跳到主要內容

臺灣博碩士論文加值系統

(44.210.85.190) 您好!臺灣時間:2022/11/30 03:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳俞君
研究生(外文):Chen, Yu-Chun
論文名稱:飼料中添加羥四環黴素及葡聚多醣體對白蝦非特異性免疫反應及抵抗溶藻弧菌能力之影響
論文名稱(外文):Effects of Dietary Oxytetracycline and β-glucan on Non-specific Immune Responses and Resistance of Vibrio alginolyticus for White Shrimp (Litopenaeus vannamei)
指導教授:冉繁華冉繁華引用關係
指導教授(外文):Nan, Fan-Hua
口試委員:林正輝溫秋明劉俊宏冉繁華
口試委員(外文):Lin, Cheng-HuiWen, Chiu-MingLiu, Chun-HungNan, Fan-Hua
口試日期:2019-12-13
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:中文
論文頁數:85
中文關鍵詞:南美白對蝦羥四環黴素葡聚多醣體非特異性免疫溶藻弧菌
外文關鍵詞:Litopenaeus vannameiOxytetracyclineβ-glucannon-specific immunityVibrio alginolyticus
相關次數:
  • 被引用被引用:5
  • 點閱點閱:230
  • 評分評分:
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:1
  本篇研究主要探討,體內及體外羥四環黴素 (OTC) 對白蝦之血球吞噬率 (PR)、血球吞噬指數 (PI)、超氧陰離子產生率 (O2-) 及酚氧化酵素活性 (PO)、的影響。並進一步研究添加免疫激活物 β-glucan 是否可以提升白蝦非特異性免疫防禦及對 OTC 的吸收能力,以及白蝦感染溶藻弧菌 (Vibrio alginolyticus) 之活存率。

  本論文首先建立 OTC 於白蝦肌肉及肝胰臟之檢測方法。結果顯示確立參數之專一性、準確度、精密度及定量極限皆符合衛生福利部食品藥物管理署實驗室品質管理規範之要求,其中 OTC 於肌肉及肝胰臟之定量極限分別為 5 ng/g 及 50 ng/g,回收率則分別介於 87.47 ~ 108.67 % 及 71.60 ~ 85.87 %。

  其後將 OTC 和 β-glucan 與白蝦血球共培養,測試其體外免疫力。其中 OTC 對白蝦血球細胞之O2-、PO、PR 及 PI 皆與對照組無顯著差異;β-glucan 對白蝦血球細胞之O2-、PO、PR 及 PI相較於對照組則皆有提升;而OTC 混和 β-glucan 對白蝦血球細胞之 O2- 及 PO 具有提升效果,但對 PR 及 PI 無顯著差異。試驗接著將OTC (50 mg/kg body weight) 及 β-glucan (1 g /kg diet) 添加於飼料中,投餵白蝦 28 天,測定白蝦之細胞性免疫與體內 OTC 蓄積的影響。結果顯示,白蝦投餵 β-glucan 對於提升其總血球數有最佳效果,最高血球數達 293 ± 39.26 cell/mL。而投餵 OTC 混和 β-glucan 處理組對於提升其O2-、PO 及 PR 有最佳效果,最高數值分別為 1.292 ± 0.074、0.188 ± 0.008 及 1.646 ± 0.117。此外,連續投餵含藥飼料,發現其肌肉及肝胰臟皆會在藥物蓄積達高峰後開始出現下降趨勢,並在白蝦肌肉中發現 OTC 混和 β-glucan 處理組有較長的藥物滯留現象,但其體內 OTC 蓄積量對其非特異性免疫能力並無明顯趨勢。

  最後進行抗病力試驗,研究飼料中添加 OTC 和 β-glucan 對白蝦感染溶藻弧菌之活存率。治療性試驗中以 2 × 105 cfu/shrimp 溶藻弧菌注射白蝦後投餵處理組飼料,其中 OTC 混和 β-glucan 處理組有最佳活存率 (77.27 %);預防性試驗中,則分別在投餵 2 天或 7 天後以同劑量之溶藻弧菌注射白蝦,結果亦為OTC 混和 β-glucan 處理組有最佳活存率 (100 %)。
  This study was to investigate in vivo and in vtrio effects of oxytetracycline (OTC) on phagocytic rate (PR), phagocytic index (PI), superoxide anion production (O2-), and phenoloxidase activity (PO) in white shrimp (Litopenaeus vannamei). Enhacement of non-specific immune responses of white shrimp and efficacy of absorption of oral OTC by combination of OTC and immunostimulants β-glucan were also examined. Finally, a therapeutic and preventive challenge test were conducted to see whether the simultaneous use of OTC and β-glucan could improve the survival rate of white shrimp infected with Vibrio alginolyticus.

  Four experiment were conducted to this study. The first experiment was detection method of OTC in white shrimp muscle and hepatopancreas matrix. The results indicated that specificity, accuracy, precision and limits of quantification were consonant with Laboratory Quality Management Directions of Food and Drug Administration. Limits of quantification of OTC in white shrimp muscle and hepatopancreas matrix were 5 ng/g and 50 ng/g, respectively. Recovery rate were between 87.47 ~ 108.67 % and 71.60 ~ 85.87 %, respectively.

  The test further co-cultured OTC and β-glucan with white shrimp haemocytes to examine its in vitro immunity. The results showed that the O2-, PO, PR and PI has no significant different from the control group when the shrimp haemocytes cultured with OTC. Furthermore, all the parameters above were enhanced when the shrimp haemocytes cultured with β-glucan. However, combination of OTC and β-glucan was founded that only had an effect on O2- and PO , but had no significant difference between PR and PI from the control group. The test followed by adding OTC (50 mg/kg body weight) and β-glucan (1 g/kg diet) to the feed and feeding shrimp for 28 days to observe the effects on the cellular immunity and accumulation of OTC on white shrimp. The results indicated that shrimp feeding with β-glucan had the best effect on increasing total haemocytes count (THC), and the highest amounts of haemocytes was 293 ± 39.26 cell/mL. Moreover, feeding with combination of OTC and β-glucan had the best effect on improving O2-, PO, PR; the highest values were 1.292 ± 0.074, 0.188 ± 0.008 and 1.646 ± 0.117, respectively. In addition, feeding white shrimp with the feed containing OTC continuously revealed that the muscles and hepatopancreas began to show a downward trend after reaching the peak. It was also found that OTC had a longer retention time in shrimp muscle when feeding with combination of OTC and β-glucan. However, there was no significant trend between OTC accumulation of white shrimp and its non-specific immunity.

  The final test was vibrio challenge trial observing survival rate of dietary OTC and β-glucan on V. alginolyticus resistance for white shrimp. In therapeutic test, white shrimp were injected with 2 × 105 cfu/shrimp V. alginolyticus before treating. In preventive test, white shrimp were injected with the same dosage of V. alginolyticus after 2 or 7 days feeding. The best survival rate were founded in treatment of combination of OTC and β-glucan with 77.27 %, 100 % and 100 %, respectively.
謝辭 I
摘要 III
Abstract IV
目錄 VI
表目錄 XI
圖目錄 XII
第一章、前言 1
第二章、文獻整理 2
一、 白蝦簡介 2
1.分類與簡史 2
2.病害 2
3.溶藻弧菌 (Vibrio alginolyticus) 2
二、 甲殼類免疫機制 3
1.體液性免疫 (Humoral immunity) 3
2.細胞性免疫(Cellular immunity) 4
三、 葡聚多醣體 (β-glucan) 7
四、 四環黴素類抗生素 8
1.四環黴素類抗生素的作用機制 8
2.羥四環黴素 (Oxytetracycline, OTC) 8
3.羥四環黴素在水產養殖的應用 8
4.羥四環黴素於生物體的吸收代謝情形 9
五、 液相層析串聯質譜儀 (Liquid chromatographic mass spectrometric, LC-MS/MS) 9
第三章、材料與方法 10
一、 實驗設計 10
實驗一:方法確立 10
實驗二:羥四環黴素和葡聚多醣體對白蝦血球細胞體外非特異性免疫之影響。 10
實驗三:飼料中添加羥四環黴素和葡聚多醣體對白蝦非特異性免疫與體內蓄積之影響。 11
實驗四:飼料中添加羥四環黴素和葡聚多醣體對白蝦抵抗溶藻弧菌 (Vibrio alginolyticus) 抗病力之影響。 12
二、 實驗用蝦 13
三、 實驗環境 13
四、 實驗用添加物 13
1.葡聚多醣體 (β-glucan) 13
2.羥四環黴素 (Oxytetracycline, OTC) 13
五、 體外實驗處理組溶液配置 13
1.葡聚多醣體 (β-glucan) 13
2.羥四環黴素 (Oxytetracycline, OTC) 13
六、 實驗用含藥飼料配製方法 13
七、 OTC檢測方式 14
1.檢驗方法 14
2.裝置 14
3.試藥 14
4.器具及材料 14
5.試劑之調製 15
6.移動相溶液之調製 15
7.標準溶液之配製 15
8.檢液之調製 15
9.檢量線之製作 16
10.鑑別試驗及含量測定 17
八、 方法確立 17
1.檢量線 (Linearity) 17
2.專一性 (Specificity) 18
3.準確度 (Accuracy) 18
4.精密度 (Precision) 18
5.定量極限 (Limit of quantification, LOQ) 19
九、 非特異性免疫反應分析方法 19
1.蝦血淋巴液之抽取 19
2.總血球數計數 (Total haemocyte count, THC ) 19
3.吞噬作用 (Phagocytosis) 活性之測定 19
4.超氧陰離子 (Superoxide, O2-) 產生率之測定 20
5.酚氧化酵素 (Phenoloxidasse system, PO system) 活性之測定 21
十、 菌液置備 21
十一、 統計分析 21
第四章、結果 22
一、 OTC之方法確立 22
1.檢量線 (Linearity) 22
2.專一性 (Specificity) 22
3.準確度 (Accuracy) 22
4.精密度 (Precision) 22
5.定量極限 (Limit of quantification, LOQ) 23
二、 羥四環黴素和葡聚多醣體對白蝦血球細胞體外非特異性免疫之影響。 23
1.羥四環黴素體外培養白蝦血球,對其吞噬率及吞噬指數之影響 23
2.羥四環黴素體外培養白蝦血球,對其超氧陰離子產生率之影響 23
3.羥四環黴素體外培養白蝦血球,對其酚氧化酵素活性之影響 23
4.葡聚多醣體體外培養白蝦血球,對其吞噬率及吞噬指數之影響 23
5.葡聚多醣體體外培養白蝦血球,對其超氧陰離子產生率之影響 24
6.葡聚多醣體體外培養白蝦血球,對其酚氧化酵素活性之影響 24
7.羥四環黴素搭配葡聚多醣體體外培養白蝦血球,對其吞噬率及吞噬指數之影響 24
8.羥四環黴素搭配葡聚多醣體體外培養白蝦血球,對其超氧陰離子產生率之影響 24
9.羥四環黴素搭配葡聚多醣體體外培養白蝦血球,對其酚氧化酵素活性之影響 25
三、 飼料中添加羥四環黴素和葡聚多醣體對白蝦非特異性免疫與體內蓄積之影響。 25
1.飼料中添加羥四環黴素和葡聚多醣體對白蝦免疫總血球數之影響 25
2.飼料中添加羥四環黴素和葡聚多醣體對白蝦免疫吞噬率之影響 25
3.飼料中添加羥四環黴素和葡聚多醣體對白蝦免疫吞噬指數之影響 26
4.飼料中添加羥四環黴素和葡聚多醣體對白蝦免疫超氧陰離子產生率之影響 26
5.飼料中添加羥四環黴素和葡聚多醣體對白蝦免疫酚氧化酵素活性之影響 26
6.飼料中添加羥四環黴素和葡聚多醣體對白蝦肌肉蓄積羥四環黴素之影響 27
7.飼料中添加羥四環黴素和葡聚多醣體對白蝦肝胰臟蓄積羥四環黴素之影響 27
四、 飼料中添加羥四環黴素和葡聚多醣體對白蝦抵抗溶藻弧菌 (Vibrio alginolyticus) 抗病力之影響。 28
1.白蝦注射溶藻弧菌後投餵添加羥四環黴素和葡聚多醣體飼料之抗病力影響 28
2.飼料中添加羥四環黴素和葡聚多醣體投餵兩日後注射溶藻弧菌對白蝦抵抗溶藻弧菌之抗病力影響 28
3.飼料中添加羥四環黴素和葡聚多醣體投餵七日後注射溶藻弧菌對白蝦抵抗溶藻弧菌之抗病力影響 29
第五章、討論 30
一、 OTC之方法確立 30
1.檢量線 (Linearity) 30
2.專一性 (Specificity) 30
3.準確度 (Accuracy) 30
4.精密度 (Precision) 31
5.定量極限 (Limit of quantification, LOQ) 31
二、 羥四環黴素和葡聚多醣體對白蝦血球細胞體外非特異性免疫之影響。 31
1.羥四環黴素體外培養白蝦血球,對其非特異性免疫之影響 31
2.葡聚多醣體體外培養白蝦血球,對其非特異性免疫之影響 31
3.羥四環黴素搭配葡聚多醣體體外培養白蝦血球,對其非特異性免疫之影響 32
三、 飼料中添加羥四環黴素和葡聚多醣體對白蝦非特異性免疫與體內蓄積之影響。 32
1.飼料中添加羥四環黴素和葡聚多醣體對白蝦免疫總血球數之影響 32
2.飼料中添加羥四環黴素和葡聚多醣體對白蝦免疫吞噬作用之影響 33
3.飼料中添加羥四環黴素和葡聚多醣體對白蝦免疫超氧陰離子產生率之影響 33
4.飼料中添加羥四環黴素和葡聚多醣體對白蝦免疫酚氧化酵素活性之影響 34
5.飼料中添加羥四環黴素和葡聚多醣體對白蝦組織 (肌肉、肝胰臟)蓄積羥四環黴素之影響 35
四、 飼料中添加羥四環黴素和葡聚多醣體對白蝦抵抗溶藻弧菌 (Vibrio alginolyticus) 抗病力之影響。 36
第六章、結論 38
參考文獻 39
附錄 81
附錄一、β-glucan 對甲殼類動物免應反應之影響彙整 81
附錄二、β-glucan之化學結構式 82
附錄三、羥四環黴素之化學結構式 82
附錄四、行政院農業委員會令─動物用藥品使用準則 83
附錄五、免疫藥品配方 84
中華藥典,1995。行政院衛生署編印,第四版。
王德敏,2008。以液相層析串聯式質譜儀測定水產品中三苯甲烷類化合物及其代
謝物。國立中山大學海洋生物科技暨資源學系研究所碩士論文。
台灣醫療藥品彙編,1996。地靈黴素膠囊。財團法人警康藥學基金會編印,台北,
1241-1243。
行政院農業委員會,2007。動物用藥品使用準則。中華民國96年8月29日。行
政院農業委員會農防字第0961473107號令修正發布。
行政院農業委員會漁業署,2018。中華民國臺灣地區漁業統計年報。
江逸緯,2007。不同濃度歐索林酸對白蝦殘留量及非特異性免疫之影響。國立臺
灣海洋大學水產養殖學系碩士學位論文。
何宜恬,2019。總狀蕨藻之藻多醣抗氧化能力與對白蝦非特異性免疫反應之影響。
國立臺灣海洋大學水產養殖學系碩士學位論文。
吳協峻,2006,葡聚多醣體與藻酸鈉對斷溝龍蝦非特異性免疫反應的影響。國立
臺灣海洋大學水產養殖學系碩士學位論文。
邱子庭,2007。草蝦抗菌肽之研究。國立臺灣海洋大學水產養殖學系研究所博士
論文。
林明男、丁雲源、曾寶順、楊幟揚,1989。塭種蝦培育研究─白蝦第三子代之育
成,125-132。
林乃元,2008。利用液相層析串聯質譜儀探討孔雀綠及還原型孔雀綠在吳郭魚體
內之藥物動力學。國立中山大學海洋生物科技暨資源研究所碩士論文。
陳弘成,1999。白蝦養殖與管理方式。養魚世界 3,66-68。
黃正臺,2005,不同免疫激活物對白蝦非特異性免疫反應及生理之影響。國立臺
灣海洋大學水產養殖學系碩士學位論文。
黃群仁,2018。飼料中添加免疫刺激物對白蝦成長及免疫之影響。國立臺灣海洋
大學水產養殖學系碩士學位論文。
道氏醫學大辭典,1990。藝軒圖書出版社,台北。
蔡佳均,2006。不同濃度羥四環黴素對吳郭魚殘留量及非特異性免疫之影響。國
立臺灣海洋大學水產養殖學系碩士學位論文。
蘇柏欣,2005。應用高效液相層析法檢測 amoxicillin 在海鱺魚的殘留。國立中
興大學獸醫學系研究所碩士論文。
Akiyama, K., Morita, A., Hirazawa, N., Kawahara, H., 2018. The combination effect of
N -acetyl- d -glucosamine on oral oxytetracycline treatment against Nocardia seriolae infection in the yellowtail Seriola quinqueradiata. Aquaculture. 483, 149-153.
Alderman, D. l., Michel, C., 1992. Chemotherapy in Aquaculture: From Theory to Reality. Office International des Epizooties, Paris.
Allen, R. C., Stjernholm, R. L., Steele, R., 1972. Evidence for the generation of an electronic excitation state(s) in human polymorphonuclear leukocytes and its participation in bactericidal activity. Biochemical and Biophysical Research Communications. 47, 679-684.
Anderson, D., 1992. Immunostimulants, adjuvants, and vaccine carriers in fish: applications to aquaculture. Annual Review of Fish Diseases. 2, 281-307.
Ashida, M., Ishizaki, Y., Iwahana, H., 1983. Activation of pro-phenoloxidase by bacterial cell walls or β-1, 3-glucans in plasma of the silkworm, Bombyx mori. Biochemical and Biophysical Research Communications. 113, 562-568.
Babior, B. M., Kipnes, R. S., Curnutte, J. T., 1973. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. The Journal of Clinical Investigation. 52, 741-744.
Bai, N., Zhang, W., Mai, K., Wang, X., Xu, W., Ma, H., 2010. Effects of discontinuous administration of β-glucan and glycyrrhizin on the growth and immunity of white shrimp Litopenaeus vannamei. Aquaculture. 306, 218-224.
Barracco, M. A., Duvic, B., Söderhäll, K., 1991. The β-1, 3-glucan-binding protein from the crayfish Pacifastacus leniusculus, when reacted with a β-1, 3-glucan, induces spreading and degranulation of crayfish granular cells. Cell and Tissue Research. 266, 491-497.
Bauchau, A. G., 1981. Invertebrate Blood Cells. Academic Press, London.
Bayne, C. J., 1990. Phagocytosis and non-self recognition in invertebrates. Bioscience. 40, 723-731.
Bell, K. L., Smith, V. J., 1993. In vitro superoxide production by hyaline cells of the shore crab Carcinus maenas (L.). Developmental and Comparative Immunology. 17, 211-219.
Björklund, H., Bylund, G., 1990. Temperature-related absorption and excretion of oxytetracycline in rainbow trout (Salmo gairdneri R.). Aquaculture. 84, 363-372.
Boman, H., 1995. Peptide antibiotics and their role in innate immunity. Annual Review of Immunology. 13, 61-92.
Bray, W. A., Williams, R. R., Lightner, D. V., Lawrence, A. L., 2006. Growth, survival and histological responses of the marine shrimp, Litopenaeus vannamei, to three dosage levels of oxytetracycline. Aquaculture. 258, 97-108.
Brian, A., Dawn, A., 2007. Bacterial fish pathogens: diseases of farmed and wild fish. Springer Publishers, New York.
Brown, J. H., 1989. Antibiotics: their use and abuse in aquaculture. World Aquaculture. 20, 34-43.
Brown, L., 1993. Aquaculture for veterinarians: fish husbandry and medicine. Butterworth-Heinemann, North Chicago.
Cano-Gomez, A., Bourne, D. G., Hall, M. R., Owens, L., Høj, L., 2009. Molecular identification, typing and tracking of Vibrio harveyi in aquaculture systems: current methods and future prospects. Aquaculture. 287, 1-10.
Cerenius, L., Söderhäll, K., 2004. The prophenoloxidase‐activating system in invertebrates. Immunological Reviews. 198, 116-126.
Chang, C. F., Su, M. S., Chen, H. Y., Liao, I. C., 2003. Dietary β-1, 3-glucan effectively improves immunity and survival of Penaeus monodon challenged with white spot syndrome virus. Fish and Shellfish Immunology. 15, 297-310.
Charest, M. G., Siegel, D. R., Myers, A. G., 2005. Synthesis of (−)-tetracycline. Journal of the American Chemical Society. 127, 8292-8293.
Chen, Y. Y., Kitikiew, S., Yeh, S. T., Chen, J. C., 2016. White shrimp Litopenaeus vannamei that have received fucoidan exhibit a defense against Vibrio alginolyticus and WSSV despite their recovery of immune parameters to background levels. Fish and Shellfish Immunology. 59, 414-426.
Cheng, W., Chen, J. C., 2002a. Effects of environmental factors on the immune responses of freshwater prawn Macrobrachium rosenbergii and other decapod crustaceans. Jouranal of Fisheries Society of Taiwan. 29, 1-20.
Cheng, W., Chen, J. C., 2002b. The virulence of Enterococcus to freshwater prawn Macrobrachium rosenbergii and its immune resistance under ammonia stress. Fish and Shellfish Immunology. 12, 97-109.
Chiayvareesajja, S., Chandumpai, A., Theapparat, Y., Faroongsarng, D., 2006. The complete analysis of oxytetracycline pharmacokinetics in farmed Pacific white shrimp (Litopenaeus vannamei). Journal of Veterinary Pharmacology. 29, 409-414.
Chong, C. M., Maha, A., 2014. Fish and Crustaceans: Immune System, Vaccine Development and Implications. Universiti Putra Malaysia Press, Serdang.
Colorni, A., Paperna, I., Gordin, H., 1981. Bacterial infections in gilthead sea bream Sparus aurata cultured at Elat. Aquaculture. 23, 257-267.
Connell, S. R., Tracz, D. M., Nierhaus, K. H., Taylor, D. E., 2003. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrobial Agents Chemotherapy. 47, 3675-3681.
Couso, N., Castro, R., Noya, M., Obach, A., Lamas, J., 2001. Location of superoxide production sites in turbot neutrophils and gilthead seabream acidophilic granulocytes during phagocytosis of glucan particles. Developmental and Comparative Immunology. 25, 607-618.
Cravedi, J. P., Choubert, G., Delous, G., 1987. Digestibility of chloramphenicol, oxolinic acid and oxytetracycline in rainbow trout and influence of these antibiotics on lipid digestibility. Aquaculture. 60, 133-141.
Destoumieux-Garzón, D., Bulet, P., Loew, D., Van Dorsselaer, A., Rodriguez, J., Bachere, E., 1997. Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda). Journal of Biological Chemistry. 272, 28398-28406.
Destoumieux-Garzón, D., Saulnier, D., Garnier, J., Jouffrey, C., Bulet, P., Bachère, E., 2001. Crustacean immunity antifungal peptides are generated from the C terminus of shrimp hemocyanin in response to microbial challenge. Journal of Biological Chemistry. 276, 47070-47077.
Elema, M. O., Hoff, K. A., Kristensen, H. G., 1996. Bioavailability of oxytetracycline from medicated feed administered to Atlantic salmon (Salmo salar L.) in seawater. Aquaculture. 143, 7-14.
Fagutao, F. F., Yasuike, M., Santos, M. D., Ruangpan, L., Sangrunggruang, K., Tassanakajon, A., Takahashi, Y., Ueno, R., Kondo, H., Hirono, I., 2009. Differential gene expression in black tiger shrimp, Penaeus monodon, following administration of oxytetracycline and oxolinic acid. Developmental and Comparative Immunology. 33, 1088-1092.
Faroongsarng, D., Chandumpai, A., Chiayvareesajja, S., Theapparat, Y., 2007. Bioavailability and absorption analysis of oxytetracycline orally administered to the standardized moulting farmed Pacific white shrimps (Penaeus vannamei). Aquaculture. 269, 89-97.
Finlay, A. C., Hobby, G. L., P'an, S. Y., Regna, P. P., Routien, J. B., Seeley, D. B., Shull, G. M., Sobin, B. A., Solomons, I. A., Kane, J. H., 1950. Terramycin, a new antibiotic. Science and Culture, 85-87.
Fotedar, S., Tsvetnenko, E., Evans, L., 2001. Effect of air exposure on the immune system of the rock lobster Panulirus cygnus. Marine Freshwater Research. 52, 1351-1355.
Fulks, W., Main, K. L., 1992. Diseases of cultured penaeid shrimp in Asia and the United States. Oceanic Institute, Hawaii.
Gómez-Jimenez, S., Espinosa-Plascencia, A., Valenzuela-Villa, F., del Carmen Bermúdez-Almada, M., 2008. Oxytetracycline (OTC) accumulation and elimination in hemolymph, muscle and hepatopancreas of white shrimp Litopenaeus vannamei following an OTC-feed therapeutic treatment. Aquaculture. 274, 24-29.
Grondel, J., Nouws, J., De Jong, M., Schutte, A., Driessens, F., 1987. Pharmacokinetics and tissue distribution of oxytetracycline in carp, Cyprinus carpio L., following different routes of administration. Journal of Fish Diseases. 10, 153-163.
Hall, M., Vanheusden, M., Soderhall, K., 1995. Identification of the major lipoproteins in crayfish hemolymph as proteins involved in immune recognition and clotting. Biochemical and Biophysical Research Communications. 216, 939-946.
Harms, C. A., Papich, M. G., Stamper, M. A., Ross, P. M., Rodriguez, M. X., Hohn, A. A., 2004. Pharmacokinetics of oxytetracycline in loggerhead sea turtles (Caretta caretta) after single intravenous and intramuscular injections. Journal of Zoo Wildlife Medicine. 35, 477-488.
Hernández-López, J., Gollas-Galván, T., Vargas-Albores, F., 1996. Activation of the prophenoloxidase system of the brown shrimp Penaeus californiensis Holmes. Comparative Biochemistry Physiology C. 113, 61-66.
Holmblad, T., Söderhäll, K., 1999. Cell adhesion molecules and antioxidative enzymes in a crustacean, possible role in immunity. Aquaculture. 172, 111-123.
Holthius, L. B., 1980. Shrimps and prawns of the world: an annotated catalogue of species of interest to fisheries. FAO species catalogue. FAO fisheries synopsis. 125.
Hose, J. E., Martin, G. G., 1989. Defense functions of granulocytes in the ridgeback prawn Sicyonia ingentis. Journal of Invertebrate Pathology. 53, 335-346.
Hose, J. E., Martin, G. G., Gerard, A. S., 1990. A decapod hemocyte classification scheme integrating morphology, cytochemistry, and function. The Biological Bulletin. 178, 33-45.
Hsieh, S. L., Wu, C. C., Liu, C. H., Lian, J. L., 2013. Effects of the water extract of Gynura bicolor (Roxb. & Willd.) DC on physiological and immune responses to Vibrio alginolyticus infection in white shrimp (Litopenaeus vannamei). Fish and Shellfish Immunology. 35, 18-25.
Itami, T., 1994. Enhancement of disease resistant of kuruma prawn Penaeus japonicus increase in phagocytic activity of prawn hemocytes after oral administration of β-1, 3-glucan (Schizophyllan), in: Fish and aquatic resources series. Asian Fisheries Society, Manila.
Jian, J., Wu, Z., 2004. Influences of traditional Chinese medicine on non-specific immunity of Jian carp (Cyprinus carpio var. Jian). Fish and Shellfish Immunology. 16, 185-191.
Jiravanichpaisal, P., Lee, B. L., Söderhäll, K., 2006. Cell-mediated immunity in arthropods: hematopoiesis, coagulation, melanization and opsonization. Immunobiology. 211, 213-236.
Johansson, M. W., Söderhäll, K., 1985. Exocytosis of the prophenoloxidase activating system from crayfish haemocytes. Journal of Comparative Physiology. 156, 175-181.
Johansson, M. W., Söderhäll, K., 1988. Isolation and purification of a cell adhesion factor from crayfish blood cells. The Journal of Cell Biology. 106, 1795-1803.
Johansson, M. W., Söderhäll, K., 1989. A cell adhesion factor from crayfish haemocytes has degranulating activity towards crayfish granular cells. Insect Biochemistry and Molecular Biology. 19, 183-190.
Johansson, M. W., Keyser, P., Sritunyalucksana, K., Söderhäll, K., 2000. Crustacean haemocytes and haematopoiesis. Aquaculture. 191, 45-52.
Kawabata, S., Muta, T., 1996. The clotting cascade and defense molecules found in the hemolymph of the horseshoe crab in New Directions in Invertebrate Immunology. SOS Publications, Fair Haven.
Kobayashi, M., Johansson, M. W., Söderhäll, K., 1990. The 76 kD cell-adhesion factor from crayfish haemocytes promotes encapsulation in vitro. Cell and Tissue Research. 260, 13-18.
Kopáček, P., Grubhoffer, L., Söderhäll, K., 1993. Isolation and characterization of a hemagglutinin with affinity for lipopolysaccharides from plasma of the crayfish Pacifastacus leniusculus. Developmental and Comparative Immunology. 17, 407-418.
López, N., Cuzon, G., Gaxiola, G., Taboada, G., Valenzuela, M., Pascual, C., Sánchez, A., Rosas, C., 2003. Physiological, nutritional, and immunological role of dietary β 1-3 glucan and ascorbic acid 2-monophosphate in Litopenaeus vannamei juveniles. Aquaculture. 224, 223-243.
Le Moullac, G., Soyez, C., Saulnier, D., Ansquer, D., Avarre, J. C., Levy, P., 1998. Effect of hypoxic stress on the immune response and the resistance to vibriosis of the shrimp Penaeus stylirostris. Fish and Shellfish Immunology. 8, 621-629.
Lee, K. K., 1995. Pathogenesis studies on Vibrio alginolyticus in the grouper, Epinephelus malabaricus, Bloch et Schneider. Microbial Pathogenesis. 19, 39-48.
Levy, S. B., 1984. Resistance to the tetracyclines, in: Antimicrobial Drug Resistance. Academic Press, Londan.
Li, C. C., Yeh, S. T., Chen, J. C., 2008. The immune response of white shrimp Litopenaeus vannamei following Vibrio alginolyticus injection. Fish and Shellfish Immunology. 25, 853-860.
Liu, C. H., Cheng, W. T., Hsu, J. P., Chen, J. C., 2004. Vibrio alginolyticus infection in the white shrimp Litopenaeus vannamei confirmed by polymerase chain reaction and 16S rDNA sequencing. Diseases of Aquatic Organisms. 61, 169-174.
Lundén, T., Lilius, E. M., Bylund, G., 2002. Respiratory burst activity of rainbow trout (Oncorhynchus mykiss) phagocytes is modulated by antimicrobial drugs. Aquaculture. 207, 203-212.
Marhual, N. P., Das, B. K., Samal, S. K., 2012. Characterization of Vibrio alginolyticus and Vibrio parahaemolyticus isolated from Penaeus monodon: Antimicrobial resistance, plasmid profiles and random amplification of polymorphic DNA analysis. African Journal of Microbiology Research. 6, 4261-4269.
Martin, G. G., Omori, J. E. H. S., Chong, C., Hoodbhoy, T., McKrell, N., 1991. Localization and roles of coagulogen and transglutaminase in hemolymph coagulation in decapod crustaceans. Comparative Biochemistry Physiology B. 100, 517-522.
Martínez-Córdova, L. R., Gollas-Galván, T., Garibay-Valdez, E., Valenzuela-Gutiérrez, R., Porchas, M. M., Porchas-Cornejo, M. A., Sánchez-Paz, A., Mendoza-Cano, F., 2016. Physiological and immune response of Litopenaeus vannamei undergoing the acute phase of the necrotizing hepatopancreatitis disease and after being treated with oxytetracycline and FF. Latin American Journal of Aquatic Research. 44, 535-545.
Meshram, S. J., Murthy, H. S., Ali, H., Swain, H. S., Ballyaya, A., 2015. Effect of dietary β-glucan on immune response and disease resistance against Aeromonas hydrophila in giant freshwater prawn, Macrobrachium rosenbergii (de Man. 1879). Aquaculture International. 23, 439-447.
Meyer, F. P., Bullock, G. L., 1973. Edwardsiella tarda, a new pathogen of channel catfish (Ictalurus punctatus). Applied Microbiology and Biotechnology. 25, 155.
Mi, F. L., Wong, T. B., Shyu, S. S., Chang, S. F., 1999. Chitosan microspheres: modification of polymeric chem‐physical properties of spray‐dried microspheres to control the release of antibiotic drug. Journal of Applied Polymer Science. 71, 747-759.
Mikulski, C. M., Burnett, L. E., Burnett, K. G., 2000. The effects of hypercapnic hypoxia on the survival of shrimp challenged with Vibrio parahaemolyticus. Journal of Shellfish Research. 19, 301-311.
Mohamed, K., Megahed, M. E., Ali, M. A., 2017. Effect of dietary supplementation of Agrimos® on growth performance, feed utilization and immunological parameters of Macrobrachium rosenbergii juveniles. Aquaculture International. 25, 1441-1452.
Mohney, L. L., Williams, R. R., Bell, T. A., Lightner, D. V., 1997. Residues of oxytetracycline in cultured juvenile blue shrimp, Penaeus stylirostris (Crustacea: Decapod), fed medicated feed for 14 days. Aquaculture. 149, 193-202.
Montoya, N., Reyes, E., Toro, L., 2002. Acumulación/Eliminación de oxitetraciclina en el camarón blanco, Litopenaeus vannamei, y su residualidad en dietas artificiales. El Mundo Acuícola. 8, 34-37.
Munns, R. K., Holland, D. C., Roybal, J. E., Storey, J. M., Long, A. R., Stehly, G. R., Plakas, S. M., 1994. Gas chromatographic determination of chloramphenicol residues in shrimp: interlaboratory study. Journal of AOAC International. 77, 596-601.
Nakanishi, T., Kiryu, I., Ototake, M., 2002. Development of a new vaccine delivery method for fish: percutaneous administration by immersion with application of a multiple puncture instrument. Vaccine and Immunization News. 20, 3764-3769.
Ochiai, M., Ashida, M., 1988. Purification of a beta-1, 3-glucan recognition protein in the prophenoloxidase activating system from hemolymph of the silkworm, Bombyx mori. Journal of Biological Chemistry. 263, 12056-12062.
Ohno, N., Emori, Y., Yadomae, T., Saito, K., Masuda, A., Oikawa, S., 1990. Reactivity of Limulus amoebocyte lysate towards (1→3)-β-D-glucans. Carbohydrate Research. 207, 311-318.
Øie, S., Tozer, T. N., 1979. Effect of altered plasma protein binding on apparent volume of distribution. Journal of Pharmaceutical Sciences. 68, 1203-1205.
Perazzolo, L. M., Barracco, M. A., 1997. The prophenoloxidase activating system of the shrimp Penaeus paulensis and associated factors. Developmental and Comparative Immunology. 21, 385-395.
Perez Farfante, I., Kensley, B., 1997. Penaeoid and sergestoid shrimps and prawns of the world. Keys and diagnoses for the families and genera. Editions du Museum national d'Histoire naturelle, Paris.
Pestka, S., Nirenberg, M., 1966. Regulatory mechanisms and protein synthesis X. Codon recognition on 30s ribosomes. Journal of Molecular Biology. 21, 145-171.
Plumb, D. C., 1999. Veterinary Drug Handbook, ed 3. Ames. Iowa State University Press, Iowa.
Primavera, J. H., Lavilla-Pitogo, C. R., Ladja, J. M., Pena, M. D., 1993. A survey of chemical and biological products used in intensive prawn farms in the Philippines. Marine Pollution Bulletin. 26, 35-40.
Ratcliffe, N. A., Rowley, A. F., Fitzgerald, S. W., Rhodes, C. P., 1985. Invertebrate immunity: basic concepts and recent advances. Elsevier, Amsterdam.
Reed, L. A., Siewicki, T. C., Shah, J. C., 2004. Pharmacokinetics of oxytetracycline in the white shrimp, Litopenaeus setiferus. Aquaculture. 232, 11-28.
Söderhäll, K., 1986. Prophenoloxidase-activating cascade as a recognition and defence system in arthropods, in: Humoral Cellular Immunity in Arthropods. Wiley, Hoboken.
Söderhäll, K., Aspan, A., Duvic, B., 1990. The pro-PO-system and associated proteins; role in cellular communication in arthropods. Research in Immunology. 141, 896-907.
Söderhäll, K., Cerenius, L., 1992. Crustacean immunity. Annual Review of Fish Diseases. 2, 3-23.
Söderhäll, K., Häll, L., 1984. Lipopolysaccharide-induced activation of prophenoloxidase activating system in crayfish haemocyte lysate. Biochimica et Biophysica Acta. 797, 99-104.
Söderhäll, K., Smith, V. J., 1983. Separation of the haemocyte populations of Carcinusmaenas and other marine decapods, and prophenoloxidase distribution. Developmental and Comparative Immunology. 7, 229-239.
Söderhäll, K., Smith, V. J., Johansson, M. W., 1986. Exocytosis and uptake of bacteria by isolated haemocyte populations of two crustaceans: evidence for cellular co-operation in the defence reactions of arthropods. Cell and Tissue Research. 245, 43-49.
Söderhäll, K., Unestam, T., 1979. Activation of serum prophenoloxidase in arthropod immunity. The specificity of cell wall glucan activation and activation by purified fungal glycoproteins of crayfish phenoloxidase. Canadian Journal of Microbiology. 25, 406-414.
Sakai, M., 1999. Current research status of fish immunostimulants. Aquaculture. 172, 63-92.
Samuelsen, O. B., 1989. Degradation of oxytetracycline in seawater at two different temperatures and light intensities, and the persistence of oxytetracycline in the sediment from a fish farm. Aquaculture. 83, 7-16.
Sande, M. A., 1985. Antimicrobial agents, tetracycline, chloramphenicol, erythromycin, and miscellaneous antibacterial agents, in: Goodman and Gilman's The Pharmacological Basis of Therapeutics Macmillan Publishers, New York.
Sangrungruang, K., Chotchuang, A., Ueno, R., 2004. Comparative pharmacokinetics and bioavailability of oxytetracycline in giant tiger prawn. Fisheries Science Research. 70, 467-472.
Schnappinger, D., Hillen, W., 1996. Tetracyclines: antibiotic action, uptake, and resistance mechanisms. Archives of Microbiology. 165, 359-369.
Smith, V. J., Söderhäll, K., 1983. β-l, 3 Glucan activation of crustacean hemocytes in vitro and in vivo. The Biological Bulletin. 164, 299-314.
Song, Y. L., Hsieh, Y. T., 1994. Immunostimulation of tiger shrimp (Penaeus monodon) hemocytes for generation of microbicidal substances: analysis of reactive oxygen species. Developmental and Comparative Immunology. 18, 201-209.
Stentiford, G. D., Bonami, J. R., Alday-Sanz, V., 2009. A critical review of susceptibility of crustaceans to Taura syndrome, Yellowhead disease and White Spot Disease and implications of inclusion of these diseases in European legislation. Aquaculture. 291, 1-17.
Stewart, J. E., Foley, D. M., 1969. A precipitin-like reaction of the hemolymph of the lobster Homarus americanus. Journal of the Fisheries Board of Canada. 26, 1392-1397.
Stewart, J. E., Zwicker, B. M., 1972. Natural and induced bactericidal activities in the hemolymph of the lobster, Homarus americanus: products of hemocyte–plasma interaction. Canadian Journal of Microbiology. 18, 1499-1509.
Sung, H. H., Kuo, G. H., Song, Y. L., 1994. Vibriosis resistance induced by glucan treatment in tiger shrimp (Penaeus monodon). Fish Pathology. 29, 11-17.
Swann, L. D., White, M. R., 1991. Diagnosis and treatment of" Aeromonas Hydrophila" infection of fish, in: Aquaculture Extension. Illinois-Indiana Sea Grant, Chicago.
Tafalla, C., Novoa, B., Alvarez, J. M., Figueras, A., 1999. In vivo and in vitro effect of oxytetracycline treatment on the immune response of turbot, Scophthalmus maximus (L.). Journal of Fish Diseases. 22, 271-276.
Tait, J., 1911. Types of crustacean blood coagulation. Journal of the Marine Biological Association of the United Kingdom. 9, 191-198.
Thörnqvist, P. O., Johansson, M. W., Söderhäll, K., 1994. Opsonic activity of cell adhesion proteins and β-1, 3-glucan binding proteins from two crustaceans. Developmental and Comparative Immunology. 18, 3-12.
Unestam, T., Söderhäll, K., 1977. Soluble fragments from fungal cell walls elicit defence reactions in crayfish. Nature Australia. 267, 45-46.
Uno, K., Aoki, T., Kleechaya, W., Tanasomwang, V., Ruangpan, L., 2006. Pharmacokinetics of oxytetracycline in black tiger shrimp, Penaeus monodon, and the effect of cooking on the residues. Aquaculture. 254, 24-31.
Uno, K., Chaweepack, T., Ruangpan, L., 2010. Pharmacokinetics and bioavailability of oxytetracycline in vannamei shrimp (Penaeus vannamei) and the effect of processing on the residues in muscle and shell. Aquaculture. 18, 1003-1015.
Van de Braak, C. B. T., Botterblom, M. H. A., Liu, W., Taverne, N., Van der Knaap, W. P. W., Rombout, J. H. W. M., 2002. The role of the haematopoietic tissue in haemocyte production and maturation in the black tiger shrimp (Penaeus monodon). Fish and Shellfish Immunology. 12, 253-272.
Vasta, G. R., Warr, G. W., Marchalonis, J. J., 1983. Serological characterization of humoral lectins from the freshwater prawn Macrobrachium rosenbergii. Developmental and Comparative Immunology. 7, 13-20.
Vazquez, L., Alpuche, J., Maldonado, G., Agundis, C., Pereyra-Morales, A., Zenteno, E., 2009. Immunity mechanisms in crustaceans. Innate Immunity. 15, 179-188.
Vera-Jimenez, N. I., Pietretti, D., Wiegertjes, G. F., Nielsen, M. E., 2013. Comparative study of β-glucan induced respiratory burst measured by nitroblue tetrazolium assay and real-time luminol-enhanced chemiluminescence assay in common carp (Cyprinus carpio L.). Fish and Shellfish Immunology. 34, 1216-1222.
Wang, L. U., Chen, J. C., 2005. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus at different salinity levels. Fish and Shellfish Immunology. 18, 269-278.
Wang, Y. C., Chang, P. S., Chen, H. Y., 2008. Differential time-series expression of immune-related genes of Pacific white shrimp Litopenaeus vannamei in response to dietary inclusion of β-1, 3-glucan. Fish and Shellfish Immunology. 24, 113-121.
Welch, H., Wright, W. W., Staffa, A. W., 1958. The effect of glucosamine on the absorption of tetracycline and oxtetracycline administered orally. Antibiotic Medicine and Clinical Therapy. 5, 52-58.
Wongsasak, U., Chaijamrus, S., Kumkhong, S., Boonanuntanasarn, S., 2015. Effects of dietary supplementation with β-glucan and synbiotics on immune gene expression and immune parameters under ammonia stress in Pacific white shrimp. Aquaculture. 436, 179-187.
Wu, Y. S., Liau, S. Y., Huang, C. T., Nan, F. H., 2016. Beta 1, 3/1, 6-glucan and vitamin C immunostimulate the non-specific immune response of white shrimp (Litopenaeus vannamei). Fish and Shellfish Immunology. 57, 269-277.
Yoshida, H., Ochiai, M., Ashida, M., 1986. β-1, 3-glucan receptor and peptidoglycan receptor are present as separate entities within insect prophenoloxidase activating system. Biochemical and Biophysical Research Communications. 141, 1177-1184.
Yoshida, H., Kinoshita, K., Ashida, M., 1996. Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. Journal of Biological Chemistry. 271, 13854-13860.
Yu, C. I., Song, Y. L., 2000. Outbreaks of Taura syndrome in Pacific white shrimp Penaeus vannamei cultured in Taiwan. Fish Pathology. 35, 21-24.
Yuan, S. B., Zhu, A. Y., 2012. Progress on pathogenicity research on Vibrio alginolyticus to aquatic products, in: Journal of Zhejiang Ocean University. China National Publications, Beijing.
Zhu, F., Sun, B., Wang, Z., 2019. The crab Relish plays an important role in white spot syndrome virus and Vibrio alginolyticus infection. Fish and Shellfish Immunology. 87, 297-306.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊