跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/10 09:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:杜佳航
研究生(外文):DU, JIA-HANG
論文名稱:硼化鋯鈦助燒劑對碳化硼陶瓷常壓燒結後之特性影響研究
論文名稱(外文):Effects of additives of (Zr,Ti)B2 on characteristics of boron carbide by pressureless sintering
指導教授:黃榮潭
指導教授(外文):Huang, Rong-Tan
口試委員:李丕耀劉哲原
口試委員(外文):Lee, Pee-YewLiu, Che-Yuan
口試日期:2020-01-14
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:光電與材料科技學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:81
中文關鍵詞:碳化硼混合助燒劑防彈陶瓷
外文關鍵詞:Boron CarbideMixed sintered additiveanti-ballistic armour
相關次數:
  • 被引用被引用:0
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本次實驗是利用不同配比之助燒劑(ZrO2、TiB2)與碳化硼(B4C)粉末混合,並在不同溫度(2200ºC、2250 ºC)下進行常壓燒結來製備碳化硼陶瓷樣品。以常壓燒結方式在不同燒結溫度、不同助燒劑配比下來製備測試樣品,後續分析燒結後樣品之維式硬度、密度與孔隙率以及掃描式電子顯微鏡(SEM)、光學顯微鏡(OM)表面形貌觀察。
由實驗結果顯示,碳化硼燒結後之結構,在分別使用不同配比之ZrO2、TiB2兩種助燒劑,其添加量不管多少,在(2200ºC、2250 ºC)溫度下常壓燒結後,除了原有的B4C結構物外,還會產生硼化鋯鈦((Ti, Zr)B2)第二相結構。從SEM顯微觀察發現,當碳化硼添加助燒劑(TiB2)在常壓燒結過程中粉體會互相擴散混合,使樣品的緻密度提高,進而提升樣品機械性質,至於當碳化硼添加助燒劑(ZrO2、TiB2)在常壓燒結過程中會產生液相,而生成的液相會填補樣品的缺陷及孔隙使製密度提高,更大大提升樣品的機械性質。當樣品添加助燒劑的比例中氧化鋯(ZrO2)含量太多導致反應出過多的硼化鋯(ZrB2)時反而會使硬度降低。研究結果顯示,當碳化硼分別添加15 wt%之ZrO2+TiB2混合助燒劑,且Zr/Ti重量比為2.6,經2200ºC常壓燒結後,能獲得最好的致密度(~97%)及硬度(~32 GPa),為機械性質最佳的表現,對於未來在防彈裝備的應用是一項不錯的製程參數。



關鍵字:碳化硼、混合助燒劑、防彈陶瓷
he research aims to fabricate the body of boron carbide (B4C) ceramic marterial by using pressureless sintering method preformed separately with mix sintered aids (ZrO2 and TiB2) of various Zr/Ti ratio (0, 0.17, 0.31, 0.36, 0.56, 0.78, 0.96, 2.6 and ) under distinct sintering temperatures (2200ºC and 2250ºC). The sintered ceramic bodies were subsequently carried out the measurement of density and Vickers hardness, x-ray diffractometer (XRD) examination as well as the observation of optic microscope (OM) and scanning electron microscope (SEM).
The results of XRD analysis showed that there was the secondary phase of (Ti, Zr)B2 formed in the sintered boron carbide bodies in addition to original B4C, regardless of the amounts of mixed sintered aids. This phenomenon is due to the lattice structure of TiB2 is similar to ZrB2, and the atomic radius of Ti differs from Zr by only 10%; therefore, ZrB2 could dissolve into the TiB2 lattice to form a continuous solid solution.
Besides, the results of further another analyses showed that the intermixing of B4C powders would be prompted by the addition of TiB2 during the pressureless sintering, leading to an increase of body densification as well as mechanical properties improvements. Moreover, when the sintered aid mixture of TiB2 and ZrO2 was used in the B4C pressureless sintering process, the liquid phase would be generated at high sintering temperature, and it could fill the porosities and defects, leading to noticeably enhance the densification and mechanical properties of the ceramic body. Consequentially, when the B4C green body with the sintered aid mixture of TiB2 and ZrO2, in which Zr/Ti ratio is 2.6, was executed at the temperature of 2250ºC, the sintered boron carbide bodies can obtain the excellent densification (~97%) and hardness (~32 GPa) as well as good mechanical performance. It is a useful ceramic material fabrication method for the application of intended anti-ballistic armour.




Keywords: boron carbide, sintered aid mixture, anti-ballistic armour.
摘要 I
Abstract II
目錄 III
表目錄 VI
圖目錄 VII
第一章 緒論 1
第二章 文獻回顧 2
2.1 碳化硼簡介 3
2.2 碳化硼性質 4
2.2.1 高硬度 4
2.2.2 中子吸收能力 4
2.2.3 低比重 5
2.2.4 高導熱性 5
2.2.5 抗氧化性 5
2.2.6 化學性能 6
2.3 碳化硼應用 6
2.3.1 研磨材料 6
2.3.2 防彈裝備 7
2.3.3 核能工業 7
2.3.4 熱電材料 8
2.4 製備碳化硼粉末 8
2.4.1 自蔓延高溫合成法 8
2.4.2 機械化合金法 9
2.4.3 碳熱還原法 9
2.4.4 化學氣相沉積法 9
2.4.5 元素合成法 10
2.5 碳化硼陶瓷燒結 10
2.5.1 固相燒結機制 10
2.5.2 液相燒結機制 15
2.6 碳化硼添加助燒劑對燒結性質之影響 17
2.6.1 金屬 17
2.6.2 金屬氧化物 19
2.6.3 碳或有機物 19
2.6.4 碳化物或硼化物 20
2.7 燒結氣氛對碳化硼燒結之影響 22
第三章 實驗流程與方式 24
3.1 實驗介紹 24
3.1.1 儀器設備 24
3.2 實驗流程 25
3.3 分析方式 27
3.3.1 密度量測 27
3.3.2 硬度量測 28
3.3.3 顯微結構觀察 28
3.3.4 X光繞射晶體分析(XRD) 28
第四章 結果與討論 35
4.1 碳化硼添加助燒劑(硼化物+硼化物)常壓燒結 35
4.1.1 不同燒結條件之相結構變化 35
4.1.2 不同燒結條件之顯微結構變化 38
4.1.3 不同燒結條件之密度及孔隙變化 45
4.1.4 不同燒結條件之維式硬度量測 47
4.1.5 不同燒結條件之晶粒尺寸(grain size)量測 48
4.1.6 小結 52
4.2 碳化硼添加助燒劑(硼化物+氧化物)常壓燒結 53
4.2.1 不同燒結條件之相結構變化 53
4.2.2 不同燒結條件之顯微結構變化 55
4.2.3 不同燒結條件之密度及孔隙變化 62
4.2.4 不同燒結條件之維式硬度量測 64
4.2.5 不同燒結條件之晶粒尺寸(grain size)量測 65
4.2.6 小結 69
4.3 討論 70
4.3.1 常壓燒結碳化硼陶瓷添加混合助燒劑之XRD分析 70
4.3.2 常壓燒結碳化硼陶瓷添加混合助燒劑之顯微組織 70
4.3.3 常壓燒結碳化硼陶瓷添加混合助燒劑之緻密度變化 71
4.3.4 常壓燒結碳化硼陶瓷添加混合助燒劑之硬度變化 72
4.3.5 常壓燒結碳化硼陶瓷添加混合助燒劑之晶粒尺寸測量 72
第五章 結論 76
第六章 未來研究方向 77
參考文獻 78
[1] B. Kafkaslıoğlu, Y. K. Tür, International Journal of Refractory Metals and Hard
Materials, 57 (2016) 139-144.
[2] H. Liang, X. Yao, Z. Huang, Y. Zeng, B. Su, Ceramics International, 42 (2016)
13256-13261.
[3] Y. Gu, J. X. Liu, F. Xu, G. J. Zhang, Journal of the European Ceramic Society, 37
(2017) 539-547.
[4] B. Su, G. Liu, Z. Huang, H. Liang, X. Liu, Z. Chen, Ceramics International, 41
(2015) 14172-14178.
[5] L. Z. Pei, H. N. Xiao, B. J. Zhu, W. Tan, Rare Metals and Cemented Carbides, 32
(2004) 46-50.
[6] F. Thevenot, J. Eur. Ceram. Soc., 6 (1990) 205.
[7] W. Weimer: Thermochemistry and Kinectics in Carbide, Nitride and Boride
Materials Synthesis and Processing, Edited by A.W. Weimer, Chapman and Hall,
NY (1997).
[8] F. Thevenot, Key Eng. Mater., 56-57 (1991) 59.
[9] R.F. Speyer, H. Lee, J. Mater. Sci., 39 (2004) 6017.
[10] H. Lee, R. F. Speyer, J. Am. Ceram. Soc., 85[5] (2002) 1291.
[11] S. Hayun, S. Kalabukhov, V. Ezersky, M. P. Dariel, N. Frage, Ceram. Int.,
36 (2010) 451.
[12]張輝,穆柏春,唐立丹, Journal of Liaoning Institute of Technology, 25 (2005) 6.
[13] F. Thevenot, Journal of the European Ceramic Society, 6 (1990) 205-225.
[14] Liancheng Wang, Zhihui Wang, Liqiang Xu, Journal of Refractory Metals and
Hard Materials, 35 (2012) 284-287.
[15] D. E. Taylor, J. W. McCauley, T. W. Wright, J. Phys. Condens. Matter., 24 (2012)
11.
[16] Vladislav Domnich, Sara Reynaud, Richard A. Haber, Manish Chhowalla, J. Am. Ceram. Soc., 94 [11] (2011) 3605-3628.
[17] T. L. Aselage, R. G. Tissot, Lattice Constants of Boron Carbide, J. Am. Ceram. Soc., 75[8] (1992) 2207-2212.
[18] FrancoisThévenot, Journal of the European Ceramic Society, 6 (1990) 205-225.
[19] G. A. Gogotsi, Y. L. Groushevsky, O. B. Dashevskaya, Y. G. Gogotsi, V. A. Lavrenko, J. Less Common Met., 117 (1986) 225-230.
[20] V. A. Lavrenko, Y. G. Gogotsi, Met., 29 (1988) 193-202.
[21] L. N. Efimenko, E. V. Lifshits, I. T. Ostapenko, Snezhko, Met., 4 (1987) 56-60.
[22] R. Telle, Kluwer, ibid ref., 43 (1989) 249.
[23] Y. Q. Li, T. Qiu, Materials Science and Engineering A, 444 (2007) 184-191.
[24] Ayfer Kilicarslan, Fatih Toptan, Isil Kerti, Sabriye Piskin, Materials Letters Volume, 128 (2014) 224-226.
[25] David Emin, T. L. Aselage, Journal of Applied Physics 97 (2005) 013529.
[26] G. W. Hollenberg, J. A. Basmajian, Journal of the American Ceramic Society, 65[4] (1982) 179-181
[27] Fei Peng, Rebecca Erdman, Gregg Van Laningham, Robert F. Speyer, Robert Campbell, Advanced Engineering Materials, 15 (2013) 425-433.
[28] A. P. Epik, Boride coatings. Boron and Refractory Borides, ed. V. I, (1977) 597-612.
[29] H. Sumiya, S. Satoh, Diamond and Related Materials, 5 (1996) 1359-1365.
[30]周一東, 中國原子能科學研究院 (2001).
[31] Helmut Werheit, Materials Science and Engineering B, 29 (1995) 228-232.
[32] C. Wood, American Institute of Physics, 140 (1986) 362-372.
[33]孫志杰, 吳燕, 張佐光, 仲偉虹, 沈建明, 宇航材料工藝, 5 (2000) 10-14.
[34] P. G. Karandikar, G. Evans, S. Wong, M. K. Aghajanian, Advances in Ceramic Armor, IV (2009) 163-175
[35]裴立宅, 佛山陶瓷, 4 (2007) 37-41.
[36] R. V. Krishnarao, J. Subrahmanyam, Trans. lndian Ceram. Soc, 68 (2009) 19-22.
[37]梁連科, 李花兵, 鄒德玲, 2 鐵合金 (2004) 5-7.
[39] Li Siwei, Zeng Bin, Feng Zude, et al., Thin Solid Films, 519 (2010) 251-258.
[40] Blackburn J L, Yan Y F, Engtrakul C., et al., Chem. Mater, 18 (2006) 2558-2566.
[41]申良機,李文新,張莉, Journal of Harbin University of Commerce, 26 (2010) 5-5.
[42] Wei Zhang, Seiji Yamashita & Hideki Kita, Advances In Applied Ceramics, 118[4] (2019) 222-239.
[43] Y. Y. Li, H. Liu, T. Y. Li, et al., Powder Metal Technol., 35[1] (2017) 53-56.
[44] D. Z. Gao, J. Jing, J. C. Yu, et al., R. Soc. Open Sci. 5[4] (2018) 1-7.
[45] M. Mashhadi, E. T. Nassaj, V. M. Sglavo, 36 (2010) 1151-159.
[46] D. Stibbs, Thompson R. United States Borax & Chemical Corporation, Los Angeles, Calif. Coldpressed compositions. United States patent US 3,749,571. 1973 Jul 31.
[47] Vl. V. Skorokhod, V. D. Krstic, Powder Metallurgy and Metal Ceramics, 39 (2000) 7-8.
[48] T. K. Roy, C. Subramanian, A. K. Suri, Ceram Int., 32[3] (2006) 227-233.
[49] L. S. Sigl., J Eur Ceram Soc, 18[11] (1998) 1521-1529.
[50] H. R. Baharvandi, A. M. Hadian, J. Mater. Eng. Perform, 17[6] (2008) 838-841.
[51] Rujie He, Li Jing, Zhaoliang Qua, Zhili Zhou, Shigang Ai, Wei Kai, Materials and Design, 71 (2015) 56-61.
[52] M. Bougoin, F. Thevenot, J. Mater. Sci., 22[1] (1987) 109-114.
[53] M. Mashhadi, E. T. Nassaj, M. Mashhadi, et al., Ceram. Int., 37[8] (2011) 3229-3235.
[54] K. Moers, K. Schroeter, Wolff H. Fried. Krupp Aktiengesellschaft, Essen-on-the-Ruhr, Germany. Hardn alloys. United States patent US 1,973,441. 1931 Apr 24.
[55] G. Kuczynski, AIME TRANS, 185 (1949) 169-178.
[56]黃坤祥, 粉末冶金 (2008).
[57]張伯瑜, 國立台北科技大學材料科學與工程研究所 碩士論文 (2014).
[58] F. Parhami, R.M. McMeeking, A.C.F. Cocks, Z. Suo, Mechanics of Materials, 31 (1999) 43-61.
[59] G. Kuczynski, Acta Metallurgica, 4 (1956) 59-61.
[60]陳松嶺, 國立台北科技大學材料科學與工程研究所 碩士論文 (2013).
[61] R.L. Coble, Journal of the American Ceramic Society, 45 (1962) 123–127.
[62]李文福譯, 工程材料的本質與性質 (1992).
[63] D. DeAntonio, ASM International, ASM Handbook, 4 (1991) 793-814.
[64] S. Kang, W. Kaysser, G. Petzow, D. Yoon, Modern developments in powder
metallurgy, 18 (1984) 477-488.
[65] G. R. Anstis, P. Chantikul, B. R. Lawn, D. B. Marshall, Journal of the American
Ceramic Society, 64 (1981) 533-538.
[66] R. A. Campos, A. Contin, V. J. Trava-Airoldi, D. M. Barquete, J. R. Moro, E. J.
Corat, Materials Research, 18 (2015) 925-930.
[67]林麗娟, X光繞射原理及其應用, 工業材料雜誌, 86 (1994) 100-109.
[68] S .Mondal, S. Chakraborty, S. Das, Journal of Materials Engineering and Performance, 27 (2018) 6040–6048.
[69] Jie Yin, Zhengren Huang, Xuejian Liu, Yongjie Yan, Hui Zhang, Dongliang Jiang, Materials Science and Engineering A, 565 (2013)4 14-419.
[70] A. Goldstein, Y. Yeshurun, A. Goldenberg, Journal of the European Ceramic
Society, 27 (2007) 695-700.
電子全文 電子全文(網際網路公開日期:20250211)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top