王士銘。(2018)。AITC 對李斯特菌抗菌機制及其在台灣鯛魚片上殺菌作用之探討。國立臺灣海洋大學食品科學系碩士學位論文。基隆。行政院衛生福利部食品藥物管理署。(2001)。食品微生物之檢驗方法-大腸桿菌之檢驗。台北。
行政院衛生福利部食品藥物管理署。(2006)。食品微生物之檢驗方法-沙門氏桿菌之檢驗。台北。
行政院衛生福利部食品藥物管理署。(2007)。生食用食品類衛生標準。台北。
行政院衛生福利部食品藥物管理署。(2018)。歷年食品中毒資料。台北。
行政院衛生福利部食品藥物管理署。(2012)。食品微生物之檢驗方法-生菌數之檢驗。台北。
行政院衛生福利部食品藥物管理署。(2012)。食品微生物之檢驗方法-大腸桿菌群之檢驗。台北。
行政院衛生福利部食品藥物管理署。(2015)。降低截切生鮮蔬果微生物危害之作業指引。台北。
行政院衛生福利部食品藥物管理署。(2017)。防治食品中毒專區。台北。取自:https://www.fda.gov.tw/TC/siteContent.aspx?sid=1942
行政院衛生福利部食品藥物管理署。(2017)。食品用洗潔劑衛生標準。台北。
行政院環境保護署。(2005)。環境衛生用殺菌劑藥效試驗測定法。環署檢字第0940097070 號公告。桃園。
何中平,楊澄慧,張惠娟,林冠宇,林蘭砡,鄭維智,黃乃芸。(2017)。截切生鮮蔬果安全製造管制研究。食品藥物研究年報,8,249-256。
盛一平:常見食物中毒的防治。(1991)。渡假出版社有限公司。臺北。
國家環境毒物研究中心。(2011)。環境毒物知多少-氯仿。苗栗。取自:http://nehrc.nhri.org.tw/foodsafety/toxfaq_detail.php?id=14
楊家瑜。(2008)。高級淨水程序消毒副產物之生成研究。國立中山大學環境工程研究所碩士論文。高雄。趙祐平。(2017)。以蛋白質體學探討微酸性和微鹼性電解水對大腸桿菌之殺菌機制。國立臺灣海洋大學食品科學系碩士學位論文。基隆。羅瑩珊。(2015)。微鹼性電解水對李斯特菌與大腸桿菌之殺菌能力探討。國立臺灣海洋大學食品科學系碩士學位論文。基隆。Aday, M. S. (2016). Application of electrolyzed water for improving postharvest quality of mushroom. LWT - Food Science and Technology, 68, 44-51.
Agency for Toxic Substances and Disease Registry (ATSDR). (2015). Toxic Substances Portal - Chloroform. Atlanta, Georgia. Retrieved from
https://www.atsdr.cdc.gov/ToxProfiles/tp.asp?id=53&tid=16
Allende, A., Selma, M. V., Lopez-Galvez, F., Villaescusa, R., and Gil, M. I. (2008). Impact of wash water quality on sensory and microbial quality, including Escherichia coli cross-contamination, of fresh-cut escarole. Journal of Food Protection, 71, 2514-2518.
Al-Holy, M. A., and Rasco, B. A. (2015). The bactericidal activity of acidic electrolyzed oxidizing water against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on raw fish, chicken and beef surfaces. Food Control, 54, 317-321.
Al-Qadiri, H. M., Smith, S., Sielaff, A. C., Govindan, B. N., Ziyaina, M., Al-Alami, N., and Rasco, B. (2019). Bactericidal activity of neutral electrolyzed water against Bacillus cereus and Clostridium perfringens in cell suspensions and artificially inoculated onto the surface of selected fresh produce and polypropylene cutting boards. Food Control, 96, 212-218.
Anastasia, D. N., Spyros, K. G. and Themistokles, D. L. (2002). Formation of organic by-products during chlorination of natural waters. Journal of Environmental Monitoring, 4, 910-916.
Artés, F., and Allende, A. (2005). Processing lines and alternative preservation techniques to prolong the shelf-life of minimally fresh processed leafy vegetables. European Journal of Horticultural Science, 70, 231-245.
Brychcy, E., Malik, M., Drozdzewski, P., Natalia, U. F., and Jarmoluk1, A. (2015). Low-concentrated acidic electrolysed water treatment of pork: inactivation of surface microbiota and changes in product quality. International Journal of Food Science and Technology, 50, 2340-2350.
Castro-Ibanez, I., Gil, M. I., Allende, A. (2017). Ready-to-eat vegetables: Current problems and potential solutions to reduce microbial risk in the production chain. Food Science and Technology, 85, 284-292.
Chen, J., Xu, B., Deng, S., and Huang, Y. (2016). Effect of combined pretreatment with slightly acidic electrolyzed water and botanic biopreservative on quality and shelf life of Bombay duck (Harpadon nehereus). Journal of Food Quality, 39, 116-125.
Chen, X., and Hung, Y. C. (2017). Effects of organic load, sanitizer pH and initial chlorine concentration of chlorine-based sanitizers on chlorine demand of fresh produce wash waters. Food Control, 77, 96-101.
Coroneo, V., Carraro, V., Marras, B., Marrucci, A., Succa, S., Meloni, B., Pinna, A., Angioni, A., Sanna, A., and Schintu, M. (2017). Presence of Trihalomethanes in ready-to-eat vegetables disinfected with chlorine. Food Additives & Contaminants: Part A, 34(12), 2111-2117.
Cui, X., Shang, Y., Shi, Z., Xin, H., and Cao, W. (2009). Physicochemical properties and bactericidal efficiency of neutral and acidic electrolyzed water under different storage conditions. Journal of Food Engineering, 91, 582-586.
Deborde, M. and Gunten, V. U. (2008). Reaction of chlorine with inorganic and organic compounds during water treatment-kinetics and mechanisms: A critical review. Water Research, 42, 13-51.
Deza, M. A., Araujo, M., and Garrido, M. J. (2003). Inactivation of Escherichia coli O157:H7, Salmonella enteritidis and Listeria monocytogenes on the surface of tomatoes by neutral electrolyzed water. Letters in Applied Microbiology, 37(6), 482-487.
EFSA Panel on Biological Hazards (BIOHAZ). (2013). Scientific opinion on the risk posed by pathogens in food of non-animal origin. Part 1 (outbreak data analysis and risk ranking of food/pathogen combinations). EFSA Journal, 11, 3025-3163.
Feliciano, L., Lee, J., and Pascall, M. A. (2012). Transmission electron microscopic analysis showing structural changes to bacterial cells treated with electrolyzed water and an acidic sanitizer. Journal of Food Science, 77, 182-187.
FAO/WHO Food and Agriculture Organization of the United Nations/World Health Organization. (2008). Microbiological hazards in fresh leafy vegetables and herbs. Meeting report. Microbial Risk Assessment Series, 14, 151.
Food and Drug Administration. (2008). Guidance for industry: guide to minimize microbial food safety hazards of fresh-cut fruits and vegetables.
Retrieved from https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-guide-minimize-microbial-food-safety-hazards-fresh-cut-fruits-and-vegetables
Gil, M. I., Selma, M. V., Lopez-Galvez, F., and Allende, A. (2009). Fresh-cut product sanitation and wash water disinfection: problems and solutions. International Journal of Food Microbiology, 134, 37-45.
Gil, M. I., Gómez-López, V. M., Hung, Y. C., and Allende, A. (2015). Potential of electrolyzed water as an alternative disinfectant agent in the fresh-cut industry. Food and Bioprocess Technology, 8, 1336-1348.
Gómez-López, V. M., Marín, A.., Medina-Martínez, M. S., Gil, M. I., and Allende, A. (2013). Generation of trihalomethanes with chlorine-based sanitizers and impact on microbial, nutritional and sensory quality of baby spinach. Postharvest Biology and Technology, 85, 210-217.
Han, Y. T., Song, L., An, Q. S., and Pan, C. P. (2017). Removal of six pesticide residues in cowpea with alkaline electrolyzed water. Journal of the Science of Food and Agriculture, 97, 2333-2338.
Han, D., Hung, Y. C., and Wang, L. (2018). Evaluation of the antimicrobial efficacy of neutral electrolyzed water on pork products and the formation of viable but nonculturable (VBNC) pathogens. Food Microbiology, 73, 227-236.
Hao, J., Qiu, S., Li, H., Chen, T., Liu, H., and Li, L. (2012). Roles of hydroxyl radicals in electrolyzed oxidizing water (EOW) for the inactivation of Escherichia coli. International Journal of Food Microbiology, 155, 99-104.
Hao, X., Shen, Z., Wang, J., Zhang, Q., Li, B., Wang, C., and Cao, W. (2013). In vitro inactivation of porcine reproductive and respiratory syndrome virus and pseudorabies virus by slightly acidic electrolyzed water. The Veterinary Journal, 197, 297-301.
Hao, J., Li, H., Wan, Y., and Liu, H. (2015). Effect of slightly acidic electrolyzed water (SAEW) treatment on the microbial reduction and storage quality of fresh-cut Cilantro. Journal of Food Processing and Preservation, 39(6), 559-566.
Hao, J., Wu, T., Li, H., Wang, W., and Liu, H. (2016). Dual effects of slightly acidic electrolyzed water (SAEW) treatment on the accumulation of γ-aminobutyric acid (GABA) and rutin in germinated buckwheat. Food Chemistry, 201, 87-93.
Hung, Y. C., Waters, B. W., Yemmireddy, V. K., and Huang, C. H. (2017). pH effect on the formation of THM and HAA disinfection byproducts and potential control strategies for food processing. Journal of Integrative Agriculture, 16, 2914-2923.
Huang, Y. R., Hung, Y. C., Hsu, S. Y., Huang, Y. W., and Hwang, D. F. (2008). Application of electrolyzed water in the food industry. Food Control, 19, 329-345.
Issa-Zacharia, A., Kamitani, Y., Miwa, N., Muhimbula, H., and Iwasaki, K. (2011). Application of slightly acidic electrolyzed water as a potential non-thermal food sanitizer for decontamination of fresh ready-to-eat vegetablesand sprouts. Food Control, 22(3-4), 601-607.
International Agency for Research on Cancer (IARC). Preamble to the IARC Monographs. Lyon, France, IARC, 2006.
Jung, Y., Jang, H., Guo, M., Gao, J., and Matthews, K. R. (2017). Sanitizer efficacy in preventing cross-contamination of heads of lettuce during retail crisping. Food Microbiology, 64, 179-185.
Kawashima, L. M., and Valente Soares, L. M. (2003). Mineral profile of raw and cooked leafy vegetables consumed in southern brazil. Journal of Food Composition and Analysis, 16(5), 605-611.
Kim, C., Hung, Y. C., and Brackett, R. E. (2000). Roles of oxidation–reduction potential in electrolyzed oxidizing and chemically modified water for the inactivation of food-related pathogens. Journal of Food Protection, 63, 19-24.
Koide, S., Takeda, J., Shi, J., Shono, H., and Atungulu, G. G. (2009). Disinfection efficacy of slightly acidic electrolyzed water on fresh cut cabbage. Food Control, 20(3), 294-297.
Lee, N. Y., Kim, N. H., Jang, I. S., Jang, S. H., Lee, S. H., Hwang, I. G., and Rhee, M. S. (2014). Decontamination efficacy of neutral electrolyzed water to eliminate indigenous flora on a large-scale of cabbage and carrot both in the laboratory and on a real processing line. Food Research International, 64, 234-240.
Lee, W. N., Huang, C. H., and Zhu, G. (2018). Analysis of 40 conventional and emerging disinfection by-products in fresh-cut produce wash water by modified EPA methods. Food Chemistry, 256, 319-326.
Liao, L. B., Chen, W. M., and Xiao, X. M. (2007). The generation and inactivation mechanism of oxidation-reduction potential of electrolyzed oxidizing water. Journal of Food Engineering, 78, 1326-1332.
Mansur, A. R., Tango, C. N., Kim, G. H., and Oh, D. H. (2015). Combined effects of slightly acidic electrolyzed water and fumaric acid on the reduction of foodborne pathogens and shelf life extension of fresh pork. Food Control, 47, 277-284.
Martínez-Hernández, G. B., Navarro-Rico, J., Gómez, P. A., Otón, M., Artés, F., and Artés-Hernández, F. (2015). Combined sustainable sanitising treatments to reduce Escherichia coli and Salmonella Enteritidis growth on fresh-cut kailan-hybrid broccoli. Food Control, 47, 312-317.
Nagy, M. and Grancai, D. (1996). Colorimetric determination of flavanones in propolis. Pharmazie, 51(2), 100-101.
Neal, J. A., Marquez-Gonzalez, M., Cabrera-Diaz, E., Lucia, L. M., O'Bryan, C. A., Crandall, P. G., Ricke, S. C., and Castillo, A. (2012). Comparison of multiple chemical sanitizers for reducing Salmonella and Escherichia coli O157:H7 on spinach (Spinacia oleracea) leaves. Food Research International, 45, 1123-1128.
Ni, L., Zheng, W., Zhang, Q., Cao, W., and Li, B. (2016). Application of slightly acidic electrolyzed water for decontamination of stainless steel surfaces in animal transport vehicles. Preventive Veterinary Medicine, 133, 42-51.
Nikolaou A. D., Kostopoulou M. N. and Lekkas T. D. (1999). Organic by-products of drinking water chlorination: a review. Global Nest: the International Journal, 1(3), 143-156.
Oyaizu, M. (1986). Studies on products of browning reactions. The Japanese Journal of Nutrition and Dietetics, 44(6), 307-315.
Park, J. N., Ali-Nehari, A., Woo, H.C., and Chun, B. S. (2012). Thermal stabilities of polyphenols and fatty acids in Laminaria japonica hydrolysates produced using subcritical water. Korean Journal of Chemical Engineering, 29(11), 1604-1609.
Puligundla, P., Kim, J. W., and Mok, C. (2018). Broccoli sprout washing with electrolyzed water: Effects on microbiological and physicochemical characteristics. LWT-Food Science and Technology, 92, 600-606.
Qadri, O. S., Yousuf, B., and Srivastava, A. K. 2015. Fresh-cut fruits and vegetables: Critical factors influencing microbiology and novel approaches to prevent microbial risks—A review. Cogent Food and Agriculture, 1, 1-11.
Qi, H., Huang, Q. G., and Hung, Y. C. (2018). Effectiveness of electrolyzed oxidizing water treatment in removing pesticide residues and its effect on produce quality. Food Chemistry, 239, 561-568.
Rankin, J. D., and Taylor, R. J. (1966). The estimation of doses of Salmonella typhimurium suitable for the experimental production of disease in calves. Veterinary Record, 78, 7-706.
Riondet, C., Cachon, R., Wache, Y., Alcaraz, G., and Divies, C. (2000). Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli. Journal of Bacteriology, 182, 620-626.
Rolfe, M. D., Rice, C. J., Lucchini, S., Pin, C., Thompson, A., Cameron, A. D. S., Alston, M., Stringer, M. F., Betts, R. P. Baranyi, J., Peck, M. W., and Hinton, J. C. D. (2011). Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. Journal of Bacteriology, 194(3), 686-701.
Shimada, K., Fujikawa, K., Yahara, K., and Nakamura, T. (1992). Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry, 40(6), 945-948.
Shiroodi, S. G., Ovissipour, M., Ross, C. F., and Rasco, C. F. (2016). Efficacy of electrolyzed oxidizing water as a pretreatment method for reducing Listeria monocytogenes contamination in cold-smoked Atlantic salmon (Salmo salar). Food Control, 60, 401-407.
Tamaki, S., Bui, V. N., Ngo, L. H., Ogawa, H., and Imai, K. (2014). Virucidal effect of acidic electrolyzed water and neutral electrolyzed water on avian influenza viruses. Archives of Virology, 159, 405-412.
Tantratian, S., and Kaephen, K. (2020). Shelf-life of shucked oyster in epigallocatechin-3-gallate with slightly acidic electrolyzed water washing under refrigeration temperature. LWT- Food Science and Technology,118, 108733.
Tang, W., Zeng, X., Zhao, Y., Ye, G., Gui, W., and Ni, Y. (2011). Disinfection effect and its mechanism of electrolyzed oxidizing water on spores of Bacillus subtilis var. niger. Food Science and Biotechnology, 20, 889–895.
Tauxe, R. V., Doyle, M. P., Kuchenmüller, T., Schlundt, J., and Stein, C. E. (2010). Evolving public health approaches to the global challenge of foodborne infections. International Journal of Food Microbiology, 139, S16-S28.
Veasey, S., and Muriana, P. (2016). Evaluation of electrolytically-generated hypochlorous acid (“electrolyzed water”) for sanitation of meat and meat-contact surfaces. Foods, 5(4), 42.
Villanueva, C. M., Cantor, K.P., Grimalt, J. O., Malats, N., Silverman, D., Tardon, A., Garcia-Closas, R., Serra, C., Carrato, A., Castano-Vinals, G., Marcos, R., Rothman, N., Real, F. X., Dosemici, M., and Kogevinas, M. (2006). Bladder cancer and exposure to water disinfection by-products through ingestion, bathing, showering, and swimming in pools. American Journal of Epidemiology. 165, 148-156.
Waters, B., and Hung, Y. C. (2014). The effect of organic loads on stability of various chlorine-based sanitizers. International Journal of Food Science and Technology, 49, 867-875.
Wray, C., and Sojka, W. J. (1978). Experimental Salmonella typhimurium infection in calves. Research in Veterinary Science, 25, 43-139.
Zeng, X., Tang, W., Ye, G., Ouyang, T., Tian, L., Ni, Y., and Li, P. (2010). Studies on disinfection mechanism of electrolyzed oxidizing water on E. coli and Staphylococcus aureus. Journal of Food Science, 75, 253-260.
Zhao, T., Doyle, M. P., and Zhao, P. (2001). Chlorine inactivation of Escherichia coli O157:H7 in water. Journal of Food Protection, 64, 1607-1609.
Yang, H., Feirtag, J., and Diez-Gonzalez, F. (2013). Sanitizing effectiveness of commercial “active water” technologies on Escherichia coli O157:H7, Salmonella enterica and Listeria monocytogenes. Food Control, 33, 232-238.