|
[1]NREL, "Best Research-Cell Efficiency Chart," 2020. [2]S. Luo and W. A. Daoud, "Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design," Journal of Materials Chemistry A, vol. 3, no. 17, pp. 8992-9010, 2015. [3]W. S. Yang et al., "High-performance photovoltaic perovskite layers fabricated through intramolecular exchange," Science, vol. 348, no. 6240, pp. 1234-1237, 2015. [4]H. Zhou et al., "Interface engineering of highly efficient perovskite solar cells," Science, vol. 345, no. 6196, pp. 542-546, 2014. [5]J. Y. Jeng et al., "CH3NH3PbI3 perovskite/fullerene planar‐heterojunction hybrid solar cells," Advanced Materials, vol. 25, no. 27, pp. 3727-3732, 2013. [6]J. H. Park et al., "Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p‐type NiO electrode formed by a pulsed laser deposition," Advanced Materials, vol. 27, no. 27, pp. 4013-4019, 2015. [7]M. I. H. Ansari, A. Qurashi, and M. K. Nazeeruddin, "Frontiers, opportunities, and challenges in perovskite solar cells: A critical review," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 35, pp. 1-24, 2018. [8]A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009. [9]J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, "6.5% efficient perovskite quantum-dot-sensitized solar cell," Nanoscale, vol. 3, no. 10, pp. 4088-4093, 2011. [10]H.-S. Kim et al., "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%," Scientific reports, vol. 2, p. 591, 2012. [11]M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites," Science, vol. 338, no. 6107, pp. 643-647, 2012. [12]M. Liu, M. B. Johnston, and H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, vol. 501, no. 7467, pp. 395-398, 2013. [13]N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells," Nature materials, vol. 13, no. 9, pp. 897-903, 2014. [14]J. P. Mailoa et al., "A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction," Applied Physics Letters, vol. 106, no. 12, p. 121105, 2015. [15]M. M. Maitani, H. Satou, A. Ohmura, S. Tsubaki, and Y. Wada, "Crystalline orientation control using self-assembled TiO2 nanosheet scaffold to improve CH3NH3PbI3 perovskite solar cells," Japanese Journal of Applied Physics, vol. 56, no. 8S2, p. 08MC17, 2017. [16]L. Mazzarella et al., "Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%," Advanced Energy Materials, vol. 9, no. 14, p. 1803241, 2019. [17]P. Wang et al., "Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells," Nature communications, vol. 9, no. 1, pp. 1-7, 2018. [18]M. Xiao et al., "A fast deposition‐crystallization procedure for highly efficient lead iodide perovskite thin‐film solar cells," Angewandte Chemie International Edition, vol. 53, no. 37, pp. 9898-9903, 2014. [19]M. El-Henawey, R. S. Gebhardt, M. El-Tonsy, and S. Chaudhary, "Organic solvent vapor treatment of lead iodide layers in the two-step sequential deposition of CH3NH3PbI3-based perovskite solar cells," Journal of Materials Chemistry A, vol. 4, no. 5, pp. 1947-1952, 2016. [20]P.-Y. Lin, Y.-Y. Chen, T.-F. Guo, Y.-S. Fu, L.-C. Lai, and C.-K. Lee, "Electrospray technique in fabricating perovskite-based hybrid solar cells under ambient conditions," RSC advances, vol. 7, no. 18, pp. 10985-10991, 2017. [21]Q. Chen et al., "Planar heterojunction perovskite solar cells via vapor-assisted solution process," Journal of the American Chemical Society, vol. 136, no. 2, pp. 622-625, 2014. [22]L. Etgar et al., "High efficiency quantum dot heterojunction solar cell using anatase (001) TiO2 nanosheets," Advanced Materials, vol. 24, no. 16, pp. 2202-2206, 2012. [23]Y. Rong et al., "Hole-conductor-free mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes," The journal of physical chemistry letters, vol. 5, no. 12, pp. 2160-2164, 2014. [24]J. Qiu et al., "All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays," Nanoscale, vol. 5, no. 8, pp. 3245-3248, 2013. [25]Q. Jiang, X. Sheng, Y. Li, X. Feng, and T. Xu, "Rutile TiO2 nanowire-based perovskite solar cells," Chemical communications, vol. 50, no. 94, pp. 14720-14723, 2014. [26]L. Li, C. Shi, X. Deng, Y. Wang, and L. Ni, "High-crystallinity and large-grain CH3NH3PbI3 thin films for efficient TiO2 nanorod array perovskite solar cells," Micro & Nano Letters, vol. 13, no. 1, pp. 131-134, 2018. [27]Y. Zhao and K. Zhu, "Efficient planar perovskite solar cells based on 1.8 eV band gap CH3NH3PbI2Br nanosheets via thermal decomposition," Journal of the American Chemical Society, vol. 136, no. 35, pp. 12241-12244, 2014. [28]P. Li, B. Shivananju, Y. Zhang, S. Li, and Q. Bao, "High performance photodetector based on 2D CH3NH3PbI3 perovskite nanosheets," Journal of Physics D: Applied Physics, vol. 50, no. 9, p. 094002, 2017. [29]K. Ren et al., "Turning a disadvantage into an advantage: synthesizing high-quality organometallic halide perovskite nanosheet arrays for humidity sensors," Journal of Materials Chemistry C, vol. 5, no. 10, pp. 2504-2508, 2017. [30]J.-H. Im et al., "Nanowire perovskite solar cell," Nano letters, vol. 15, no. 3, pp. 2120-2126, 2015. [31]A. A. Petrov et al., "New insight into the formation of hybrid perovskite nanowires via structure directing adducts," Chemistry of Materials, vol. 29, no. 2, pp. 587-594, 2017. [32]O. Vybornyi, S. Yakunin, and M. V. Kovalenko, "Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals," Nanoscale, vol. 8, no. 12, pp. 6278-6283, 2016. [33]成功大學, "高解析場發射掃描式電子顯微鏡 UHRFE-SEM." [34]M. P. I. f. P. Research, "Time Resolved Photoluminescence Spectroscopy (TRPL)." [35]J. Troughton, K. Hooper, and T. M. Watson, "Humidity resistant fabrication of CH3NH3PbI3 perovskite solar cells and modules," Nano Energy, vol. 39, pp. 60-68, 2017. [36]余勁, "水熱法製備鈣鈦礦奈米纖維以Cu2ZnSnS4晶種為例," 國立台南大學綠色能源科技系, 民108年.
|