(3.238.186.43) 您好!臺灣時間:2021/02/28 15:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳弘恩
研究生(外文):CHEN, HONG-EN
論文名稱:水系電解質應用於氧化鎢/聚苯胺互補式電致變色元件之研究
論文名稱(外文):Study of aqueous electrolyte for tungsten oxide/polyaniline complementary electrochromic device
指導教授:呂英治
指導教授(外文):Leu,Ing-Chi
口試委員:鄭建星林炯棟
口試委員(外文):JENG, JIANN-SHINGLIN, JYUNG-DONG
口試日期:2020-07-28
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:材料科學系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:66
中文關鍵詞:鋅鋁雙離子W18O49奈米線水凝膠電解質電致變色
外文關鍵詞:aluminum ionszinc ionsW18O49 nanowiregel electrolyteelectrochromic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:24
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
進年來環保議題越發受到重視,在傳統電致變色元件中多採用鋰離子作為反應離子,但是鋰金屬鹽類容易引發對環境有負擔的化合物,因此本研究採用鋅離子取代傳統鋰離子作為反應離子,其優點是鋅金屬化合物對環境無毒無危害,且成本較低。此外鑒於節能目的,本研究採用鋅電極作為對電極與氧化鎢搭配組成電致變色元件,透過反應電位搭配可將驅動電壓降0.9V(0.2~1.1V),並且傳統電致變色只能進行單一顏色切換,本研究也採聚苯胺(polyaniline,PANI)作為對電極與氧化鎢搭配組成互補式電致變色元件,可達到3種顏色的切換。本研究中主要分為兩個系統分別是氧化鎢搭配鋅電極系統(W18O49//Zn)及氧化鎢搭配聚苯胺系統(W18O49//PANI),我們將分別針對其反應離子及製程參數對電致變色特性影響及釐清相關機理。
在W18O49//Zn系統中,改變不同鋅鋁離子濃度比例,探討不同比例添加對電致變色特性及電容值影響,並且以溶液方式製備非晶質氧化鎢/W18O49奈米線核殼結構。在W18O49//PANI系統中,先以水系電解液探討聚苯胺沉積圈數對表面形貌影響,再添加明膠製備水凝膠電解液增強元件穩定度,並分別以定電位及循環伏安法沉積之聚苯胺,討論聚苯胺表面形貌及厚度對電致變色特性的影響。
結果顯示:在W18O49//Zn系統中,鋁離子比例越高,會使得元件在去色時,離子的遷出變困難。最佳參數為當鋅鋁離子濃度比例為4:1時,元件對比度可達69%、著色時間為6.8秒、去色時間為5秒,且經過12000秒連續長時間動態光學測試後,對比度損失約1%。而W18O49奈米線經過非晶質氧化鎢包覆後,在鋅離子系統下,其最佳結果為對比度65%、著色時間約30秒、去色時間約5秒,且經過12000秒連續長時間動態光學測試後,對比度損失約1%。
在W18O49//PANI系統中,沉積迴圈越少聚苯胺表面積越大,最佳參數為沉積12迴圈,在水系電解液下,驅動電壓0.6V,元件對比度為35%、著色時間為12秒、去色時間為15秒。添加明膠後施加1.2V偏壓時,元件對比度可達48%、著色時間為0.5秒、去色時間1秒,經過12000秒連續長時間動態光學測試後,對比度損失約1%。之後將定電位沉積之聚苯胺與循環伏安法沉積之聚苯胺組成元件比較,以顆粒堆疊之表面可在近似厚度情況下,對比度皆高約10%,並且透過厚度與電容值關係擬合之趨勢線表示聚苯胺材料厚度增加會導致變色反應能力下降。

摘要 I
Abstract III
致謝 V
目次 VI
表目次 VIII
圖目次 IX
第一章 緒論 1
1-1前言 1
1-2 研究動機及目的 2
第二章 理論基礎與文獻回顧 4
2-1電致變色元件原理 4
2-2 WO3變色價數理論 5
2-3各種離子應用於電致變色元件最新研究案例 5
2-4 奈米核殼結構應用於多顏色電致變色研究案例 10
第三章 實驗步驟 14
3-1實驗架構圖 14
3-2 實驗藥品與儀器 14
3-2-1實驗藥品 14
3-3實驗儀器與測試方法 15
3-3-1.循環伏安法 (Cyclic Voltammetry,CV) 15
3-3-2.計時電流法 (Chronoamperometry,CA) 16
3-3-3.紫外/可見光分光光譜儀分析 (UV-vis spectroscopy) 16
3-3-4.交流阻抗分析 ( AC Impednace ) 17
3-3-5.掃描式電子顯微鏡:(SEM Scanning Electron Microscopy) 18
3-3-6.X光繞射分析儀(X-ray Diffraction) 18
3-4 實驗流程 19
3-4-1 基板清洗 19
3-4-2 水熱法製備W18O49奈米線陣列 19
3-4-3 電鍍製備聚苯胺(PANI)薄膜 19
3-4-4 非晶質氧化鎢包覆W18O49奈米線 20
3-4-5 製備水系及水凝膠電解液之製備 20
3-4-6 水系電致變色元件之組裝 20
3-4-6 水凝膠電致變色元件之組裝 21
第四章 結果與討論 22
4-1水系鋅鋁雙離子應用於新式互補電致變色元件 22
4-1-1反應電位與元件運作機制 22
4-1-2表面形貌與晶格活性位置 23
4-1-3不同離子比例對元件動態光學及電化學反應變化 25
4-1-3長時間動態光學循環與多次CV循環測試 31
4-1-4 連續長時間動態光學循環 35
4-1-5 非晶質氧化包覆W18O49奈米線之核殼結構 40
4-2鋁離子應用於多顏色互補電致變色元件 46
4-2-1反應電位與元件運行機制 46
4-2-2 聚苯胺沉積迴圈對光學穿透度及元件性能影響 49
4-2-3聚苯胺形貌對界面阻抗影響 50
4-2-4添加明膠及施加不同電壓對元件的影響 53
4-2-5 相近系統之電致變色元件各項比較 63
第五章 結論 65
參考文獻 66


[1]E.S. Lee, D.L. DiBartolomeo, Application issues for large-area electrochromic windows in commercial buildings. Solar Energy Materials & Solar Cells, 2002, 71, 465–491.
[2]P.F. Tavares, A.R. Gaspar, A.G. Martin, F. Frontini, Evaluation of electrochromic windows impact in the energy performance of buildings in Mediterranean climates, Energy Policy, 2014, 67, 68–81.
[3]W. Cheng, M.G. Marta, K. Hu, K. Caroline, D. J. Dvorak, D. M. Weekes, T. Brian, P. B. Curtis, Solution-Deposited Solid-State Electrochromic Windows, Cellpress, 2018, 10, 82-86.
[4]B.D. Liu, Y. Wang, Y. Wu, Y. Li, W. Wu, G. Wang, Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors, Journal of Materials Chemistry A, 2019, 7, 13810-13832.
[5]E. O. Zayim, Structural and Optical Properties of Tungsten Oxide Based Thin Films and Nanofibers, Low-Dimensional and Nanostructured Materials and Devices, 2016, 291-307.
[6]M. F. Saenger, T. Höing, T. Hofmann1, M. Schubert, Polaron transitions in charge intercalated amorphous tungsten oxide thin film, Physica Status Solid, 2008, 205, 914–917.
[7]J. Guo, M. Wang, X. Diao, Z.B. Zhang, G. Dong, H. Yu, F. Liu, H. Wang, J. Liu, Prominent Electrochromism Achieved Using Aluminum Ion Insertion/Extraction in Amorphous WO3 Films, Journal of Physical Chemistry C, 2018, 122, 19037−19043.
[8]H. Li, L. McRae, J. F. Curtis, A. Y. Elezzabi, Rechargeable Aqueous Electrochromic Batteries Utilizing Ti-Substituted Tungsten Molybdenum Oxide Based Zn2+ Ion Intercalation Cathodes, Advance Material, 2019, 1807065.
[9]H. Li, J. F. Curtis, A. Y. Elezzabi1, Rechargeable Aqueous Hybrid Zn2+/Al3+ Electrochromic Batteries, Cell press Joule, 2019, 3, 1-11.
[10]X. Huo, W. Shen, R. Li, M. Zhang, M. Guo. A novel heterostructure of oriented core/shell tungsten oxide nanorod arrays for electrochromo-pseudocapacitor, Scripta Materialia, 2020, 174, 1-5.
[11]G.F. Zhao, W. Q. Wang, X.L. Wang, X.H. Xia, C.D. Gu, J.P. Tu, A multicolor electrochromic film based on a SnO2/V2O5 core/shell structure for adaptive camouflage, Materials Chemistry C, 2019, 7, 5702-5709.
[12]J.R. Macdonald, W.R. Kenan, Emphasizing Sloid Materials and System, Impedance Spectroscopy, New York, 1978.
[13]M. Ciureanu, S. D. Mikhailenko, and S. Kaliaguine, PEM Fuel Cells as Membrane Reactor: Kinetic Analysis by impedance Spectroscopy, Catalysis Today, 2003, 82, 195-206.
[14]J.D. Kim, Y. I. Park, K. Kobayashi, M. Nagai, M. Kunimastsu, Characterization of CO Tolerance of PEMFC by AC Impendance Spectroscopy, Solid state ionics, 2001, 140, 313-325.
[15]J. M. Song, S. Y. Cha, W. M. Lee, Composition of Polymer Electrolyte Fuel Cell Electrodes Determined by AC impedance Method, Journal of Power Sources, 2001, 94, 78-84.
[16]S.Y. Heo, J. D. Clayton, M. S. Corey, T.Z. Jiang, A. Dolocan, A. K. Brian, J. M. Delia, Enhanced Coloration Efficiency of Electrochromic Tungsten Oxide Nanorods by Site Selective Occupation of Sodium Ions, ACS Nano Lett, 2020, 20, 2072-2079.
[17]Y.Y. Tian, W.K. Zhang, S. Cong, Y.C. Zheng, F.X. Geng, Z.G. Zhao Unconventional Aluminum Ion Intercalation/ Deintercalation for Fast Switching and Highly Stable Electrochromism, Advanced Functional Materials, 2015, 25, 5833-5839.
[18]T.R Zhang, A. Fisher J.Y. Lee, S.L. Zhang, Sheng Cao, Al3+ intercalation/de-intercalation-enabled dual-band electrochromic smart windows with a high optical modulation, quick response and long cycle life, Energy Environ. Science, 2018, 11, 2884-2892.
[19]胡啟章(2011)。電化學原理與方法。載於王正華(主編),電位控制法(頁74-89)。台北市:五南圖書。
[20]H. Yu, J. Guo, C. Wang, J.Y. Zhang, J. Liu, X.L. Zhong, G.B. Dong, X.G. Diao, High performance in electrochromic amorphous WOx film with longterm stability and tunable switching times via Al/Li-ions intercalation/ deintercalation, Electrochimica Acta, 2019, 318, 644-650.
[21]F. Wang, F. Yu, X. Wang, Z. Chang, L. Fu, Y. Zhu, Z.B. Wen, Y.P Wu, W. Huang, Aqueous Rechargeable Zinc/Aluminum Ion Battery with Good Cycling Performance, ACS Appl. Mater. Interfaces, 2016, 8, 9022−9029.
[22]C. Niu, G.Y. Han, H. Song, S.F. Yuan, W.J. Hou, Intercalation pseudo-capacitance behavior of few-layered molybdenum sulfide in various electrolytes, Colloid and Interface Science, 2016, 561, 117-126.
[23]J. P. Simonin, On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics, Chemical Engineering Journal, 2016, 300, 254-263.
[24]S.L. Zhang, S. Cao, T.R. Zhang, Q.F. Yao, H.B. Lin, A. Fisher, J.Y. Lee, Overcoming the Technical Challenges in Al Anode–Based Electrochromic Energy Storage Windows, Small method, 2019, 4, 1900545.
[25]H.G. Kima, D.Y. Choia, K.G. Kima, W.S. Chub, D. M. Chunc, C. S. Lee, Effect of particle size and amorphous phase on the electrochromic properties of kinetically deposited WO3 films, Solar Energy Materials and Solar Cells, 2018, 177, 44-50.
[26]M.A. Arvizu, H.Y. Qu, U. Cindemir, Z. Qiu, A. R.G. Edgar, P. Daniel, G. G. Claes, L. Österlund, A. N. Gunnar, Journal of Materials Chemistry A, 2019, 7, 2908-2918.
[27]Y.C. Her, C.C. Chang, Facile synthesis of one-dimensional crystalline/amorphous tungsten oxide core/shell heterostructures with balanced electrochromic properties, CrystEngComm, 2014, 16, 5379.
[28]Y. Shi, M.J. Sun, Y. Zhang, J. Cui, Y. Wang , X. Shu, Y. Qin, H. H. Tan, J. Liu, Y. Wu, Structure modulated amorphous/crystalline WO3 nanoporous arrays with superior electrochromic energy storage performance, Solar Energy Materials and Solar Cells, 2020, 212, 110579.
[29]T. D. Nguyen, L. P. Yeo, D. Mandler, S. Magdassi, A. I. Y. Tok, Electrodeposition of amorphous WO3 on SnO2–TiO2 inverse opal nano-framework for highly transparent, effective and stable electrochromic smart window, RSC Advance, 2019, 9, 16730-16737.
[30]G. Cai, J.P. Tu, D. Zhou, J. Zhang, Q.Q. Xiong, X. Zhao, X.L. Wang, C.D. Gu, Multicolor Electrochromic Film Based on TiO2@Polyaniline Core/Shell Nanorod Array, Journal of Physical Chemistry C, 2013, 117, 31, 15967–15975.
[31]G. Cai, J.P. Tu, D. Zhou, L. Li, J. Zhang, X.L. Wang, C.D. Gu, Constructed TiO2/NiO Core/Shell Nanorod Array for Efficient Electrochromic Application, Journal of Physical Chemistry C, 2014, 118, 13, 6690–6696.
[32]L.B. Dong, X.P. Ma, Y. Li, L. Zhao, W. Liu, J. Cheng, C. Xu, B. Li, Q.H. Yang, F. Kang, Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors, Energy Storage Materials, 2018, 13, 96-102.
[33]Y. Zhong, Z. Chai, Z. Liang, P. Sun, W. Xie, C. Zhao, W. Mai, Electrochromic asymmetric supercapacitor windows enable direct determination of energy status by naked eye, ACS Appl. Mater. Interfaces, 2017, 39, 34085–34092.
[34]V. V. Kondalkara, S.S. Malib, R. R. Kharadea, K. V. Khota, P. B. Patila, R. M. Manea, S. Choudhuryc, P. S. Patilb, C. K. Hongd, J. H. Kime, P. N. Bhosale, High performing smart electrochromic device based on honeycomb nanostructured h-WO3 thin films: Hydrothermal assisted synthesis, Dalton Transactions, 2015, 44, 2788-2800.
[35]D.L. Chao, C.G. Zhu, M. Song, P. Liang, X. Zhang, N. H. Tiep, H. Zhao, J. Wang, R. Wang, H. Zhang, H. J. Fan, A High-Rate and Stable Quasi-Solid-State Zinc-Ion Battery with Novel 2D Layered Zinc Orthovanadate Array, Advanced materials, 2018, 30, 1803181.
[36]D. Ma, G. Shi, H. Wang, Q. Zhangb, Y. Li, Controllable growth of high-quality metal oxide/ conducting polymer hierarchical nanoarrays with outstanding electrochromic properties and solarheat shielding ability, Journal of Materials Chemistry A, 2014, 2, 13541–13549.
[37]D. Zhou, Y.B. He, Q. Cai, X. Qin, B. Li, H. Du, Q.H. Yanga, F. Kang, Investigation of cyano resin-based gel polymer electrolyte: in situ gelation mechanism and electrode–electrolyte interfacial fabrication in lithium-ion battery, Journal of Materials Chemistry A, 2014, 2, 20059-20066.
[38]F.A. Soto, Y. Ma, J. M. M. d. l. Hoz, J. M. Seminario, P.B. Balbuena, Formation and Growth Mechanisms of Solid-Electrolyte Interphase Layers in Rechargeable Batteries, 2015, 27, 23, 7990–8000.
[39]S. T. Senthilkumar, R. K. Selvan, N. Ponpandianb and J. S. Meloc, Redox additive aqueous polymer gel electrolyte for an electric double layer capacitor, RSC Advances, 2012, 2, 8937–8940.
[40]N. Batisse, E. R. Pinero, A self-standing hydrogel neutral electrolyte for high voltage and safe flexible supercapacitors, Journal of Power Sources, 2017, 348, 168 -174.
[41]S. B. Aziz, T. J. Woo, M.F.Z. Kadir, H. M. Ahmed, A conceptual review on polymer electrolytes and ion transport models, Advanced Materials and Devices, 2018, 3, 1-17.
[42]D. Zhou, B. Che, X. Lu, Rapid One-Pot Electrodeposition of Polyaniline/Manganese Dioxide Hybrids: A Facile Approach to Stable High-Performance Anodic Electrochromic Materials, Journal of Materials Chemistry C, 2017, 5, 1758-1766.
[43]H. Fang, P. Zheng, R. Ma, C. Xu, G. Yang, Q. Wang, H. Wang, Multifunctional hydrogel enables extremely simplified electrochromic devices for smart window and ionic writing board, Mater. Horiz., 2018, 00, 1-8.
[44]Y. Wei, J. Zhou, J. Zheng, C. Xu, Improved stability of electrochromic devicesusing Ti-doped V2O5 film, Electrochimica Acta, 2015, 166, 277-284.
[45]B. Wanga, M. Cuic, Y. Gaod, F. Jianga, W. Dua, F. Gaob, L. Kang, C. Zhic, H. Luod, A Long-life Battery-Type Electrochromic Window with Remarkable Energy Storage Ability, RRL Solar, 2019, 4, 3, 1900425.
[46]G. Cai, P. Darmawan, X. Cheng, P. S. Lee, Inkjet Printed Large Area Multifunctional Smart Windows, Advanced Energy Materials, 2017, 7, 1602598.
[47]J. Zhao, Y. Tian, Z. Wang, S. Cong, D. Zhou, Q. Zhang, M. Yang, W. Zhang, F. Geng, Zhigang Zhao, Trace H2O2 -Assisted High-Capacity Tungsten Oxide Electrochromic Batteries with Ultrafast Charging in Seconds, Angewandte Chemie. 2016, 55, 7161 –7165.
[48]K. Zhou, H. Wang, J.T. Jiu, J.B. Liu, H. Yan, K. Suganuma, Polyaniline Films with Modified Nanostructure for Bifunctional Flexible Multicolor Electrochromic and Supercapacitor Applications, Chemical Engineering Journal,2018, 345, 290-299.
[49]Q. Guo, X. Zhao, Z. Li, D. Wang, G. Ni, A novel solid-state electrochromic supercapacitor with high energy storage capacity and cycle stability based on poly(5-formylindole)/WO3 honeycombed porous nanocomposites Chemical Engineering Journal, 2020, 384, 123370.

電子全文 電子全文(網際網路公開日期:20250819)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔