跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/20 19:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊易璿
研究生(外文):Yang, Yi-Shuan
論文名稱:臺灣沿海地區之機率式淹水危險度分析—以台南市為例
論文名稱(外文):An Analysis of Probabilistic Flood Hazard in Coastal Regions of Taiwan—Taking Tainan City as an Example
指導教授:許泰文許泰文引用關係
指導教授(外文):Hsu, Tai-Wen
口試委員:劉文宏江文山黃偉柏許泰文
口試委員(外文):Liu, Wen-HongChiang, Wen-ShanHuang, Wei-PoHsu, Tai-Wen
口試日期:2020-07-06
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:62
中文關鍵詞:淹水潛勢圖淹水危險度期望值層級分析法
外文關鍵詞:Flood HazardFlood potential mapExpected ValueProbabilisticAHP
相關次數:
  • 被引用被引用:1
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
根據統計臺灣每年平均會遭受3~5個颱風侵襲,其引入的豪雨常導致淹水災害並造成人民生命財產損失。近20年來,水利署為加強災前整備工作及災害應變中的預警作業,啟動淹水潛勢圖繪製,由第一代200m×200m空間解析度更新至不低於40m×40m之第三代版,並納入下水道與區域排水系統及暴潮與越波之外水溢流等情境。
然而,淹水潛勢圖是針對單一降雨情境(定量降雨或重現期降雨)搭配設計雨型而製作,往往與真實事件有相當程度的差異,無法有效應用在防災預警上。因此,本研究試圖以期望值概念,採用第三代淹水潛勢圖的8種重現期降雨情境,繪製機率式淹水潛勢圖並以AHP法加值成機率式淹水危險度圖,以改善原淹水圖資之可用性。為計算研究區域上的淹水深度期望值,本研究選取三種積分公式(Trapezoidal Rule,Simpson’s 1/3-Rule及Simpson’s 3/8-Rule),其適用於非等間距離散積分,進而個別應用於淹水深度期望值計算,並比較三者間差異。最後,本研究以台南市沿海區域為研究對象,以較高精確度積分方法Simpson’s 3/8-Rule進行該地機率式淹水潛勢圖繪製並加值成機率式淹水危險圖。與三場颱風事件(梅姬颱風,康芮颱風及凡那比颱風)之淹水範圍調查結果作比較,結果顯示屬中高危險的淹水區域與實際淹水範圍有著一致性,說明本研究所提出的機率式淹水圖資,相較單一情境的淹水圖資,更具實用性。接續,加入因颱風引起的暴潮情境,製作另一張具有暴潮情境的淹水危險度期望值,使淹水危險度圖更具使用價值。
Due to climate change, Taiwan has frequently been attacked by typhoons with extremely heavy rainfalls such as Typhoon Morakot in 2009, Typhoon Meranti in 2016 and Typhoon Haitang in 2017. The floods induced by those typhoons caused serious hazards. To prevent and mitigate flood hazard, the Taiwan Water Resources Agency has produced three generations of flood potential maps to debelope flood early warning stystems. The spatial resolution of the newest third map is 40 m while the simulation conditions containing surface overland flow, river and sewer systems and various rainfall and storm surge scenarios are considered in the map.
Each flood potential map was made based on one specified 24-hour rainfall scenario suah as the returm period respectively in 2, 5, 10, 25, 50, 100, 200, 500 years. It is difficult to be applied to practical flood mitigation since the specified scenarios cannot match real rainfall events. Motivated by the drawback, we attempt to produce a probabilistic flood hazard map using an expected value theory in the study. Three integration schemes for unequal intervals regarding trapezoidal rule, Simpson's 1/3-rule and Simpson's 3/8-rule are adopted to calucalate the expected value of flood depth. The comparison among the three schemes shows the Simpson's 3/8-rule is capable of yielding smoother distribution of expected flood depth. The coastal regions of Tainan City located in southern Taiwan is chosen as the study area. The area-averaged expected flood depth of each town in Tainan is caluculated by the Simpson's 3/8-rule. Based on the area-averaged expected flood depths and flood areas of the towns, the Analytic Hierarchy Process (AHP) is introduced to evaluate the flood hazard levels of the towns to finish the probabilistic flood hazard map. Three typhoon events including Typhoon Meiji, Typhoon Kang Rui and Typhoon Vanabe are used to test the reliability of the probabilistic flood hazard map. It can be found that the medium and high hazard areas are consisitent with real flood areas. Furthermore, various storm surge conditions are considered to produce another probabilistic flood hazard map for future flood mitigation and flood early warning.
摘要 I
ABSTRACT II
目次 III
表目錄 IV
圖目錄 V
第壹章 導論 1
1-1 文獻回顧 1
1-1-1 淹水危險圖 1
1-1-2 淹水模擬 4
1-1-3 數值積分 5
1-2 研究動機 6
第貳章 基本理論探討 7
2-1 危險度評估 7
2-1-1 層級分析法 7
2-1-2 危險度分析參考因子 11
2-2 淹水深度期望值 14
2-3-1 等距積分 14
2-3-2 不等距積分 17
2-3-3 期望值 20
第叁章 研究方法 21
3-1 研究區域概述 21
3-2 災害潛勢分析 22
3-2-1 空間資料分析 22
3-2-2 數據分析 24
3-2-3 比較雨型 30
3-2-4 危險度因子權重 34
3-3 研究情境 35
第肆章 結果與討論 36
4-1 淹水面積期望值 36
4-2 驗證案例分析 38
4-3 淹水危險度分析 41
4-4 暴潮分析 43
第伍章 結論與建議 49
5-1 結論 49
5-2 建議 49
參考文獻 50
[1] Alaghmand, S., et al. (2010). "GIS-based River Flood Hazard Mapping in Urban Area (A Case Study in Kayu Ara River Basin, Malaysia)." International Journal of Engineering and Technology 2.
[2] Armenakis, C., et al. (2017). "Flood Risk Assessment in Urban Areas Based on Spatial Analytics and Social Factors." Geosciences 7: 123.
[3] Bandyopadhyay, M. (1972), “Synthetic storm pattern and runoff for Gauhati, India.” Journal of the Hydraulic Division, ASCE, 98: 845-857.
[4] Dilley, M., & Mundial, B. (2005). Natural Disaster Hotspots: A Global Risk Analysis.
[5] Forkuo, E. K. (2011). "Flood Hazard Mapping using Aster Image data with GIS." Int J Geomat Geosci 1.
[6] Gigovic, L., et al. (2017). "Application of GIS-Interval Rough AHP Methodology for Flood Hazard Mapping in Urban Areas." Water 9: 1-26.
[7] Gill, P. and G. Miller (1972). "An Algorithm for the Integration of Unequally Spaced Data." Comput. J. 15: 80-83.
[8] Huff, F.A. (1967), “Time distribution of rainfall in heavy storms.” Water Resources Research, 3(4): 1007-1019.
[9] Keifer, C.J., and H.H. Chu (1957), “Synthetic storm pattern for drainage design. Journal of the Analysis for Northwest Florida, Part I: 24-hour to 10-day Maximum Rainfall Data.” Technical Publication SJ 86-3. St. Johns River Water Management District, Palatka, Florida.
[10] Khan, M. M.-U.-R., et al. (2017). "Numerical Integration Schemes for Unequal Data Spacing." American Journal of Applied Mathematics 5: 48-56.
[11] Kourgialas, N. and G. Karatzas (2011). "Flood management and a GIS modelling method to assess flood-hazard areas-a case study." Hydrological Sciences Journal-Journal Des Sciences Hydrologiques 56: 212-225.
[12] MILNE-THOMSON, L. M. (1933). The calculus of finite differences, Macmillan.
[13] Rahmati, O., et al. (2016). "Assessing the Accuracy of GIS-Based Analytical Hierarchy Process for Watershed Prioritization; Gorganrood River Basin, Iran." Water Resources Management 30: 1131-1150.
[14] Saaty, T.L. (2005)“Analytic Hierarchy Process,” Encyclopedia of Biostatistics (2nd ed.) John Wiley & Sons, Ltd
[15] Sanyal, J. and X. Lu (2006). "GIS-based flood hazard mapping at different administrative scales: A case study in Gangetic West Bengal, India." Singapore Journal of Tropical Geography 27: 207-220.
[16] Stefanidis, S. and D. Stathis (2013). "Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP)." Natural Hazards 68.
[17] Ward, D. and David, K. (2008), Numerical Mathematics and computing, Tompson Brooks/Cole.
[18] 經濟部水利署(2011),"水災危險度、脆弱度與風險圖製作技術手冊",12頁-47頁
[19] 經濟部水利署(2018),"107年水災風險圖資決策支援技術精進研發",22頁-42頁
[20] 經濟部水利署(2017),"台灣地區雨量測站降雨強度-延時Horner公式參數分析"
[21] 內政部國土測繪中心,https://www.nlsc.gov.tw/
[22] NCDR國家災害防救科技中心(2013) "極端降雨事件之淹水模擬分析與損失評估",NCDR 101-T29,25頁
[23] 潘宗毅、張倉榮、賴進松、王藝峰、謝明昌、許銘熙(2012) "洪災之人命傷亡風險分析:以臺南市為例",第58卷第4期農業工程學報,95頁-110頁
[24] 經濟部水利署(2015),"水災潛勢風險圖資更新研發及加值應用",50頁-58頁
[25] 經濟部水利署水利規劃試驗所(2013),"全國淹水潛勢圖資更新及整合先期計畫",58頁-69頁
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top