跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/11 04:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔣小芳
研究生(外文):Jiang,Xiao-Fang
論文名稱:城市街道與雨水下水道淹水模擬研究
論文名稱(外文):Inundation simulation of urban street and storm sewer
指導教授:李光敦李光敦引用關係張 挺
指導教授(外文):Kwan Tun LeeTing Zhang
口試委員:程心恕李光敦张挺王立辉金保明
口試委員(外文):Kwan Tun Lee
口試日期:2020-07-04
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:86
中文關鍵詞:城市淹水街道雨水下水道溢淹位置
外文關鍵詞:Urban inundationStreetsStorm sewerFlooding position
相關次數:
  • 被引用被引用:1
  • 點閱點閱:240
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
城市內澇不僅影響城市道路交通,還會造成居民的生命財產損失。二維淹水模型與一維-二維淹水模型能夠類比城市淹水深度和溢淹範圍,但建模資料需求大且計算效率低,難以應用在大範圍城市洪水模擬中且無法精准掌握街道的幾何特性。本文建立城市一維街道與一維雨水下水道淹水模型,類比街道水流與雨水下水道交換過程,得到溢淹人孔和溢淹街道的位置,以期可滿足建模簡便且計算效率高的需求,對比分析棋盤式雨水下水道淹水模型和街道-雨水下水道淹水模型的差異,將街道-雨水下水道淹水模型應用於類比實際城市,校準與驗證該模型的準確性和可行性,對研究區域的排水系統進行檢核,對易淹區域提出改進方案,驗證改進方案的可行性,本文的主要研究內容和結論如下:
(1)構建理想化棋盤式城市淹水模型,對比分析雨水下水道淹水模型和街道-雨水下水道淹水模型的差異。研究表明,雨水下水道淹水模型能夠類比下水道的徑流過程,但無法模擬人孔溢淹水流在街道與雨水下水道間進行交換的過程及人孔溢流水流的走向,街道-雨水下水道淹水模型可很好的類比街道與下水道間水流進行交換的過程,可明確得到雨水下水道溢淹人孔和溢淹街道的位置。對人孔積水面積、降雨強度、坡度和街道寬度等參數進行研究表明,改變雨水下水道淹水模型人孔的積水面積,人孔溢淹水深有明顯的變化;改變棋盤式模型的降雨強度、坡度和街道寬度,街道-雨水下水道淹水模型溢淹結果產生顯著差異,而雨水下水道淹水模型溢淹人孔位置不發生變化,容易造成溢淹人孔位置的誤判。
(2)建立新北市土城區城市街道-雨水下水道淹水模型,類比降雨事件,校準與驗證該模型的準確性和可行性。結果表明,在校準水位的過程中有3場降雨事件納什效率係數達到0.92以上,平均納什效率係數接近0.90,表明模型在校準過程中對次集水區的劃分以及參數選擇合理;在驗證水位的過程中降雨事件納什效率係數全部達到0.80以上,平均納什效率係數接近0.83,表明城市街道-雨水下水道淹水模型整體擬合良好,能很好地模擬街道與雨水下水道的徑流過程。
(3)運用街道-雨水下水道淹水模型對研究區域的雨水下水道通水能力進行檢核,並對易淹區域提出改進方案。檢核結果得到溢淹人孔位置與歷史易淹區域基本吻合,雨水下水道管段大管接小管共有11處,管段逆坡32處。根據歷史易淹資料並結合研究區域雨水下水道檢核結果,雨水下水道採取兩種不同的改進方案,對比改進前後13個人孔的水位變化情況,在公共設施用地利用透水保水措施,對比改進前後管段的流量曆線變化情況,結果表明採取改進措施後能夠有效改善研究區域的淹水情況。
Urban waterlogging not only affects urban road traffic, but also causes loss of life and property of residents. 2D inundation model and 1D-2D inundation model can simulate urban flooding depth and flooding range. However, due to large demand for modeling data and low computational efficiency, it is difficult to be applied in large-scale urban flood simulation and unable to accurately grasp the geometric characteristics of streets. In this paper, an urban one-dimensional street and a one-dimensional rainwater sewer inundation model is established to simulate the exchange process of street water and rainwater sewer, so as to obtain the locations of flooded manholes and flooded streets, so as to meet the requirements of simple modeling and high computational efficiency. Analysis checker-board rainwater drain flooded model and flooded streets - rainwater drainage, rainwater drain flooded street model was applied to simulate the actual city, the accuracy and feasibility of the model calibration and verification of the study area to check the drainage system, puts forward the improved scheme for easy flooded area, verify the feasibility of the improved scheme, the main research contents and conclusions are as follows:
(1) An ideal checkerboard model of urban flooding was constructed and the differences between the storm sewer inundation model and the street-storm sewer inundation model were compared and analyzed. The research shows that the storm sewer inundation model can simulate the runoff process of the sewer, but it cannot simulate the exchange process of flood water from the manhole between street and storm sewer and the flow trend of the overflow water from the manhole. The street-storm sewer inundation model can well simulate the process of water flow exchange between street and storm sewer, and the location of the flooded manhole and flooded street in the storm sewer can be clearly obtained. Based on the study of the water area, rainfall intensity, slope and street width of the manhole, the results show that the water area of the manhole in the storm sewer inundation model changes obviously. If the rainfall intensity, slope and street width of the chessboard model were changed, the overflow and flooding results of the street-storm sewer inundation model would be significantly different, while the overflow and flooding manhole position of the storm sewer flooding model would not change, which would easily lead to the misjudgment of the overflow and flooding manhole position.
(2) Establish the urban street-storm sewer inundation model in Tucheng District, New Taipei City, simulate rainfall events, and calibrate and verify the accuracy and feasibility of the model. The results showed that the Nash efficiency coefficient of 3 rainfall events reached more than 0.92 and the average Nash efficiency coefficient was close to 0.90 in the process of calibrating water level, indicating that the subcatchment division and parameter selection of the model were reasonable in the calibration process. In the process of verifying water level, the Nash-Sutcliffe efficiency coefficient of rainfall events all reached above 0.80, and the average Nash-Sutcliffe efficiency coefficient was close to 0.83, indicating that the flooding model of urban streets and storm sewers had a good overall fit and could well simulate the runoff process of streets and storm sewers.
(3) The street-storm sewer inundation model was used to check the water capacity of the storm sewer in the study area, and the improvement scheme was proposed for the flood-prone area. The results showed that the location of flooded manholes was basically consistent with the areas prone to flooding in the past. There were 11 places where the big pipes connected with the small pipes in the storm sewer pipe section, and 32 places where the pipe section had a reverse slope. Based on the historical data of flooding vulnerability and combined with the inspection results of storm water sewer in the study area, two different improvement schemes are adopted for storm water sewer. By comparing the water level changes of 13 individual manholes before and after the improvement, the water permeable water conservation measures in public facilities, and the flow history line changes of pipe sections before and after the improvement, the results show that the improved measures can effectively improve the flooding situation in the study area.
摘 要 I
Abstract II
目次 IV
圖次 VI
表次 VIII
第一章 引言 1
1.1 選題背景與研究意義 1
1.2 國內外淹水模型研究現狀 1
1.2.1 一維淹水模型和二維淹水模型 2
1.2.2 一維-二維淹水模型 3
1.2.3 一維-一維淹水模型 5
1.2.4 防澇改進措施 6
1.3 本文主要研究內容 7
第二章 街道與雨水下水道徑流模式 9
2.1 集水區地表徑流過程 9
2.2 雨水下水道徑流過程 11
2.3 街道徑流過程 14
2.4 街道與雨水下水道水流交換 15
2.5 穩定性條件限制 16
第三章 棋盤式城市淹水模型 18
3.1 基本思路的建立 18
3.2 棋盤式模型建立 19
3.2.1 棋盤式模型區域概況 19
3.2.2 街道與雨水下水道概況 19
3.2.3 棋盤式模型參數選擇 21
3.2.4 棋盤式模型設計降雨 21
3.3 棋盤式1D模型與1D/1D模型的對比 22
3.3.1 1D模型與1D/1D模型 22
3.3.2 不同積水面積對1D模型人孔水深的影響 24
3.3.3 不同降雨強度1D模型與1D/1D模型的差異 25
3.3.4 不同坡度1D模型與1D/1D模型的差異 28
3.3.5 不同街道寬度1D模型與1D/1D模型的差異 30
3.4 本章小結 34
第四章 街道-雨水下水道模型應用 36
4.1研究區域概況 36
4.1.1 地理位置 36
4.1.2 氣候條件 37
4.1.3 土地利用類型 37
4.1.4 城市交通道路 38
4.2 模型建立 39
4.2.1 排水分區 39
4.2.2 次集水區的劃分 40
4.2.3 排水系統概化 41
4.2.4 參數選擇 42
4.2.5 雨量資料 44
4.2.6 水位計監測點 44
4.3 模擬結果分析 46
4.3.1 校準降雨事件 46
4.3.2 模型校準結果 46
4.3.3 驗證降雨事件 49
4.3.4 模型驗證結果 50
4.4 本章小結 51
第五章 研究區域排水系統檢核及改進方案 52
5.1 暴雨災害情況 52
5.2 研究區域排水系統檢核 53
5.2.1 設計雨型 53
5.2.2 雨水下水道檢核結果 54
5.3 研究區域易淹區域改進方案及類比結果 56
5.3.1 雨水下水道改進方案 56
5.3.2 雨水下水道改進方案模擬結果 58
5.3.3 透水保水措施 63
5.3.4 透水保水措施模擬結果 65
5.4 本章小結 66
結論與展望 68
結論 68
展望 69
參考文獻 70
[1] 孫阿麗. 基於情景模擬的城市暴雨內澇風險評估[D]. 華東師範大學, 2011
[2] 王祥, 張行南, 張文婷, 張濤. 基於SWMM的城市雨水管網排水能力分析[J]. 三峽大學學報(自然科學版), 2011, 33(1):58.
[3] 葛小平, 許有鵬, 張琪,等. GIS支援下的洪水淹沒範圍模擬[J]. 水科學進展, 2002, 13(4):456-460.
[4] 施蘭霞. 城市內澇災害頻發原因分析[J]. 工業C, 2016(4):00073-00073.
[5] 王偉. 基於GIS和SWMM模型的城市內澇類比研究[D]. 南京資訊工程大學,2017.
[6] 邊易達. 基於HEC-HMS和SWMM的城市雨洪模擬[D]. 山東大學,2014.
[7] 劉卓. 案例5 國外大都市應對城市內澇的智慧[C]. 首都經濟貿易大學、北京市社會科學聯合會. 2011城市國際化論壇——全球化進程中的大都市治理(案例集). 首都經濟貿易大學、北京市社會科學聯合會:北京市社會科學界聯合會, 2011:62-67.
[8] Hammond, M. J., Chen, A. S., Djordjevic, S., Butler, D., & Mark, O. Urban flood impact assessment: A state-of-the-art review[J]. Urban water journal, 2015, 12(1-2):14-29.
[9] 賈賽君. 基於SWMM的城市暴雨內澇模擬研究[D]. 遼寧師範大學,2018.
[10] 孫靜波. 國家防總:2015年已有2043萬人遭受洪澇災害[EB/OL]. http://www.gywb.cn/content/2015-06/28/content_3358425.htm, 2015-06-28.
[11] 中國新聞網. 南方暴雨洪澇災情嚴重:26省1192個縣受災186人死亡[EB/OL].
http://www.mnw.cn/news/china/1252298.html, 2016-07-04.
[12] zhangxue_HN237. 2018年中國洪澇災害受災情況及損失統計分析,洪澇受災面積與年降水總量相關[EB/OL]. https://www.huaon.com/story/435379, 2019-06-06.
[13] 百度. 2018年中國自然災害[EB/OL].
https://baike.baidu.com/item/2018%E5%B9%B4%E4%B8%AD%E5%9B%BD%E8%87%AA%E7%84%B6%E7%81%BE%E5%AE%B3/22479726?fr=aladdin, 2018.
[14] 鄭莉莉. 2019年中國二十二個省份不同程度遭受洪澇災害[EB/OL]. http://www.mnw.cn/news/china /2168274.html, 2019-06-12.
[15] 葉斌, 盛代林, 門小瑜. 城市內澇的成因及其對策 [J]. 水利經濟, 2010, 028(004):62-65.
[16] 朱冬冬, 周念清, 江思瑉. 城市雨洪徑流模型研究概述[J]. 水資源與水工程學報, 2011, 022(003):132-137.
[17] 楊雲龍. 基於ArcGIS的城市暴雨內澇模擬研究[D]. 華中科技大學,2016.
[18] 胡文燕, 李夢雅, 王軍, 黃清雨. 暴雨內澇影響下的城市道路交通擁擠特徵識別[J]. 地理科學進展, 2018, 37(06):772-780.
[19] CHR STOPHER Z. Review of urban storm water models[J]. Environmental Modelling & Software. 2001. 16: 195-231.
[20] 侯倩倩. 基於SWAT與SWMM模型的城市內澇預警技術研究[D].杭州師範大學,2017.
[21] 焦勝, 馬伯, 黎貝. 中國城市內澇成因和防控策略研究進展[J]. 生態經濟, 2019.
[22] Schmitt T, Thomas M, Ettrich N. Analysis and modeling of flooding in urban drainage systems[J]. Journal of Hydrology, 2004, 299(3-4):300-311.
[23] N, Ettrich, K, Steiner, M, Thomas, & R, Rothe. Surface models for coupled modelling of runoff and sewer flow in urban areas[J]. water science & technology a journal of the international association on water pollution research, 2005, 52(5):25.
[24] Giron E. Development of a SWMM-GIS Flood Model for New Orleans Drainage Pumping Station No 4 Basin[J]. 2005.
[25] 趙冬泉, 陳吉甯, 佟慶遠, 王浩正, 曹尚兵, 盛政. 基於GIS構建SWMM城市排水管網模型[J]. 中國給水排水, 2008(07):88-91.
[26] 郭姣. 基於ArcGis的排水管網水力模擬方法和應用[D]. 同濟大學, 2008.
[27] 祝紅英, 顧華奇, 桂新, 朱朝烜. 基於ArcGIS的洪水淹沒分析模擬及視覺化[J]. 測繪通報, 2009(05):66-68.
[28] Sharifan, R. A., Roshan, A., Aflatoni, M., Jahedi, A., & Zolghadr, M.. Uncertainty and sensitivity analysis of SWMM model in computation of manhole water depth and subcatchment peak flood[J]. Procedia-Social and Behavioral Sciences, 2010, 2(6): 7739-7740.
[29] 石贇贇, 萬東輝, 陳黎, 鄭江麗. 基於GIS和SWMM的城市暴雨內澇淹沒模擬分析[J]. 水電能源科學, 2014, 32(06):57-60+12.
[30] 周毅, 餘明輝, 張亦弛, 吳俊忠, 鄧品亞. 基於SWMM的核電基地廠區暴雨積水過程模擬[J]. 給水排水,2015,51(08):107-111.
[31] O"Brien J S, Julien P Y, Fullerton W T. Two-Dimensional Water Flood and Mudflow Simulation[J]. Journal of Hydraulic Engineering, 1993, 119(2):244-261.
[32] S.-S. Lin,H.-K. Chang,S.-H. Hsieh. An integrated approach for inundation simulation in an urban area[J]. Water Resources and Environment (Proceedings of ICGRHWE held al the Three Gorges Dam, China, September 2003). IAHS Publ. 289, 2004, 151-156.
[33] Mignot E, Paquier A. Haider S. Modeling floods in a dense urban area using 2D shallow water equations[J]. Journal of Hydrology, 2006, 327(1-2): 186199.
[34] Lhomme, J., Bouvier, C., Mignot, E., & Paquier, A.. One-dimensional GIS-based model compared with a two-dimensional model in urban floods simulation[J]. Water Science & Technology, 2006, 54(6-7):83.
[35] Tsakiris G. Flood risk assessment: concepts, modelling, applications[J]. Natural Hazards & Earth System Sciences, 2014(5):1361-1369.
[36] Bellos V, Tsakiris G . Comparing Various Methods of Building Representation for 2D Flood Modelling In Built-Up Areas[J]. Water Resources Management, 2015, 29(2):379-397.
[37] Zhang, W., Hu, Y., Wang, J., & Zhang, C.. Research on Urban Waterlogging Disaster Risk Assessment Based on ARCGIS and MIKE FLOOD — A Case Study on Shijiazhuang[J]. Journal of Risk Analysis and Crisis Response, 2015,5(4),226-233.
[38] 羅金山, 燕軍樂, 金佳林. 基於Mike Urban模型的排澇模數覆核計算分析[J]. 陝西水利, 2018, 215(06):56-59.
[39] 周浩瀾, 陳洋波. 城市化地面二維淺水模擬[J]. 水科學進展, 2011(03):115-120.
[40] Bazin, P.-H., Nakagawa, H., Kawaike, K.,Paquier, A., & Mignot, E. Modeling Flow Exchanges between a Street and an Underground Drainage Pipe during Urban Floods[J]. Journal of Hydraulic Engineering, 2014,140(10), 04014051.
[41] Timbadiya P V, Patel P L, Porey P D. A 1D-2D Coupled Hydrodynamic Model for River Flood Prediction in a Coastal Urban Floodplain[J]. Journal of Hydrologic Engineering, 2015, 20(2):05014017.1-05014017.18.
[42] Chen A S, Leandro J, Djordjevic S. Modelling sewer discharge via displacement of manhole covers during flood events using 1D/2D SIPSON/P-DWave dual drainage simulations[J]. Urban Water Journal, 2016, 13(7-8):830-840.
[43] Fan, Y., Ao,T., Yu, H., Huang, G., Li, X. A Coupled 1D-2D Hydrodynamic Model for Urban Flood Inundation. Advances in Meteorology, 2017, 2017:1-12.
[44] 王慶平, 司偉, 陳翔. 一二維耦合模型在半山區洪澇預報中的研究及應用[C]// 探索“智慧水利” 推動科技創新——2017(第五屆)中國水利資訊化技術論壇論文集. 2017.
[45] Noh, S. J., Lee, J. H., Lee, S., Kawaike, K., & Seo, D. J. Hyper-resolution 1D-2D urban flood modelling using LiDAR data and hybrid parallelization[J]. Environmental Modelling & Software, 2018, 103(MAY):131-145.
[46] 耿豔芬, 鄭鑫, 柯興. 基於一維二維耦合模型的衢州城市洪澇演進分析[J]. 東南大學學報:自然科學版, 2019, 49(5):1005-1010.
[47] Li Q , Liang Q , Xia X . A novel 1D-2D coupled model for hydrodynamic simulation of flows in drainage networks[J]. Advances in Water Resources, 2020, 137:103519.
[48] Seyoum, S. D., Vojinovic, Z., Price, R. K., & Weesakul, S.. Coupled 1D and Noninertia 2D Flood Inundation Model for Simulation of Urban Flooding[J]. journal of hydraulic engineering, 2012, 138(1):23-34.
[49] Bisht, D. S., Chatterjee, C., Kalakoti, S., Upadhyay, P., Sahoo, M., & Panda, A.. Modeling urban floods and drainage using SWMM and MIKE URBAN: a case study[J]. Natural Hazards, 2016, 84(2):749-776.
[50] Jingxuan, Z., Qiang, D., Yinghui, D., Aorui, Z., Yingzhe, Z., & Shuliang, Z.. Indirect Damage of Urban Flooding: Investigation of Flood-Induced Traffic Congestion Using Dynamic Modeling[J]. Water, 2018, 10(5):622-.
[51] 羅海婉, 陳文傑, 李志威, 潘健, 高強, 黃國如. 基於耦合水動力模型的廣州市東濠湧流域洪澇模擬[J]. 水資源與水工程學報, 2019, 30(03):46-52+65.
[52] Djordjević, S, Prodanović, D, Maksimović, Č. An approach to simulation of dual drainage[J]. Water Science & Technology, 1999, 39(9):95-103.
[53] Leandro, J., Chen, A. S., Djordjevic, S., & Savic, D. A.. Comparison of 1D/1D and 1D/2D Coupled (Sewer/Surface) Hydraulic Models for Urban Flood Simulation[J]. Journal of Hydraulic Engineering, 2009, 135(6):495-504.
[54] Henonin, J., Russo, B., Roqueta, D.S., Sanchez-Diezma, R., Sto Domingo, N.D., Thomsen, F., and Mark, O.,. Urban flood real-time forecasting and modelling: a state of the art review[J]. Presented at the MIKE by DHI Conference, Copenhagen, Denmark, 2010.
[55] Henonin, J., Russo, B., Mark, O., & Gourbesville, P.. Real-time urban flood forecasting and modelling - a state of the art[J]. Journal of Hydroinformatics, 2013, 15(3):717-736.
[56] Simões N., Ochoa-Rodríguez S., Leitão J.P., Pina R., Sá Marquez A. & Maksimovic´ Cˇ . Urban drainage models for flood forecasting: 1D/1D, 1D/2D and hybrid models. 12th International Conference on Urban Drainage, Porto Alegre, Brazil, 2011.
[57] Leandro, J., Djordjević, S., Chen, A. S., Savić, D. A., & Stanić, M.. Calibration of a 1D/1D urban flood model using 1D/2D model results in the absence of field data[J]. Water Science & Technology, 2011, 64(5):1016.
[58] 路雨, 趙雷, 紀忠華. 基於PCSWMM雙排水系統計算方法在某核設施廠址防洪能力評估分析中的應用 [J]. 核安全, 2016, 015(001):30-37.
[59] 王兆斌, 王彬, 呂梅. 利用雙排水系統理論對城市下穿隧道進行雨水內澇模擬分析[J]. 水利水電技術, 2016, v.47;No.510(04):131-134.
[60] Kourtis I M, Bellos V, Tsihrintzis V A. Comparison of 1D-1D and 1D-2D urban flood models[C]//Proceedings of the 15th International Conference on Environmental Science and Technology (CEST 2017), Rhodes, Greece. 2017, 31.
[61] 邵銀霞, 李巧琳, 李光熾. 城市雨洪排澇計算模型研究[J]. 人民長江, 2017, 048(008):5-9.
[62] Randall, M., Perera, N., Gupta, N., & Ahmad, M.. Development and Calibration of a Dual Drainage Model for the Cooksville Creek Watershed, Canada[J]. Journal of Water Management Modeling, 2017.
[63] Junho Park, Yonggu Yoo, Youngkon Park, Heetaek Yoon, Jonggun Kim, & Youn Shik Park. Analysis of runoff reduction with LID adoption using the SWMM [J]. Journal of Korean Society of Water Quality, 2008, 24(6): 805-815.
[64] 李彥偉, 尤學一, 季民, 王秀朵, 趙樂軍, 潘留明. 基於SWMM模型的雨水管網優化[J]. 中國給水排水, 2010, 26(23):40-43.
[65] Karamouz M, Hosseinpour A, Nazif S. Improvement of urban drainage system performance under climate change impact: Case study [J]. Journal of Hydrologic Engineering, 2011, 16(5): 395-412.
[66] Burszta-Adamiak E, Mrowiec M. Modelling of green roofs' hydrologic performance using EPA's SWMM [J Water Science & Technology, 2013, 68(1): 36-42.
[67] 常曉棟, 徐宗學, 趙剛, 杜龍剛. 基於SWMM模型的城市雨洪類比與LID效果評價——以北京市清河流域為例[J]. 水力發電學報, 2016, 35(11):84-93.
[68] 潘笑文. 基於內澇風險分析的海綿城市雨水管網優化研究[D]. 合肥工業大學, 2017.
[69] 侯慶賀, 董翟, 徐煒, 董建文, 林開泰. 基於淹水潛勢分析的滯洪公園設計與滯洪效益評估——以臺北市大溝溪親水公園為例[J]. 現代城市研究, 2018(10):87-94.
[70] 潘曉. 深圳市下沉式綠地適應性草本植物的選擇與研究[D]. 長江大學, 2018.
[71] 肖國軍, 張瑞峰, 楊高偉. 基於GIS(地理資訊系統)的SWMM模型在城市雨水管網優化改造中的應用研究[J]. 四川建築, 2018, 38(05):237-239.
[72] 王曉婷. 城市雨洪模擬與雨水管網優化研究[D]. 上海師範大學, 2019.
[73] 張士官, 呂謀, 焦春蛟, 宋傑. 基於SWMM模型的雨水管網改造方案優化研究[J]. 水電能源科學, 2020, 38(02):114-117.
[74] ROSSMAN L A. Storm water management model User' s manual Version5. 0 [EB /OL ]. [2009-02-15]. http: //www. epa. gov/edn nmrl/models/swmm/epasmmm5 user. manual.pdf.
[75] JORGE G, LARRY A R, JENNIFER D. Stormwater management model applications manual [R]. USA: United States Environmental Protection Agency, 2009
[76] Jorge Gironás, Larry A.Roesner, Lewis A.Rossman, Jennifer Davis. A new applications manual for the Storm Water Management Model (SWMM) [J]. Environmental Modelling & Software, 2010, 25(6): 813-814.
[77] Henderson, F. M. Open-Channel Flow[M]. Macmillan Publishing Co., New York. 1966.
[78] Roesner, L.A., Aldrich, J.A. and Dickinson, R.E., "Storm Water Management Model, . Version 4, User's Manual: Extran Addendum", EPA/600/3-88/001b (NTIS PB88-236658/AS), Environmental Protection Agency, Athens, GA, 1992.
[79] Chaudhry, M. Hanif.M. Hanif Chaudhry, Fox, Robert W.Mcdonald, Alan T, Chow, Ven Te. Open-channel flow /[J]. 1993.
[80] Wan B C K. Auto-calibntioii of Swmm Runoff Using Sensitivity-based Genetic Algorithms (Storm Water Management Model)[D]. University of Guelph (Canada),2001.
[81] 上海市政工程設計研究院, 給水排水設計手冊第1冊, 常用資料-第2版[M]. 中國建築工業出版社, 2004.
[82] 中華人民共和國住房和城鄉建設部. GB 50014-2006室外排水設計規範(2014年版)[S]. 中國計劃出版社, 2014.
[83] 楊幸子. 暴雨洪水對城市路網影響的模擬研究[D]. 山東大學, 2019.
[84] 李光敦. 水文學[M]. 新北市: 五南圖書出版公司, 2002.
[85] 李光敦, 洪夢秋, 黃雅琪, 陳煥元, 林和中, 詹翊平, 陳乃光, 曾韋諶, 徐鬱涵, 遊謦竹, 廖聿勳, 曾國峰, 曾韋緐. 雨水下水道溢淹示警機制第一階段建置計畫[R]. 國立臺灣海洋大學地理資訊系統研究中心報告, 內政部營建署委託, 2016.
[86] 陳利群. SWMM在城鎮排水規劃設計中適用性研究[J]. 給水排水,2010(05).
[87] 叢翔宇, 倪廣恒, 惠士博, 田富強, 張彤. 基於SWMM的北京市典型城區暴雨洪水模擬分析[J]. 水利水電技術, 2006(04).
[88] 周毅, 餘明輝, 陳永祥. SWMM子匯水區域寬度參數的估算方法介紹[J]. 中國給水排水, 2014,61-64.
[89] 孟曉雨, 臧建. 基於SWMM的城市下墊面與排水管網對雨洪的影響[J]. 江西建材, 2017, (19):41-42.
[90] 王蔭茵, 陶濤, 呂永鵬. 城市雨水管網模型的水文參數靈敏度分析[J]. 城市道橋與防洪, 2016,(2): 159-162.
[91] 李榕. 關於影響曼寧粗糙係數n值的水力因素探討[J]. 水利學報, 1989, (12): 62-66.
[92] Chow, V.T., Open channel hydraulics[M], Mc-Graw Hill, New York. 1959.
[93] Boughton W C, Boughton W C. A review of the USDA SCS curve number method[J]. Soil Research,1989, 27(3): 511-523.
[94] 鄭皆達, R.R. Su, 林維侃,等. 應用GIS及HEC-1水文模式探討臺灣中部上游集水區降雨徑流之關係[J]. 1994.
[95] 劉家福, 蔣衛國, 占文鳳, 周紀. SCS模型及其研究進展[J]. 水土保持研究, 2010, 17(02):120-124.
[96] 巨廷工程顧問股份有限公司. 新北市土城區雨水下水道綜合檢討規劃報告書[R]. 2014.
[97] Lee, Kyung Su, Woo Sung, Byeon, Seong Joon, & Hwang. Numerical Simulation for Reducing the Flood Damage of Green Park Using MIKE URBAN[J]. International Journal of Control & Automation, 2015, 8(1): 37-54.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top