跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/15 13:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃翊超
研究生(外文):HUANG, I-CHAO
論文名稱:人造石墨混合軟碳作為鋰離子電池高功率密度負極材料
論文名稱(外文):Mixture of Artificial graphite and soft carbon as high power density anode material for lithium-ion batteries
指導教授:張家欽張家欽引用關係
指導教授(外文):CHANG, CHIA-CHIN
口試委員:方冠榮劉世鈞
口試委員(外文):FANG,GUAN-RUNGLIU,SHYH-JIUN
口試日期:2020-07-28
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:綠色能源科技學系碩士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:89
中文關鍵詞:鋰離子電池軟碳高功率密度鋰金屬析出
外文關鍵詞:Lithium-ion batterysoft carbonhigh power densitylithium plating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
由於近期電動車的日益普及,高功率密度的鋰離子電池將為未來的發展重點之一,本研究使用人造石墨與軟碳的搭配作為負極材料應用於鋰離子電池當中,期望藉由人造石墨導電性佳、電容量較高等優點與軟碳導離子性較佳之結構優點結合,以改進鋰離子電池速率性能與鋰金屬析出的問題。
本研究中利用XRD與Raman分析人造石墨與軟碳的基本特性,以SEM與Raman的地圖式掃描功能鑑別材料的分布情形,藉EIS、DCIR、CV觀察各混合比例的特性差異,本研究中分別利用快速嵌入與快速嵌出的倍率性能測試觀察兩材料混合之負極於高功率密度當中的應用,並以大電流測試分析其析鋰後的電壓曲線變化。在5C的高速率充電中AG0%+SC100%仍有50%以上的電容量,AG50%+SC50%與AG25%+SC75%也仍有20%左右的電容量。

The demand for the anode materials used in electric vehicle, high-power density lithium ion batteries will develop mixed various carbon materials as artificial graphite and soft carbon. The advantages of higher capacity and conductivity in artificial graphite, combined with the structural advantages of soft carbon ion conductivity, to improve the rate performance of lithium ion batteries and reduce lithium plating problems.
In this study, XRD and Raman were used to analyze the basic characteristics of artificial graphite and soft carbon, SEM and the mapping function of Raman were used to identify the distribution of materials. The electrochemical properties of each mixed electrode were observed by EIS, DCIR, and CV. The fast intercalation and fast de-intercalation rate test were used to observe the application of the mixed anode in high power density, and analyze the voltage profile change after lithium deposition by high current test. In the high-rate charging of 5C, AG0%+SC100% still has a capacity of more than 50%, and AG50%+SC50% and AG25%+SC75% still have a capacity of about 20%.

摘要
ABSTRACT
致謝
目錄
圖目錄
表目錄
第一章 緒論
1-1前言
1-2鋰離子電池組成及原理
1-2-1鋰離子電池組成
1-2-2鋰離子電池工作原理
1-3電解液與添加劑
1-3-1固體-電解液界面膜
1-4正極
1-5負極
1-6文獻回顧
1-6-1硬碳、軟碳與石墨結構
1-6-2軟碳與石墨之電化學特性
1-6-3由硬碳看孔洞的離子進入行為
1-6-4高功率應用的挑戰-鋰金屬析出
1-7研究動機
1-8研究架構
第二章 實驗方法
2-1實驗架構
2-2實驗儀器與材料
2-2電池組裝
2-2-1電極製備
2-2-2硬幣型電池組裝
2-3實驗儀器與分析理論
2-3-1材料分析
2-3-1-1 X射線衍射
2-3-1-2拉曼散射光譜儀
2-3-1-3掃描式電子顯微鏡
2-3-2充放電機台
2-3-2-1初始開路電壓(Initial open circuit voltage)
2-3-2-2化成測試
2-3-2-3循環穩定性測試
2-3-2-4速率測試
2-3-3恆電位儀
2-3-3-1兩極式與三極式裝置
2-3-3-2交流阻抗分析
2-3-3-3循環伏安法
第三章 結果與討論
3-1材料分析
3-1-1 XRD結構分析
3-1-2 Raman結構分析
3-2表面形貌
3-3初始開路電壓
3-4化成測試
3-5循環穩定性測試
3-6阻抗分析
3-7循環伏安法分析
3-7-1循環伏安法基本特性分析
3-7-2大掃描速率下的循環伏安特性表現
3-7-3大掃描速率後的基本特性改變
3-8速率測試
3-8-1快充慢放
3-8-2慢充快放
3-9高功率應用中的鋰金屬析出
第四章 結論與未來展望
4-1結論
4-2未來展望
參考文獻
附錄

[1]M. Endo, C. Kim, K. Nishimura, T. Fujino & K. Miyashita, "Recent development of carbon materials for Li ion batteries," Carbon, vol. 38, no. 2, pp. 183-197, 2000.
[2]M. Wakihara, "Recent developments in lithium ion batteries," Materials Science and Engineering: R: Reports, vol. 33, no. 4, pp. 109-134, 2001.
[3]J.M. Tarascon & M. Armand, "Issues and challenges facing rechargeable lithium batteries," in Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group: World Scientific, 2011, pp. 171-179.
[4]Y. Liang, C. Z. Zhao, H. Yuan, Y. Chen, W. Zhang, J. Q. Huang, D. Yu, Y. Liu, M. M. Titirici, Y. L. Chueh, H. Yu & Q. Zhang, "A review of rechargeable batteries for portable electronic devices," InfoMat, vol. 1, no. 1, pp. 6-32, 2019.
[5]Y. Zhao, P. Stein, Y. Bai, M. Al-Siraj, Y. Yang & B.-X. Xu, "A review on modeling of electro-chemo-mechanics in lithium-ion batteries," Journal of Power Sources, vol. 413, pp. 259-283, 2019.
[6]A. Mauger & C. Julien, "Critical review on lithium-ion batteries: are they safe? Sustainable? ," Ionics, vol. 23, no. 8, pp. 1933-1947, 2017.
[7]X.B. Cheng, R. Zhang, C.Z. Zhao & Q. Zhang, "Toward safe lithium metal anode in rechargeable batteries: a review," Chemical reviews, vol. 117, no. 15, pp. 10403-10473, 2017.
[8]S. Huang, J. Luo, W. Yuan, B. Zhao, Y. Chen & Y. Tang, "Three-dimensional porous composite framework assembled with CuO microspheres as anode current collector for lithium-ion batteries," Science China Technological Sciences, vol. 62, no. 1, pp. 70-79, 2019.
[9]J. J. Wu & W. R. Bennett, "Fundamental investigation of silicon anode in Lithium-ion cells," 2012.
[10]Y. Nishi, "The development of lithium ion secondary batteries," The Chemical Record, vol. 1, no. 5, pp. 406-413, 2001.
[11]G. Zubi, R. Dufo-López, M. Carvalho & G. Pasaoglu, "The lithium-ion battery: State of the art and future perspectives," Renewable and Sustainable Energy Reviews, vol. 89, pp. 292-308, 2018.
[12]Y. Zhang, Y. Li, X. Xia, X. Wang, C. Gu & J. Tu, "High-energy cathode materials for Li-ion batteries: a review of recent developments," Science China Technological Sciences, vol. 58, no. 11, pp. 1809-1828, 2015.
[13]M. D. Bhatt & C. O'Dwyer, "Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes," Physical Chemistry Chemical Physics, vol. 17, no. 7, pp. 4799-4844, 2015.
[14]Y. Miao, P. Hynan, A. von Jouanne & A. Yokochi, "Current Li-ion battery technologies in electric vehicles and opportunities for advancements," Energies, vol. 12, no. 6, p. 1074, 2019.
[15]R. Raccichini, M. Amores & G. Hinds, "Critical review of the use of reference electrodes in li-ion batteries: A diagnostic perspective," Batteries, vol. 5, no. 1, p. 12, 2019.
[16]K. Xu, "Nonaqueous liquid electrolytes for lithium-based rechargeable batteries," Chemical reviews, vol. 104, no. 10, pp. 4303-4418, 2004.
[17]A. M. Haregewoin, A. S. Wotango & B. J. Hwang, "Electrolyte additives for lithium ion battery electrodes: progress and perspectives," Energy & Environmental Science, vol. 9, no. 6, pp. 1955-1988, 2016.
[18]W. Zhao, Y. Ji, Z. Zhang, M. Lin, Z. Wu, X. Zheng, Q. Li & Y. Yang, "Recent advances in the research of functional electrolyte additives for lithium-ion batteries," Current Opinion in Electrochemistry, vol. 6, no. 1, pp. 84-91, 2017.
[19]M. Gauthier, T. J. Carney, A. Grimaud, L. Giordano, N. Pour, H. H. Chang, D. P. Fenning, S. F. Lux, O. Paschos, C. Bauer, F. Maglia, S. Lupart, P. Lamp & Y. S. Horn, "Electrode–electrolyte interface in Li-ion batteries: current understanding and new insights," The journal of physical chemistry letters, vol. 6, no. 22, pp. 4653-4672, 2015.
[20]J. B. Goodenough & Y. Kim, "Challenges for rechargeable Li batteries," Chemistry of materials, vol. 22, no. 3, pp. 587-603, 2010.
[21]P. Verma, P. Maire & P. Novák, "A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries," Electrochimica Acta, vol. 55, no. 22, pp. 6332-6341, 2010.
[22]N. S. Choi, Z. Chen, S. A. Freunberger, X. Ji, Y. K. Sun, K. Amine, G. Yushin, L. F. Nazar, J. Cho & P. G. Bruce, "Challenges facing lithium batteries and electrical double‐layer capacitors," Angewandte Chemie International Edition, vol. 51, no. 40, pp. 9994-10024, 2012.
[23]A. Wang, S. Kadam, H. Li, S. Shi & Y. Qi, "Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries," npj Computational Materials, vol. 4, no. 1, pp. 1-26, 2018.
[24]N. Nitta, F. Wu, J. T. Lee & G. Yushin, "Li-ion battery materials: present and future," Materials today, vol. 18, no. 5, pp. 252-264, 2015.
[25]N. Bensalah & H. Dawood, "Review on synthesis, characterizations, and electrochemical properties of cathode materials for lithium ion batteries," 2016.
[26]M. S. Balogun, W. Qiu, Y. Luo, H. Meng, W. Mai, A. Onasanya, T. K. Olaniyi & Y. Tong, "A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials," Nano research, vol. 9, no. 10, pp. 2823-2851, 2016.
[27]C. Sandhya, B. John & C. Gouri, "Lithium titanate as anode material for lithium-ion cells: a review," Ionics, vol. 20, no. 5, pp. 601-620, 2014.
[28]N. Ding, J. Xu, Y. Yao, G. Wegner, I. Lieberwirth & C. Chen, "Improvement of cyclability of Si as anode for Li-ion batteries," Journal of Power Sources, vol. 192, no. 2, pp. 644-651, 2009.
[29]D. Ma, Z. Cao & A. Hu, "Si-based anode materials for Li-ion batteries: a mini review," Nano-Micro Letters, vol. 6, no. 4, pp. 347-358, 2014.
[30]J. W. Choi & D. Aurbach, "Promise and reality of post-lithium-ion batteries with high energy densities," Nature Reviews Materials, vol. 1, no. 4, pp. 1-16, 2016.
[31]H. Wu & Y. Cui, "Designing nanostructured Si anodes for high energy lithium ion batteries," Nano today, vol. 7, no. 5, pp. 414-429, 2012.
[32]M. Armand & J.-M. Tarascon, "Building better batteries," nature, vol. 451, no. 7179, pp. 652-657, 2008.
[33]I. A. Edwards, "Structure in carbons and carbon forms," in Introduction to carbon science: Elsevier, 1989, pp. 1-36.
[34]D. Wang, J. Zhou, Z. Li, J. Li, L. Hou & F. Gao, "Uniformly expanded interlayer distance to enhance the rate performance of soft carbon for lithium-ion batteries," Ionics, vol. 25, no. 4, pp. 1531-1539, 2019.
[35]I. Mochida, C. H. Ku & Y. Korai, "Anodic performance and insertion mechanism of hard carbons prepared from synthetic isotropic pitches," Carbon, vol. 39, no. 3, pp. 399-410, 2001.
[36]X. Dou, I. Hasa, D. Saurel, C. Vaalma, L. Wu, D. Buchholz, D. Bresser, S. Komaba & S. Passerini, "Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry," Materials Today, vol. 23, pp. 87-104, 2019.
[37]H. Marsh & F. R. Reinoso, Activated carbon. Elsevier, 2006.
[38]F. Rouquerol, J. Rouquerol & K. Sing, "CHAPTER 9 - Adsorption by Active Carbons," in Adsorption by Powders and Porous Solids, F. Rouquerol, J. Rouquerol, and K. Sing, Eds. London: Academic Press, 1999, pp. 237-285.
[39]M. Dresselhaus & G. Dresselhaus, "Intercalation compounds of graphite," Advances in Physics, vol. 30, no. 2, pp. 139-326, 1981.
[40]C. Corbella Roca, Thin film structures of diamond-like carbon prepared by pulsed plasma techniques. Universitat de Barcelona, 2006.
[41]A. Ōya & H. Marsh, "Phenomena of catalytic graphitization," Journal of Materials Science, vol. 17, no. 2, pp. 309-322, 1982.
[42]S. Hembacher, F. J. Giessibl, J. Mannhart & C. F. Quate, "Revealing the hidden atom in graphite by low-temperature atomic force microscopy," Proceedings of the National Academy of Sciences, vol. 100, no. 22, pp. 12539-12542, 2003.
[43]O. Fromm, A. Heckmann, U. C. Rodehorst, J. Frerichs, D. Becker, M. Winter & T. Placke, "Carbons from biomass precursors as anode materials for lithium ion batteries: New insights into carbonization and graphitization behavior and into their correlation to electrochemical performance," Carbon, vol. 128, pp. 147-163, 2018.
[44]N. A. Kaskhedikar & J. Maier, "Lithium storage in carbon nanostructures," Advanced Materials, vol. 21, no. 25‐26, pp. 2664-2680, 2009.
[45]J. R. Dahn, T. Zheng, Y. Liu & J. Xue, "Mechanisms for lithium insertion in carbonaceous materials," Science, vol. 270, no. 5236, pp. 590-593, 1995.
[46]E. Peled, C. Menachem, D. Bar‐Tow & A. Melman, "Improved Graphite Anode for Lithium‐Ion Batteries Chemically: Bonded Solid Electrolyte Interface and Nanochannel Formation," Journal of The Electrochemical Society, vol. 143, no. 1, p. L4, 1996.
[47]P. Kurzweil & K. Brandt, "Overview of Rechargeable Lithium Battery Systems," in Electrochemical Power Sources: Fundamentals, Systems, and Applications: Elsevier, 2019, pp. 47-82.
[48]R. S. Patil, A. Khandelwal, K. Y. Kim, K. S. Hariharan & S. M. Kolake, "Model Based Design of Composite Carbonaceous Anode for Li-Ion Battery for Fast Charging Applications," Journal of The Electrochemical Society, vol. 166, no. 6, p. A1185, 2019.
[49]B. Purushothaman & U. Landau, "Rapid charging of lithium-ion batteries using pulsed currents: A theoretical analysis," Journal of The Electrochemical Society, vol. 153, no. 3, p. A533, 2006.
[50]J. Marcicki, A. Conlisk & G. Rizzoni, "A lithium-ion battery model including electrical double layer effects," Journal of Power Sources, vol. 251, pp. 157-169, 2014.
[51]J. Yang, X.-y. Zhou, J. Li, Y.-l. Zou & J.-j. Tang, "Study of nano-porous hard carbons as anode materials for lithium ion batteries," Materials Chemistry and Physics, vol. 135, no. 2-3, pp. 445-450, 2012.
[52]Q. Liu, C. Du, B. Shen, P. Zuo, X. Cheng, Y. Ma, G. Yin & Y. Gao, "Understanding undesirable anode lithium plating issues in lithium-ion batteries," RSC advances, vol. 6, no. 91, pp. 88683-88700, 2016.
[53]X. Su, F. Dogan, J. Ilavsky, V. A. Maroni, D. J. Gosztola & W. Lu, "Mechanisms for lithium nucleation and dendrite growth in selected carbon allotropes," Chemistry of Materials, vol. 29, no. 15, pp. 6205-6213, 2017.
[54]J. Luo, C. E. Wu, L. Y. Su, S. S. Huang, C. C. Fang, Y. S. Wu, J. Chou & N. L. Wu, "A proof-of-concept graphite anode with a lithium dendrite suppressing polymer coating," Journal of Power Sources, vol. 406, pp. 63-69, 2018.
[55]G. Bieker, M. Winter & P. Bieker, "Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode," Physical Chemistry Chemical Physics, vol. 17, no. 14, pp. 8670-8679, 2015.
[56]C. Uhlmann, J. Illig, M. Ender, R. Schuster & E. Ivers-Tiffée, "In situ detection of lithium metal plating on graphite in experimental cells," Journal of Power Sources, vol. 279, pp. 428-438, 2015.
[57]D. Ren, , K. Smith, D. Guo, X. Han, X. Feng, L. Lu, M. Ouyang & J. Li, "Investigation of lithium plating-stripping process in Li-ion batteries at low temperature using an electrochemical model," Journal of The Electrochemical Society, vol. 165, no. 10, p. A2167, 2018.
[58]W. Choi, H.-C. Shin, J. M. Kim, J.-Y. Choi & W.-S. Yoon, "Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries," Journal of Electrochemical Science and Technology, vol. 11, no. 1, pp. 1-13, 2020.
[59]Y. Orikasa, Y. Gogyo, H. Yamashige, M. Katayama, K. Chen, T. Mori, K. Yamamoto, T. Masese, Y. Inada, T. Ohta, Z. Siroma, S. Kato, H. Kinoshita, H. Arai, Z. Ogumi, & Y. Uchimoto, "Ionic conduction in lithium ion battery composite electrode governs cross-sectional reaction distribution," Scientific reports, vol. 6, p. 26382, 2016.
[60]A. M. Tripathi, W.-N. Su & B. J. Hwang, "In situ analytical techniques for battery interface analysis," Chemical Society Reviews, vol. 47, no. 3, pp. 736-851, 2018.
[61]U. König, R. S. Angélica, N. Norberg & L. Gobbo, "Rapid X-ray diffraction (XRD) for grade control of bauxites," ICSOBA Proceedings, vol. 19, p. 11pp, 2012.
[62]R. L. McCreery, Raman spectroscopy for chemical analysis. John Wiley & Sons, 2005.
[63]P. F. McMillan, "Raman spectroscopy in mineralogy and geochemistry," Annual review of earth and planetary sciences, vol. 17, no. 1, pp. 255-279, 1989.
[64]V. M. Freire Soler, "Fabrication and characterization of macroscopic graphene layers on metallic substrates," 2014. doctoral dissertation.
[65]A. C. Ferrari & D. M. Basko, "Raman spectroscopy as a versatile tool for studying the properties of graphene," Nature nanotechnology, vol. 8, no. 4, pp. 235-246, 2013.
[66]A. C. Ferrari, "Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects," Solid state communications, vol. 143, no. 1-2, pp. 47-57, 2007.
[67]A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth & A. K. Geim, "Raman spectrum of graphene and graphene layers," Physical review letters, vol. 97, no. 18, p. 187401, 2006.
[68]M. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. Cancado, A. Jorio & R. Saito, "Studying disorder in graphite-based systems by Raman spectroscopy," Physical chemistry chemical physics, vol. 9, no. 11, pp. 1276-1290, 2007.
[69]P. May, M. Lazzeri, P. Venezuela, F. Herziger, G. Callsen, J. S. Reparaz, A. Hoffmann, F. Mauri & J. Maultzsch1, "Signature of the two-dimensional phonon dispersion in graphene probed by double-resonant Raman scattering," Physical Review B, vol. 87, no. 7, p. 075402, 2013.
[70]J. Campos-Delgado, J. M. Romo-Herrera, X. Jia, D. A. Cullen, H. Muramatsu, Y. A. Kim,| T. Hayashi, Z. Ren, D. J. Smith, Y. Okuno, T. Ohba, H. Kanoh, K. Kaneko, M. Endo,| H. Terrones, M. S. Dresselhaus & M. Terrones, "Bulk production of a new form of sp2 carbon: crystalline graphene nanoribbons," Nano letters, vol. 8, no. 9, pp. 2773-2778, 2008.
[71]L. Bokobza, J. L. Bruneel & M. Couzi, "Raman spectra of carbon-based materials (from graphite to carbon black) and of some silicone composites," C—Journal of Carbon Research, vol. 1, no. 1, pp. 77-94, 2015.
[72]C. Sole, N. E. Drewett & L. J. Hardwick, "In situ Raman study of lithium-ion intercalation into microcrystalline graphite," Faraday Discussions, vol. 172, pp. 223-237, 2014.
[73]A. Mirasol-Robert, H. Grotheer, J. Bourdet, A. Suvorova, K. Grice, T. C. McCuaig & P. F. Greenwood, "Evidence and origin of different types of sedimentary organic matter from a Paleoproterozoic orogenic Au deposit," Precambrian Research, vol. 299, pp. 319-338, 2017.
[74]F. Rosenburg, E. Ionescu, N. Nicoloso & R. Riedel, "High-temperature Raman spectroscopy of nano-crystalline carbon in silicon oxycarbide," Materials, vol. 11, no. 1, p. 93, 2018.
[75]M. Walock, "Nanocomposite coatings based on quaternary metalnitrogen," Paris, ENSAM, 2012.
[76]Y. Jusman, S. C. Ng & N. A. Abu Osman, "Investigation of CPD and HMDS sample preparation techniques for cervical cells in developing computer-aided screening system based on FE-SEM/EDX," The Scientific World Journal, vol. 2014, 2014.
[77]B. Inkson, "Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization," in Materials characterization using nondestructive evaluation (NDE) methods: Elsevier, 2016, pp. 17-43.
[78]M. Mazumder, R. Ahmed, A. W. Ali & S. J. Lee, "SEM and ESEM techniques used for analysis of asphalt binder and mixture: A state of the art review," Construction and Building Materials, vol. 186, pp. 313-329, 2018.
[79]B. M. Collett, "Scanning electron microscopy: A review and report of research in wood science," Wood and Fiber Science, vol. 2, no. 2, pp. 113-133, 2007.
[80]T. Tsumura, A. Arikawa, T. Kinumoto, Y. Arai, T. Morishita, H. Orikasa, M. Inagaki & M. Toyoda, "Structure of heat-treated mesoporous carbon and its electrochemical lithium intercalation behavior," Materials Chemistry and Physics, vol. 147, no. 3, pp. 1175-1182, 2014.
[81]X. Huang, Z. Wang, R. Knibbe, B. Luo, S. A. Ahad, D. Sun & L. Wang, "Cyclic voltammetry in lithium–sulfur batteries—challenges and opportunities," Energy Technology, vol. 7, no. 8, p. 1801001, 2019.
[82]A. J. Bard & L. R. Faulkner, "Fundamentals and applications," Electrochemical Methods, vol. 2, no. 482, pp. 580-632, 2001.
[83]T. K. Bera, N. Jampana & G. Lubineau, "A LabVIEW-based electrical bioimpedance spectroscopic data interpreter (LEBISDI) for biological tissue impedance analysis and equivalent circuit modelling," Journal of Electrical Bioimpedance, vol. 7, no. 1, pp. 35-54, 2019.
[84]A. Chowdhury, T. Kanti Bera, D. Ghoshal & B. Chakraborty, "Electrical impedance variations in banana ripening: an analytical study with electrical impedance spectroscopy," Journal of Food Process Engineering, vol. 40, no. 2, p. e12387, 2017.
[85]K. Eckhard & W. Schuhmann, "Alternating current techniques in scanning electrochemical microscopy (AC-SECM)," Analyst, vol. 133, no. 11, pp. 1486-1497, 2008.
[86]J. F. Rubinson & Y. P. Kayinamura, "Charge transport in conducting polymers: insights from impedance spectroscopy," Chemical Society Reviews, vol. 38, no. 12, pp. 3339-3347, 2009.
[87]K. J. Aoki & J. Chen, "Tips of Voltammetry," in Voltammetry: IntechOpen, 2018.
[88]S.-M. Lee, D.-S. Kang & J.S. Roh, "Bulk graphite: materials and manufacturing process," Carbon letters, vol. 16, no. 3, pp. 135-146, 2015.
[89]H. Azuma, H. Imoto, S. i. Yamada & K. Sekai, "Advanced carbon anode materials for lithium ion cells," Journal of power sources, vol. 81, pp. 1-7, 1999.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top