s122-s127, 2014.
[44] C. C. Lee, J. Huang, S. T. Chang, and W. C. Wang, “Adhesion Investigation of Low-k Films System Using 4-Point Bending Test,” Thin Solid Films, Vol. 517, No. 17, pp. 4875-4878, 2009.
[45] C. C. Lee, C. C Lee, and Y. W. Yang, “Fracture Prediction of Dissimilar Thin Film Materials in Cu/low-k Packaging,” Journal of Materials Science: Materials in Electronics, Vol. 21, No. 8, pp. 787-795,2010.
[46] G. Vukelić, and J. Brnić, “J-integral as Possible Criterion in Material Fracture Toughness Assessment,” Engineering Review, Vol. 31, No. 2, pp. 91-96, 2011.
[47] P. Judt, and A. Ricoeur, “Crack Growth in Elastic Materials with Internal Boundaries and Interfaces,” Proceedings in Applied Mathematics and Mechacics, Vol. 12, No. 1, pp. 59-160, 2012.
[48] S. A. K. Yossif, “Finite Element Computations of Complex Stress Intensity Factor Magnitude of Interfacial Crack in Bi-Material Composites,” 16th International Conference on Aerospace Sciences and Aviation Technology, Vol. 16. pp. 1-21, 2015.
[49] C. C. Lee, Y. L. Shen, and Y. Kang, “Prediction of Interfacial Adhesion Strength of Nanoscale Al/Tin Films Passed Through Patterned BEOL Interconnects,” Materials Science in Semiconductor Processing, Vol. 39, pp. 1-5, 2015.
[50] M. Logesh, S. Palani, S. Shanmugan, M. Selvam, and K. A. Harish, “Finite Element Modelling of Bi-Material Interface for Crack Growth Evaluation,” International Journal of Vehicle Structures & Systems, Vol. 9, No. 5, pp. 273-275, 2017.
[51] B. Xu, X. Cai, W. Huang, and Z. Cheng, “Research of Underfill Delamination in Flip Chip by the J-integral Method,” Journal of Electronic Packaging, Vol. 126, No. 1, pp. 94-99, 2004.
[52] C. C. Lee, C. C. Chiu, K. N. Chiang, T. C. Huang, C. H. Yao, C. C. Hsia, and M. S. Liang, “Stability of J-integral Calculation in the Crack Growth of Copper/Low-k Stacked Structures,” 10th Intersociety Conference on Thermal and Thermomechanical phenomena in Electronic Systems (ITHERM 2006), pp. 885-891, San Diego, CA, USA, May 30-Jun. 2, 2006.
[53] Y. B. Wang, and K. T. Chau, ‘‘A New Boundary Element for Plane Elastic Problems Involving Cracks and Holes,” International Journal of Fracture, Vol. 87, No. 1, pp. 1-20, 1997.
[54] S. G. Mogilevskaya, S. L. Crouch, R. Ballarini, and H. K. Stolarski, “Interaction Between a Crack and a Circular Inhomogeneity with Interface Stiffness and Tension,” International Journal of Fracture, Vol. 159, No. 2, pp. 191-207, 2009.
[55] Z. Li, and Q. Chen, “Crack-inclusion Interaction for Mode I crack Analyzed by Eshelby Equivalent Inclusion Method,” International Journal of Fracture, Vol. 118, No.1, pp. 29-40, 2002.
[56] J. D. Eshelby, “The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems,” Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 241, No. 1226, pp. 376-396, 1957.
[57] J. Carlsson, and P. Isaksson, “Crack Dynamics and Crack Tip Shielding in a Material Containing Pores Analysed by a Phase Field Method,” Engineering Fracture Mechanics, Vol. 206, pp. 526-540, 2019.
[58] G. Bhardwaj, S. K. Singh, I. V. Singh, B. K. Mishra, and T. Rabczuk, “Fatigue Crack Growth Analysis of an Interfacial Crack in Heterogeneous Materials Using Homogenized XIGA,” Theoretical and Applied Fracture Mechanics, Vol. 85, pp. 294-319, 2016.
[59] J. C. Wang, “Young's Modulus of Porous Materials,” Journal of Materials Science, Vol. 19, No. 3, pp. 801-808, 1984.
[60] M. L. Dunn, and H. Ledbetter, and H. Ledbetter, “Poisson's Ratio of Porous and Microcracked Solids: Theory and Application to Oxide Superconductors,” Journal of Materials Research, Vol. 10, No. 11, pp. 2715-2722, 1995.
[61] M. Arnold, A. R. Boccaccini, and G. Ondracek, “Prediction of the Poisson's Ratio of Porous Materials,” Journal of Materials Science, Vol. 31, No. 6, pp. 1643-1646, 1996.
[62] J. Kováčik, “Correlation between Young's Modulus and Porosity in Porous Materials,” Journal of Materials Science Letters, Vol. 18, No. 13, pp. 1007-1010, 1999.
[63] A. P. Roberts, and E. J. Garboczi, “Elastic Properties of Model Porous Ceramics,” Journal of the American Ceramic Society, Vol. 83, No. 12, pp. 3041-3048, 2000.
[64] J. Kováčik, “Correlation between Poisson's Ratio and Porosity in Porous Materials,” Journal of Materials Science, Vol. 41, No. 4, pp. 1247-1249, 2006.
[65] W. Pabst, and E. Gregorová, “Young's Modulus of Isotropic Porous Materials with Spheroidal Pores,” Journal of the European Ceramic Society, Vol. 34, No. 13, pp. 3195-3207, 2014.
[66] R. Eckhardt, “Stan Ulam, John von Neumann, and the Monte Carlo Method,” Los Alamos Science, Vol. 15, pp.131-137, 1987.
[67] N. Metropolis, and S. Ulam, ‘‘The Monte Carlo Method,’’ Journal of the American Statistical Association, Vol. 44, No. 247, pp. 335-341, 1949.
[68] 徐鍾濟, ‘‘蒙特卡羅方法,’’ 上海科學技術出版社,1985.
[69] A. Herbert, ‘‘Metropolis, Monte Carlo, and the MANIAC,’’ Los Alamos Science, Vol. 14, pp. 96-108, 1986.
[70] G. Marsaglia, and A. Zaman, ‘‘A New Class of Random Number Generators,’’ The Annals of Applied Probability, Vol. 1, pp. 462-480, 1991.
[71] G. Marsaglia, Florida State University Report: FSU-SCRI-87-SO, 1987.
[72] G. Marsaglia, A. Zaman, and W. W. Tsang, “Toward a Universal Random Number Generator,” Statistics & Probability Letters, Vol. 9, No. 1, pp. 35-39, 1990.
[73] J. Dundurs, “Edge-bonded Dissimilar Orthogonal Elastic Wedges Under Normal and Shear Loading,” Journal of Applied Mechanics, Vol. 36, No. 3, pp. 650-652, 1969.
[74] J. R. Rice, Z. Suo, and J. S. Wang, “Mechanics and Thermodynamics of Brittle Interfacial Failure in Bimaterial Systems,” Metal-Ceramic Interfaces, Vol. 4, pp. 269-294, 1990.
[75] R. Krueger, ‘‘Virtual Crack Closure Technique: History, Approach, and Applications,’’ Applied Mechanics Reviews, Vol. 57, No. 2, pp. 109-143, 2004.
[76] I. S. Raju, “Calculation of Strain-Energy Release Rates with Higher Order and Singular Finite Elements,” Engineering Fracture Mechanics, Vol. 28, No. 3, pp. 251-274, 1987.
[77] G. P. Cherepanov, ‘‘Crack Propagation in Continuous Media,’’ Journal of Applied Mathematics and Mechanics, Vol. 31, No. 3, pp. 476-488, 1967.
[78] Montgomery, ‘‘實驗設計與分析,’’ 高立圖書, 2011.
[79] 葉怡成, ‘‘實驗規劃法-製程與產品最佳化,’’ 五南圖書,2001.
[80] ASTM International, ASTM D882-12, Standard Test Method for Tensile Properties of Thin Plastic Sheeting, ASTM International, 2012.
[81] M. R. Miller, and P. S. Ho, “Interfacial Adhesion Study for Copper/Silk Interconnects in Flip-Chip Packages,” Proceedings of the 51st Electronic Components and Technology Conference, IEEE, 2001.
[82] S. J. Martin, J. P. Godschalx, M. E. Mills, E. O. Shaffer II, and P. H. Townsend, “Development of a Low‐Dielectric‐Constant Polymer for the Fabrication of Integrated Circuit Interconnect,” Advanced Materials, Vol. 12, No. 23, pp. 1769-1778, 2000.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊