跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/21 15:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳亭舟
研究生(外文):CHEN,TING-CHOU
論文名稱:甲醇蒸氣重組產氫對高溫型燃料電池 熱回收系統之影響
論文名稱(外文):The Influence of Methanol Steam Reforming to Produce Hydrogen on Heat Recovery System of High Temperature PEM Fuel Cell
指導教授:郭振坤
指導教授(外文):KUO,JENN-KUN
口試委員:黃培興李卓昱
口試委員(外文):HUANG, PEI-HSINGLEE,CHO-YU
口試日期:2020-08-19
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:綠色能源科技學系碩士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:93
中文關鍵詞:高溫型質子膜燃料電池性能分析甲醇蒸氣重組熱整合系統氫氣生產
外文關鍵詞:HT-PEMFCPerformance analysis;Methanol steam reformingHeat integrated system;Hydrogen production
相關次數:
  • 被引用被引用:1
  • 點閱點閱:137
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本研究模擬氫能燃料電池中的高溫型質子膜燃料電池熱回收系統、甲醇蒸氣重組反應產氫系統,比較在不同的溫度、S/C(steam to carbon)值、流率對整體系統效能的影響。。並於MATLAB/Simulink 商用軟體中的Thermolib模組建立HT-PEMFC的數學模型計算其電壓,陰陽極進氣端流率造成的性能影響,另外建構了熱交換器回熱以及餘氫回熱的數學模型,由於系統操作溫度較高,廢熱的回收可減少系統中的熱源供應。
根據模擬的結果顯示,溫度、S/C值、流率都會對系統效率造成影響,其中溫度的影響較為直觀,除了提升甲醇蒸氣重組的效率之外,回收的熱量也大幅提高;而S/C在1.2時有最好的表現;流率在甲醇蒸氣重組系統效率達到極高值時,更高的流率反而會讓需求熱量提升,降低了總體效率。
在甲醇蒸氣重組反應溫度T=473K、T=523K、T=573K中,系統回收效率的增益分別為5.5%~10.3%、7%~17.2%、10%~25.2%,且在HT-PEMFC的功率差值相對較低,藉此可知系統操作溫度越高時,廢熱回收的效益也會提升。

This research focuses on the heat recovery of the high-temperature proton membrane fuel cell system and the hydrogen production of methanol steam reforming system, compares the effects of different temperatures, S/C values, and flow rates on the overall system performance. A mathematical model of HT-PEMFC was established on the Thermolib module in the MATLAB/Simulink commercial software to calculate the performance impact caused by flow rate of the anode and cathode inlets. In addition, residual hydrogen heat recovery were constructed. The recovery of waste heat can reduce the heat supply in the system.
According to the simulation results, the system efficiency will be affected by temperature, S/C value, and flow rate. Among them, the influence of temperature is more intuitive. In addition to improving the efficiency of methanol steam reforming, the heat recovery is also greatly increased; and it has best performance when S/C at 1.2 ; when the flow rate of the methanol steam reforming system reaches a max value, the higher flow rate will increase the heat demand and reduce the overall efficiency.
When methanol steam reforming temperature at T=473K, T=523K T=573K, the system recovery efficiency gains are 5.5%~10.3%, 7%~17.2%,10%~25.2%respectively, and the average power difference is relatively low, which means that the higher the operating temperature of the system, the benefit of waste heat recovery will increase.

摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 x
符號說明 xi
第一章 緒論 1
1.1 前言 1
1.2 產氫簡介 3
1.2.1 化學燃料產氫 3
1.2.2 水電解產氫 4
1.2.3 生物質產氫 4
1.2.4 光電化學產氫 5
1.2.5 氫效率比較 6
1.3 燃料電池簡介 7
1.3.1 燃料電池種類 9
1.4 文獻回顧 12
1.5 研究動機與目的 14
第二章 HT-PEMFC及重組器介紹 16
2.1 高溫型燃料電池概述 16
2.2 HT-PEMFC優勢 16
2.3 HT-PEMFC的關鍵問題 17
2.4 重組器概述 18
2.4.1 水蒸氣重組法 19
2.4.2 部分氧化重組法 20
2.4.3 自熱重組法 20
2.5 甲醇蒸氣重組反應系統 20
第三章 研究方法 22
3.1 模擬軟體介紹(MATLAB and Simulink) 22
3.1.1 Simulink簡介 23
3.1.2 Thermolib模組介紹 24
3.2 燃料電池系統 25
3.3 HT-PEMFC數學模型建立 26
3.4 甲醇蒸氣重組模型建立 30
3.4.1 理想氣體方程式 31
3.4.2 甲醇蒸氣重組反應器(Reactor) 32
3.4.3 反應物進料次系統(Source) 33
3.5 系統內模組介紹 34
3.5.1 熱交換器 35
3.5.2 分離器(Splitter) 36
3.5.3 熱質(Thermal Mass) 37
3.5.4 混合器(Mixer) 38
3.5.5 催化燃燒器(catalytic combustor) 38
3.6 總系統效率 39
3.7 模擬流程 40
第四章 結果與討論 44
4.1 甲醇蒸氣重組模型之驗證 44
4.2 HT-PEMFC模型驗證 45
4.3 MSR模擬結果 48
4.3.1 甲醇進料S/C值0.8之模擬分析 48
4.3.2 甲醇進料S/C值1.2之模擬分析 49
4.3.3 甲醇進料S/C值1.6之模擬分析 50
4.3.4 在溫度473K、523K、573K下S/C值對甲醇轉化率之影響 52
4.3.5 在溫度473K、523K、573K下不同S/C值對氫氣莫耳分率之影響 54
4.4 系統總效率計算 56
4.4.1 Qref計算 56
4.4.2 燃料電池性能與 Qrec計算 57
4.4.3系統廢熱回收 60
4.4.4 總系統之效率計算 62
4.4.5 系統熱回收效率比較 65
第五章 結論與未來展望 71
參考文獻 73

[1]黃鎮江編著,「燃料電池」,滄海書局,2008年3月初版一刷。
[2]Iqbal and Siddique, M.Z. Iqbal, S, “SiddiqueRecent progress in efficiency of hydrogen evolution process based photoelectrochemical cell”, Int. J. Hydrogen Energy, 43 (2018), pp. 21502-21523
[3]P. Nikolaidis, A. PoullikkasA, “Comparative overview of hydrogen production processes Renew”, Sust. Energ. Rev., 67 (2017), pp. 597-611.
[4]Y. Choi, H.G. StengerKinetics, “Simulation and optimization of methanol steam reformer for fuel cell applications”, J Power Sources, 142 (2005), pp. 81-91
[5]Z. Chen, S.S.E.H. Elnashaie, “Optimization of reforming parameter and configuration for hydrogen production”, AIChE J, 51 (2005), pp. 1467-1481
[6]W. Wu, C.C. Pai, “Control of a heat-integrated proton exchange membrane fuel cell system with methanol reforming”, Journal of Power Sources, 194 (2) (2009), pp. 920-930
[7]V. Jaggi, S. Jayanti, “A conceptual model of a high-efficiency, stand-alone power unit based on a fuel cell stack with an integrated auto-thermal ethanol reformer”, Appl Energy, 110 (2013), pp. 295-303
[8]P. Ribeirinha, I. Alves, F.V. Vazquez, G. Schuller, M. Boaventura, A. Mendes, “Heat integration of methanol steam reformer with a high-temperature polymeric electrolyte membrane fuel cell”, Energy, 120 (2017), pp. 468-477
[9]L. Xia, C. Zhang, M. Hu, S. Jiang, C.S. Chin, Z. Gao, et al, “Investigation of parameter effects on the performance of high-temperature PEM fuel cell”, Int J Hydrogen Energy, 43 (2018), pp. 23441-23449
[10]I. Coronado, M. Stekrova, L. G. Moreno, M. Reinikainen, P. Simell, R. Karinen, J. Lehtonen, “Aqueous-phase reforming of methanol over nickel-based catalysts for hydrogen production”, Biomass & Bioenergy, Vol. 106 (2017) 29-37.
[11]P. H. Huang, J. K. Kuo, S. J. Tsai, Y. C. Tsai, “Evaporation analysis of different fuels in evaporator coil of steam reformer for stationary PEM fuel cell systems”, Applied Thermal Engineering, Vol. 128 (2018) 564-577.
[12]A. Lotric, M. Sekavcnik, S. Hocevar, “Effectiveness of heat-integrated methanol steam reformer and polymer electrolyte membrane fuel cell stack systems for portable applications”, J Power Sources, 270 (2014), pp. 166-182
[13]S. Authayanun, et al, “Effect of different fuel options on performance of high-temperature PEMFC (proton exchange membrane fuel cell) systems”, Energy, 68 (2014), pp. 989-997
[14]X. Gao, et al, “Optimization of a thermoelectric generator subsystem for high temperature PEM fuel cell exhaust heat recovery”, Int J Hydrogen Energy , 39 (12) (2014), pp. 6637-6645
[15]Y. Shi, X. Du, L. Yang, Y. Sun, Y. Yang, “Experiments on hydrogen production from methanol steam reforming in fluidized bed reactor”, Int J Hydrogen Energy, 38 (2013), pp. 13974-13981
[16]A. Chougule, R.R. Sonde, “Modelling and experimental investigation of compact packed bed design of methanol steam reformer”, Int J Hydrogen Energy, 44 (57) (2019), pp. 29937-29945
[17]M.S. Herdem, M. Mundhwa, S. Farhad, F. Hamdullahpur, “Catalyst layer design and arrangement to improve the performance of a microchannel methanol steam reformer”, Energy Convers Manag, 180 (2019), pp. 149-161
[18]X. Gao, S.J. Andreasen, M. Chen, S.K. Kær, “Numerical model of a thermoelectric generator with compact plate-fin heat exchanger for high temperature PEM fuel cell exhaust heat recovery”, Int J Hydrogen Energy, 37 (10) (2012), pp. 8490-8498
[19]R.E. Rosli, A.B. Sulong, W.R.W. Daud, M.A. Zulkifley, M.I. Rosli, E.H. Majlan, M.A. Haque, N.A.M. Radzuan, “The design and development of an HT-PEMFC test cell and test station”, Int J Hydrogen Energy, 44 (2019), pp. 30763-30771
[20]Y. Wang, D.U. Sauer, S. Koehne, A. Ersoez, “Dynamic modeling of high temperature PEM fuel cell start-up process”, Int J Hydrogen Energy, 39 (2014), pp. 19067-19078
[21]S. Authayanun, V. Hacker, “Energy and exergy analyses of a stand-alone HT-PEMFC based trigeneration system for residential applications”, Energy Convers Manage, 160 (2018), pp. 230-242
[22]黃靖穎,劉政宏,王文琳編著,高溫型質子交換膜燃料電池與雙極板之高溫化學穩定驗證技術 Journal of Taiwan Energy Volume 2, No. 1, March (2015), pp. 39-52
[23]S.S. Araya, F. Zhou, V. Liso, S.L. Sahlin, J.R. Vang, S. Thomas, X. Gao, C. Jeppesen, S.K. Kær, “A comprehensive review of PBI-based high temperature PEM fuel cells”, Int. J. Hydrogen Energy, 41 (2016), pp. 21310-21344
[24]http://tw.gitbook.net/matlab/matlab_overview.html
[25]https://www.terasoft.com.tw/matlab-simulink/products/simulink.html
[26]M. Mamlouk, T. Sousa, K. Scott, “A high temperature polymer electrolyte membrane fuel cell model for reformate gas”, Int J Electrochem, 2011 (2011), pp. 1-18
[27]王立宏編著,「熱力學必勝秘笈」,2015年12月10第十版。
[28]Y. Yan, Y. Liu, L. Li, et al, “Numerical comparison of H2/air catalytic combustion characteristic of micro–combustors with a conventional, slotted or controllable slotted bluff body”, Energy (2019), p. 189
[29]S. Authayanun, M. Mamlouk, K. Scott, A. Arpornwichanop, “Comparison of high-temperature and low-temperature polymer electrolyte membrane fuel cell systems with glycerol reforming process for stationary applications”, Appl. Energy, 109 (2013), pp. 192-201
[30]S.W. Perng, R.F. Horng, H.W. Wu, “Effect of a diffuser on performance enhancement of a cylindrical methanol steam reformer by computational fluid dynamic analysis”, Appl Energy, 206 (2017), pp. 312-328
[31]Chen X et al, “Thermodynamic and economic assessment of a PEMFC-based micro-CCHP system integrated with geothermal-assisted methanol reforming”, Int. J. Hydrogen Energy, 45 (1) (2020), pp. 958-971
[32]S. Lang, T.J. Kazdal, F. Kühl, M.J. Hampe, “Experimental investigation and numerical simulation of the electrolyte loss in a HT-PEM fuel cell”, Int J Hydrogen Energy, 40 (2015), pp. 1163-1172

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊