(3.238.186.43) 您好!臺灣時間:2021/03/05 22:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃安那
研究生(外文):HUANG,AN-NA
論文名稱:化學浴法沉積速率對鈣鈦礦薄膜品質的影響探討
論文名稱(外文):The effect of chemical bath deposition rate on perovskite films quality
指導教授:傅耀賢傅耀賢引用關係
指導教授(外文):FU,YAW-SHYAN
口試委員:傅耀賢方得華童永樑卜一宇
口試委員(外文):FU,YAW-SHYANFANG,DE-HUATONG,YONG-LIANGBU,YI-YU
口試日期:2020-06-24
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:綠色能源科技學系碩士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:90
中文關鍵詞:乙酸乙酯化學浴沉積法沉積速率鈣鈦礦太陽能電池反式結構元件
外文關鍵詞:Ethyl acetateChemical Bath Depositiondeposition ratePerovskite Solar CellsPlanar p-i-n
相關次數:
  • 被引用被引用:0
  • 點閱點閱:32
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目錄
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xiii
第一章 緒論 1
1-1 研究背景 1
1-2 太陽能電池介紹 2
1-3 鈣鈦礦太陽能電池簡介 4
1-3-1鈣鈦礦材料簡介 4
1-3-2 鈣鈦礦太陽能電池結構 5
1-4 研究動機 6
第二章 文獻回顧 7
2-1 鈣鈦礦太陽能電池發展 7
2-2 鈣鈦礦主動層製程方法 14
2-2-1 一步溶液法 14
2-2-2 兩步溶液法 15
2-2-2 電噴塗法 16
2-2-2 氣相沉積法 17
2-3不同晶體形貌對鈣鈦礦效能影響 19
2-3-1 電子傳輸層不同晶體形貌的影響 19
2-3-2 鈣鈦礦主動層不同結晶形貌的影響 32
2-3-3 鈣鈦礦奈米片轉換鈣鈦礦奈米線 41
第三章 實驗方法與分析 43
3-1 實驗流程 43
3-2 CH3NH3PbI3合成步驟 44
3-2-1 前驅物甲胺油酸鹽(Methylammonium oleate,MAOA)合成 44
3-2-2 前驅物PbI3-合成 44
3-3-3 以化學浴沉積法製備CH3NH3PbI3鈣鈦礦主動層 45
3-3 實驗藥品 46
3-4 實驗儀器與耗材 47
3-5 元件製作 48
3-5-1 ITO導電玻璃基板 48
3-5-2 黃光顯影蝕刻ITO導電玻璃基板 48
3-5-3 ITO玻璃基板清洗 50
3-5-4 PEDOT:PSS電洞傳輸層 50
3-5-5 太陽能元件製作 51
3-6薄膜分析 52
3-6-1 掃描式電子顯微鏡(Scanning electron microscope) 52
3-6-2 X光繞射儀(X-ray Diffraction) 53
3-6-3 紫外/可見光光譜儀(Ultraviolet-Visible spectrophotometer, UV-Vis) 54
3-6-4 光致發光光譜儀(Photoluminescence spectrometer,PL) 55
3-6-5 光伏特性測量系統 56
第四章 結果與討論 57
4-1不同劑量的乙酸乙酯(EA)對鈣鈦礦表面形貌效應探討 57
4-1-1鈣鈦礦奈米立方晶體(nanocubics,NC) 58
4-1-2鈣鈦礦奈米片(nanosheets,NS) 59
4-1-3鈣鈦礦奈米線(nanowires,NW) 61
4-1-4不同劑量的EA對鈣鈦礦沉積速率的影響 63
4-2不同劑量的EA對鈣鈦礦結晶性探討 66
4-3不同劑量的EA對鈣鈦礦薄膜吸收度探討 68
4-4不同劑量的EA對鈣鈦礦薄膜光致發光探討 69
4-5不同劑量的EA對元件測試及電性探討 70
第五章 結論 72
5-1 結論 72
5-2 未來展望 72
參考文獻 73


[1]NREL, "Best Research-Cell Efficiency Chart," 2020.
[2]S. Luo and W. A. Daoud, "Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design," Journal of Materials Chemistry A, vol. 3, no. 17, pp. 8992-9010, 2015.
[3]W. S. Yang et al., "High-performance photovoltaic perovskite layers fabricated through intramolecular exchange," Science, vol. 348, no. 6240, pp. 1234-1237, 2015.
[4]H. Zhou et al., "Interface engineering of highly efficient perovskite solar cells," Science, vol. 345, no. 6196, pp. 542-546, 2014.
[5]J. Y. Jeng et al., "CH3NH3PbI3 perovskite/fullerene planar‐heterojunction hybrid solar cells," Advanced Materials, vol. 25, no. 27, pp. 3727-3732, 2013.
[6]J. H. Park et al., "Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p‐type NiO electrode formed by a pulsed laser deposition," Advanced Materials, vol. 27, no. 27, pp. 4013-4019, 2015.
[7]M. I. H. Ansari, A. Qurashi, and M. K. Nazeeruddin, "Frontiers, opportunities, and challenges in perovskite solar cells: A critical review," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 35, pp. 1-24, 2018.
[8]A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009.
[9]J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, "6.5% efficient perovskite quantum-dot-sensitized solar cell," Nanoscale, vol. 3, no. 10, pp. 4088-4093, 2011.
[10]H.-S. Kim et al., "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%," Scientific reports, vol. 2, p. 591, 2012.
[11]M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites," Science, vol. 338, no. 6107, pp. 643-647, 2012.
[12]M. Liu, M. B. Johnston, and H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, vol. 501, no. 7467, pp. 395-398, 2013.
[13]N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells," Nature materials, vol. 13, no. 9, pp. 897-903, 2014.
[14]J. P. Mailoa et al., "A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction," Applied Physics Letters, vol. 106, no. 12, p. 121105, 2015.
[15]M. M. Maitani, H. Satou, A. Ohmura, S. Tsubaki, and Y. Wada, "Crystalline orientation control using self-assembled TiO2 nanosheet scaffold to improve CH3NH3PbI3 perovskite solar cells," Japanese Journal of Applied Physics, vol. 56, no. 8S2, p. 08MC17, 2017.
[16]L. Mazzarella et al., "Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%," Advanced Energy Materials, vol. 9, no. 14, p. 1803241, 2019.
[17]P. Wang et al., "Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells," Nature communications, vol. 9, no. 1, pp. 1-7, 2018.
[18]M. Xiao et al., "A fast deposition‐crystallization procedure for highly efficient lead iodide perovskite thin‐film solar cells," Angewandte Chemie International Edition, vol. 53, no. 37, pp. 9898-9903, 2014.
[19]M. El-Henawey, R. S. Gebhardt, M. El-Tonsy, and S. Chaudhary, "Organic solvent vapor treatment of lead iodide layers in the two-step sequential deposition of CH3NH3PbI3-based perovskite solar cells," Journal of Materials Chemistry A, vol. 4, no. 5, pp. 1947-1952, 2016.
[20]P.-Y. Lin, Y.-Y. Chen, T.-F. Guo, Y.-S. Fu, L.-C. Lai, and C.-K. Lee, "Electrospray technique in fabricating perovskite-based hybrid solar cells under ambient conditions," RSC advances, vol. 7, no. 18, pp. 10985-10991, 2017.
[21]Q. Chen et al., "Planar heterojunction perovskite solar cells via vapor-assisted solution process," Journal of the American Chemical Society, vol. 136, no. 2, pp. 622-625, 2014.
[22]L. Etgar et al., "High efficiency quantum dot heterojunction solar cell using anatase (001) TiO2 nanosheets," Advanced Materials, vol. 24, no. 16, pp. 2202-2206, 2012.
[23]Y. Rong et al., "Hole-conductor-free mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes," The journal of physical chemistry letters, vol. 5, no. 12, pp. 2160-2164, 2014.
[24]J. Qiu et al., "All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays," Nanoscale, vol. 5, no. 8, pp. 3245-3248, 2013.
[25]Q. Jiang, X. Sheng, Y. Li, X. Feng, and T. Xu, "Rutile TiO2 nanowire-based perovskite solar cells," Chemical communications, vol. 50, no. 94, pp. 14720-14723, 2014.
[26]L. Li, C. Shi, X. Deng, Y. Wang, and L. Ni, "High-crystallinity and large-grain CH3NH3PbI3 thin films for efficient TiO2 nanorod array perovskite solar cells," Micro & Nano Letters, vol. 13, no. 1, pp. 131-134, 2018.
[27]Y. Zhao and K. Zhu, "Efficient planar perovskite solar cells based on 1.8 eV band gap CH3NH3PbI2Br nanosheets via thermal decomposition," Journal of the American Chemical Society, vol. 136, no. 35, pp. 12241-12244, 2014.
[28]P. Li, B. Shivananju, Y. Zhang, S. Li, and Q. Bao, "High performance photodetector based on 2D CH3NH3PbI3 perovskite nanosheets," Journal of Physics D: Applied Physics, vol. 50, no. 9, p. 094002, 2017.
[29]K. Ren et al., "Turning a disadvantage into an advantage: synthesizing high-quality organometallic halide perovskite nanosheet arrays for humidity sensors," Journal of Materials Chemistry C, vol. 5, no. 10, pp. 2504-2508, 2017.
[30]J.-H. Im et al., "Nanowire perovskite solar cell," Nano letters, vol. 15, no. 3, pp. 2120-2126, 2015.
[31]A. A. Petrov et al., "New insight into the formation of hybrid perovskite nanowires via structure directing adducts," Chemistry of Materials, vol. 29, no. 2, pp. 587-594, 2017.
[32]O. Vybornyi, S. Yakunin, and M. V. Kovalenko, "Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals," Nanoscale, vol. 8, no. 12, pp. 6278-6283, 2016.
[33]成功大學, "高解析場發射掃描式電子顯微鏡 UHRFE-SEM."
[34]M. P. I. f. P. Research, "Time Resolved Photoluminescence Spectroscopy (TRPL)."
[35]J. Troughton, K. Hooper, and T. M. Watson, "Humidity resistant fabrication of CH3NH3PbI3 perovskite solar cells and modules," Nano Energy, vol. 39, pp. 60-68, 2017.
[36]余勁, "水熱法製備鈣鈦礦奈米纖維以Cu2ZnSnS4晶種為例," 國立台南大學綠色能源科技系, 民108年.


電子全文 電子全文(網際網路公開日期:20250709)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔