(3.238.186.43) 您好!臺灣時間:2021/02/28 21:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李紘霈
研究生(外文):Lee, Hung-Pei
論文名稱:以微酸性和微鹼性電解水對 Salmonella enterica 汙染之高麗菜絲其消毒效果研究
論文名稱(外文):Studies on Disinfection Effect of Slightly Acidic and Basic Electrolyzed Water (SAEW/SBEW) on Shredded Cabbages Contaminated with Salmonella enterica
指導教授:陳泰源陳泰源引用關係蕭心怡蕭心怡引用關係
指導教授(外文):Chen, Tai-YuanHsiao, Hsin-I
口試委員:黃登福蕭泉源黃書政黃翠琴
口試委員(外文):Hwang, Deng-FwuShiau, Chyuan-YuanHuang, Shu-ZhengHuang, Tsui-Chin
口試日期:2020-01-13
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品安全與風險管理研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:中文
論文頁數:86
中文關鍵詞:截切蔬菜電解水腸炎沙門氏菌消毒副產物三氯甲烷
外文關鍵詞:Fresh-cut vegetablesElectrolyzed waterSalmonella entericaDisinfection by-productsChloroform
相關次數:
  • 被引用被引用:1
  • 點閱點閱:55
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討利用微酸性和微鹼性電解水清洗經過 Salmonella enterica 汙染的高麗菜絲後,是否達到消毒效果,而其消毒副產物三氯甲烷的殘留量是否導致人體的健康風險,以確認利用電解水清洗高麗菜絲為可行處理方式。結果發現使用有效氯濃度 100 ppm 之微酸性電解水處理 5 分鐘後,S. enterica 減少 1.41 log CFU/g (高麗菜絲上初始菌數為 4.78 log CFU/g),而使用相同濃度之微鹼性電解水時,S. enterica 無法存活(LOD = 2.0 log CFU/g),且經過清洗之高麗菜絲有效餘氯殘留皆小於 1 ppm。經過 4℃ 下儲藏七天後,高麗菜絲之水活性無明顯變化,總生菌數介於 4.52-4.76 log CFU/g,比自來水處理之組別延長 4 天,而大腸桿菌及大腸桿菌群皆呈現陰性,符合我國對截切蔬菜衛生品質之要求。使用 GC-MS 分析製程用水中與高麗菜絲上三氯甲烷之殘留量,結果發現使用有效氯濃度 100 或 200 ppm 之微酸性和微鹼性電解水處理後,高麗菜絲上皆未檢測出三氯甲烷 (LOD = 0.002 ppm),但是製程排放廢水中三氯甲烷殘留量超過我國飲用水水質標準 (三鹵甲烷之生成量小於 0.08 mg/L)。因此,使用有效氯濃度 100 ppm 以上之電解水清潔消毒 S. enterica 汙染之高麗菜絲時,製程排放廢水中會含有三氯甲烷 (濃度超過 0.26 ppm)。高麗菜絲經電解水清潔再經過飲用水漂洗的步驟後,可達到有效殺菌且餘氯殘留量和消毒副產物三氯甲烷殘留量符合我國法規規定。
Slightly acidic and slightly basic electrolyzed water used to clean shredded cabbages (Brassica oleracea var. capitate) contaminated with Salmonella enterica (ATCC 14028) was investigated. While achieving the bactericidal effect, the residues of disinfection by-products as chloroform might threaten human health. S. enterica reduced 1.41 log CFU/g (shredded cabbages contaminated with 4.78 log CFU/g) after SAEW treatment for 5 minutes with the available chlorine concentration of 100 ppm treatment for 5 minutes. The treatment of SBEW 100 ppm resulted no survive of S. enterica (LOD = 2.0 log CFU/g) and the residual chlorine on shredded cabbages was less than 1 ppm. After seven days of storage at 4℃, the water activity of shredded cabbages did not show significant change and the total plate count of bacteria was between 4.52-4.76 log CFU/g, which was 4 days longer compared to the tap water treatment group. Both coliform and Escherichia coli were negative that conformed with the hygienic quality of fresh-cut vegetables in Taiwan requirements. GC-MS was used to analyze the residual amount of chloroform in process water and sanitized shredded cabbages. After 100-200 ppm SAEW or SBEW treatments, the residual chloroform in process water exceeded 0.08 mg/L, which was the residue limit of total trihalomethanes for drinking water in Taiwan. No chloroform was detected on shredded cabbages (LOD = 0.002 ppm). Therefore, use more than 100 ppm electrolyzed water to wash shredded cabbages contaminated with S. enterica, the process water will contain excessive chloroform (more than 0.26 ppm) and its waste water may cause environmental pollution. In conclusion, electrolyzed water washed shredded cabbages followed by rinsing step, the residues of chlorine and chloroform were in compliance with regulations.
壹、 前言 1
貳、 文獻回顧 2
一、 食品病原菌 2
(一) 食品中毒之簡介 2
(二) 食品中毒之預防 2
(三) 沙門氏桿菌 (Salmonella spp.) 3
1. 生理特性 3
2. 分布情形和汙染途徑 3
3. 致病因子 4
4. 潛伏期和感染症狀 4
5. 治療與預防 4
二、 截切蔬菜 5
(一) 定義 5
(二) 減少微生物汙染的方法 5
1. 管制加工過程 6
2. 添加食品用洗潔劑 6
3. 衛生指標 7
三、 微酸性和微鹼性電解水 7
(一) 生成原理 7
(二) 生成特性 8
(三) 殺菌機制 8
(四) 影響因子 8
(五) 食品中的應用 9
1. 食品加工設備 9
2. 水產品 9
3. 禽畜產品 10
4. 蔬果清洗 11
5. 醫療 11
四、 消毒副產物 12
(一) 消毒副產物之簡介 12
(二) 加氯消毒之優點和缺點 12
1. 加氯消毒之優點 12
2. 加氯消毒之缺點 13
(三) 含氯消毒副產物 13
1. 影響消毒副產物之生成因子 13
A. 前驅物質 13
B. pH 值 13
C. 加氯量 14
D. 反應時間 14
E. 溫度 14
2. 氯系消毒劑易生成之含氯消毒副產物 14
參、 研究目的 17
肆、 實驗架構 18
一、 探討微酸性和微鹼性電解水對 Salmonella enterica 之殺菌能力 18
二、 探討微酸性和微鹼性電解水對高麗菜絲品質之影響 19
三、 探討微酸性和微鹼性電解水對高麗菜絲上 Salmonella enterica 之殺菌能力,功能性成份及三氯甲烷之殘留量 20
伍、 材料與方法 21
一、 實驗材料 21
(一) 實驗樣品 21
(二) 實驗菌株 21
(三) 菌株培養藥品 21
(四) 試樣溶液之製備 21
(五) 分析藥品來源 21
二、 儀器設備 23
三、 實驗方法 23
(一) 高麗菜絲製備 24
(二) 菌株保存 24
(三) 菌株活化與培養 24
(四) 最低抑菌濃度試驗 24
(五) 電解水物理性質之測定 24
(六) 電解水含氯化合物之測定 24
(七) 生長曲線測定 24
(八) 試樣溶液殺菌能力之測定 25
(九) 儲藏性試驗 25
(十) 水活性之測定 25
(十一) 生菌數之檢驗 25
(十二) 大腸桿菌群之檢驗 26
(十三) 大腸桿菌之檢驗 26
(十四) 感官品評 27
(十五) 沙門氏桿菌之檢驗 27
(十六) 高麗菜接種 Salmonella enterica 之殺菌試驗 27
1. 樣品前處理 27
2. 接種 Salmonella enterica 27
3. 微酸性和微鹼性電解水之殺菌效果 27
(十七) 總酚類及總黃酮化合物含量之測定 28
1. 樣品前處理 28
2. 總酚類化合物含量之測定 28
3. 總類黃酮化合物含量之測定 28
(十八) DPPH 自由基清除能力之測定 28
(十九) 還原能力之測定 29
(二十) 外觀顏色變化之測定 29
(二十一) 三氯甲烷之分析 29
1. 樣品前處理: 29
2. 頂空 (Headspace, HS) 萃取: 30
3. 氣相層析質譜儀 (Gas chromatography-mass spectrometry, GC-MS) 分析條件: 30
4. 標準曲線之建立: 30
四、 統計分析 30
陸、 結果與討論 31
一、 微酸性和微鹼性電解水對 Salmonella enterica 之殺菌能力 31
(一) Salmonella enterica 之生長曲線 31
(二) 微酸性和微鹼性電解水之物理特性 31
(三) 微酸性和微鹼性電解水含氯化合物之變化 32
(四) 微酸性和微鹼性電解水對 Salmonella enterica 之殺菌效果 32
1. 最低抑菌濃度之測試 32
2. 不同 ACC 下微酸性和微鹼性電解水對 Salmonella enterica 之殺菌效果 33
二、 微酸性和微鹼性電解水處理高麗菜絲於儲藏期間品質之影響 33
(一) 高麗菜絲儲藏期間水活性之變化 33
(二) 高麗菜絲儲藏期間總生菌數之變化 34
(三) 高麗菜絲儲藏期間大腸桿菌群與大腸桿菌含量之變化 35
(四) 高麗菜絲清洗後之感官品評 36
三、 微酸性和微鹼性電解水對高麗菜絲上 Salmonella enterica 之殺菌效果及其功能性成分之影響 37
(一) 微酸性和微鹼性電解水清洗高麗菜絲前後物理特性之變化與餘氯之殘留量 37
(二) 經 Salmonella enterica 汙染之高麗菜絲以微酸性和微鹼性電解水清洗後之存活量 38
1. 以相同 ACC 之微酸性和微鹼性電解水分別處理 5, 10 及 30 分鐘 38
2. 以 ACC 50, 100 及 200 ppm 之微酸性和微鹼性電解水處理 5 分鐘 39
(三) 經 Salmonella enterica 汙染之高麗菜絲以微酸性和微鹼性電解水清洗後功能性成分含量之變化 40
1. DPPH 自由基清除能力 40
2. 總酚類化合物含量 41
3. 總類黃酮含量 41
4. 還原力測定 42
(四) 經 Salmonella enterica 汙染之高麗菜絲以微酸性和微鹼性電解水清洗後顏色之變化 42
(五) 以微酸性和微鹼性電解水清洗經 Salmonella enterica 汙染之製程用水中與高麗菜絲上三氯甲烷之殘留量 43
1. 製程用水中三氯甲烷之殘留量 43
2. 高麗菜絲三氯甲烷之殘留量 44
柒、 綜合討論 45
捌、 結論 46
玖、 參考文獻 47
王士銘。(2018)。AITC 對李斯特菌抗菌機制及其在台灣鯛魚片上殺菌作用之探討。國立臺灣海洋大學食品科學系碩士學位論文。基隆。
行政院衛生福利部食品藥物管理署。(2001)。食品微生物之檢驗方法-大腸桿菌之檢驗。台北。
行政院衛生福利部食品藥物管理署。(2006)。食品微生物之檢驗方法-沙門氏桿菌之檢驗。台北。
行政院衛生福利部食品藥物管理署。(2007)。生食用食品類衛生標準。台北。
行政院衛生福利部食品藥物管理署。(2018)。歷年食品中毒資料。台北。
行政院衛生福利部食品藥物管理署。(2012)。食品微生物之檢驗方法-生菌數之檢驗。台北。
行政院衛生福利部食品藥物管理署。(2012)。食品微生物之檢驗方法-大腸桿菌群之檢驗。台北。
行政院衛生福利部食品藥物管理署。(2015)。降低截切生鮮蔬果微生物危害之作業指引。台北。
行政院衛生福利部食品藥物管理署。(2017)。防治食品中毒專區。台北。取自:https://www.fda.gov.tw/TC/siteContent.aspx?sid=1942
行政院衛生福利部食品藥物管理署。(2017)。食品用洗潔劑衛生標準。台北。
行政院環境保護署。(2005)。環境衛生用殺菌劑藥效試驗測定法。環署檢字第0940097070 號公告。桃園。
何中平,楊澄慧,張惠娟,林冠宇,林蘭砡,鄭維智,黃乃芸。(2017)。截切生鮮蔬果安全製造管制研究。食品藥物研究年報,8,249-256。
盛一平:常見食物中毒的防治。(1991)。渡假出版社有限公司。臺北。
國家環境毒物研究中心。(2011)。環境毒物知多少-氯仿。苗栗。取自:http://nehrc.nhri.org.tw/foodsafety/toxfaq_detail.php?id=14
楊家瑜。(2008)。高級淨水程序消毒副產物之生成研究。國立中山大學環境工程研究所碩士論文。高雄。
趙祐平。(2017)。以蛋白質體學探討微酸性和微鹼性電解水對大腸桿菌之殺菌機制。國立臺灣海洋大學食品科學系碩士學位論文。基隆。
羅瑩珊。(2015)。微鹼性電解水對李斯特菌與大腸桿菌之殺菌能力探討。國立臺灣海洋大學食品科學系碩士學位論文。基隆。
Aday, M. S. (2016). Application of electrolyzed water for improving postharvest quality of mushroom. LWT - Food Science and Technology, 68, 44-51.
Agency for Toxic Substances and Disease Registry (ATSDR). (2015). Toxic Substances Portal - Chloroform. Atlanta, Georgia. Retrieved from
https://www.atsdr.cdc.gov/ToxProfiles/tp.asp?id=53&tid=16
Allende, A., Selma, M. V., Lopez-Galvez, F., Villaescusa, R., and Gil, M. I. (2008). Impact of wash water quality on sensory and microbial quality, including Escherichia coli cross-contamination, of fresh-cut escarole. Journal of Food Protection, 71, 2514-2518.
Al-Holy, M. A., and Rasco, B. A. (2015). The bactericidal activity of acidic electrolyzed oxidizing water against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on raw fish, chicken and beef surfaces. Food Control, 54, 317-321.
Al-Qadiri, H. M., Smith, S., Sielaff, A. C., Govindan, B. N., Ziyaina, M., Al-Alami, N., and Rasco, B. (2019). Bactericidal activity of neutral electrolyzed water against Bacillus cereus and Clostridium perfringens in cell suspensions and artificially inoculated onto the surface of selected fresh produce and polypropylene cutting boards. Food Control, 96, 212-218.
Anastasia, D. N., Spyros, K. G. and Themistokles, D. L. (2002). Formation of organic by-products during chlorination of natural waters. Journal of Environmental Monitoring, 4, 910-916.
Artés, F., and Allende, A. (2005). Processing lines and alternative preservation techniques to prolong the shelf-life of minimally fresh processed leafy vegetables. European Journal of Horticultural Science, 70, 231-245.
Brychcy, E., Malik, M., Drozdzewski, P., Natalia, U. F., and Jarmoluk1, A. (2015). Low-concentrated acidic electrolysed water treatment of pork: inactivation of surface microbiota and changes in product quality. International Journal of Food Science and Technology, 50, 2340-2350.
Castro-Ibanez, I., Gil, M. I., Allende, A. (2017). Ready-to-eat vegetables: Current problems and potential solutions to reduce microbial risk in the production chain. Food Science and Technology, 85, 284-292.
Chen, J., Xu, B., Deng, S., and Huang, Y. (2016). Effect of combined pretreatment with slightly acidic electrolyzed water and botanic biopreservative on quality and shelf life of Bombay duck (Harpadon nehereus). Journal of Food Quality, 39, 116-125.
Chen, X., and Hung, Y. C. (2017). Effects of organic load, sanitizer pH and initial chlorine concentration of chlorine-based sanitizers on chlorine demand of fresh produce wash waters. Food Control, 77, 96-101.
Coroneo, V., Carraro, V., Marras, B., Marrucci, A., Succa, S., Meloni, B., Pinna, A., Angioni, A., Sanna, A., and Schintu, M. (2017). Presence of Trihalomethanes in ready-to-eat vegetables disinfected with chlorine. Food Additives & Contaminants: Part A, 34(12), 2111-2117.
Cui, X., Shang, Y., Shi, Z., Xin, H., and Cao, W. (2009). Physicochemical properties and bactericidal efficiency of neutral and acidic electrolyzed water under different storage conditions. Journal of Food Engineering, 91, 582-586.
Deborde, M. and Gunten, V. U. (2008). Reaction of chlorine with inorganic and organic compounds during water treatment-kinetics and mechanisms: A critical review. Water Research, 42, 13-51.
Deza, M. A., Araujo, M., and Garrido, M. J. (2003). Inactivation of Escherichia coli O157:H7, Salmonella enteritidis and Listeria monocytogenes on the surface of tomatoes by neutral electrolyzed water. Letters in Applied Microbiology, 37(6), 482-487.
EFSA Panel on Biological Hazards (BIOHAZ). (2013). Scientific opinion on the risk posed by pathogens in food of non-animal origin. Part 1 (outbreak data analysis and risk ranking of food/pathogen combinations). EFSA Journal, 11, 3025-3163.
Feliciano, L., Lee, J., and Pascall, M. A. (2012). Transmission electron microscopic analysis showing structural changes to bacterial cells treated with electrolyzed water and an acidic sanitizer. Journal of Food Science, 77, 182-187.
FAO/WHO Food and Agriculture Organization of the United Nations/World Health Organization. (2008). Microbiological hazards in fresh leafy vegetables and herbs. Meeting report. Microbial Risk Assessment Series, 14, 151.
Food and Drug Administration. (2008). Guidance for industry: guide to minimize microbial food safety hazards of fresh-cut fruits and vegetables.
Retrieved from https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-guide-minimize-microbial-food-safety-hazards-fresh-cut-fruits-and-vegetables
Gil, M. I., Selma, M. V., Lopez-Galvez, F., and Allende, A. (2009). Fresh-cut product sanitation and wash water disinfection: problems and solutions. International Journal of Food Microbiology, 134, 37-45.
Gil, M. I., Gómez-López, V. M., Hung, Y. C., and Allende, A. (2015). Potential of electrolyzed water as an alternative disinfectant agent in the fresh-cut industry. Food and Bioprocess Technology, 8, 1336-1348.
Gómez-López, V. M., Marín, A.., Medina-Martínez, M. S., Gil, M. I., and Allende, A. (2013). Generation of trihalomethanes with chlorine-based sanitizers and impact on microbial, nutritional and sensory quality of baby spinach. Postharvest Biology and Technology, 85, 210-217.
Han, Y. T., Song, L., An, Q. S., and Pan, C. P. (2017). Removal of six pesticide residues in cowpea with alkaline electrolyzed water. Journal of the Science of Food and Agriculture, 97, 2333-2338.
Han, D., Hung, Y. C., and Wang, L. (2018). Evaluation of the antimicrobial efficacy of neutral electrolyzed water on pork products and the formation of viable but nonculturable (VBNC) pathogens. Food Microbiology, 73, 227-236.
Hao, J., Qiu, S., Li, H., Chen, T., Liu, H., and Li, L. (2012). Roles of hydroxyl radicals in electrolyzed oxidizing water (EOW) for the inactivation of Escherichia coli. International Journal of Food Microbiology, 155, 99-104.
Hao, X., Shen, Z., Wang, J., Zhang, Q., Li, B., Wang, C., and Cao, W. (2013). In vitro inactivation of porcine reproductive and respiratory syndrome virus and pseudorabies virus by slightly acidic electrolyzed water. The Veterinary Journal, 197, 297-301.
Hao, J., Li, H., Wan, Y., and Liu, H. (2015). Effect of slightly acidic electrolyzed water (SAEW) treatment on the microbial reduction and storage quality of fresh-cut Cilantro. Journal of Food Processing and Preservation, 39(6), 559-566.
Hao, J., Wu, T., Li, H., Wang, W., and Liu, H. (2016). Dual effects of slightly acidic electrolyzed water (SAEW) treatment on the accumulation of γ-aminobutyric acid (GABA) and rutin in germinated buckwheat. Food Chemistry, 201, 87-93.
Hung, Y. C., Waters, B. W., Yemmireddy, V. K., and Huang, C. H. (2017). pH effect on the formation of THM and HAA disinfection byproducts and potential control strategies for food processing. Journal of Integrative Agriculture, 16, 2914-2923.
Huang, Y. R., Hung, Y. C., Hsu, S. Y., Huang, Y. W., and Hwang, D. F. (2008). Application of electrolyzed water in the food industry. Food Control, 19, 329-345.
Issa-Zacharia, A., Kamitani, Y., Miwa, N., Muhimbula, H., and Iwasaki, K. (2011). Application of slightly acidic electrolyzed water as a potential non-thermal food sanitizer for decontamination of fresh ready-to-eat vegetablesand sprouts. Food Control, 22(3-4), 601-607.
International Agency for Research on Cancer (IARC). Preamble to the IARC Monographs. Lyon, France, IARC, 2006.
Jung, Y., Jang, H., Guo, M., Gao, J., and Matthews, K. R. (2017). Sanitizer efficacy in preventing cross-contamination of heads of lettuce during retail crisping. Food Microbiology, 64, 179-185.
Kawashima, L. M., and Valente Soares, L. M. (2003). Mineral profile of raw and cooked leafy vegetables consumed in southern brazil. Journal of Food Composition and Analysis, 16(5), 605-611.
Kim, C., Hung, Y. C., and Brackett, R. E. (2000). Roles of oxidation–reduction potential in electrolyzed oxidizing and chemically modified water for the inactivation of food-related pathogens. Journal of Food Protection, 63, 19-24.
Koide, S., Takeda, J., Shi, J., Shono, H., and Atungulu, G. G. (2009). Disinfection efficacy of slightly acidic electrolyzed water on fresh cut cabbage. Food Control, 20(3), 294-297.
Lee, N. Y., Kim, N. H., Jang, I. S., Jang, S. H., Lee, S. H., Hwang, I. G., and Rhee, M. S. (2014). Decontamination efficacy of neutral electrolyzed water to eliminate indigenous flora on a large-scale of cabbage and carrot both in the laboratory and on a real processing line. Food Research International, 64, 234-240.
Lee, W. N., Huang, C. H., and Zhu, G. (2018). Analysis of 40 conventional and emerging disinfection by-products in fresh-cut produce wash water by modified EPA methods. Food Chemistry, 256, 319-326.
Liao, L. B., Chen, W. M., and Xiao, X. M. (2007). The generation and inactivation mechanism of oxidation-reduction potential of electrolyzed oxidizing water. Journal of Food Engineering, 78, 1326-1332.
Mansur, A. R., Tango, C. N., Kim, G. H., and Oh, D. H. (2015). Combined effects of slightly acidic electrolyzed water and fumaric acid on the reduction of foodborne pathogens and shelf life extension of fresh pork. Food Control, 47, 277-284.
Martínez-Hernández, G. B., Navarro-Rico, J., Gómez, P. A., Otón, M., Artés, F., and Artés-Hernández, F. (2015). Combined sustainable sanitising treatments to reduce Escherichia coli and Salmonella Enteritidis growth on fresh-cut kailan-hybrid broccoli. Food Control, 47, 312-317.
Nagy, M. and Grancai, D. (1996). Colorimetric determination of flavanones in propolis. Pharmazie, 51(2), 100-101.
Neal, J. A., Marquez-Gonzalez, M., Cabrera-Diaz, E., Lucia, L. M., O'Bryan, C. A., Crandall, P. G., Ricke, S. C., and Castillo, A. (2012). Comparison of multiple chemical sanitizers for reducing Salmonella and Escherichia coli O157:H7 on spinach (Spinacia oleracea) leaves. Food Research International, 45, 1123-1128.
Ni, L., Zheng, W., Zhang, Q., Cao, W., and Li, B. (2016). Application of slightly acidic electrolyzed water for decontamination of stainless steel surfaces in animal transport vehicles. Preventive Veterinary Medicine, 133, 42-51.
Nikolaou A. D., Kostopoulou M. N. and Lekkas T. D. (1999). Organic by-products of drinking water chlorination: a review. Global Nest: the International Journal, 1(3), 143-156.
Oyaizu, M. (1986). Studies on products of browning reactions. The Japanese Journal of Nutrition and Dietetics, 44(6), 307-315.
Park, J. N., Ali-Nehari, A., Woo, H.C., and Chun, B. S. (2012). Thermal stabilities of polyphenols and fatty acids in Laminaria japonica hydrolysates produced using subcritical water. Korean Journal of Chemical Engineering, 29(11), 1604-1609.
Puligundla, P., Kim, J. W., and Mok, C. (2018). Broccoli sprout washing with electrolyzed water: Effects on microbiological and physicochemical characteristics. LWT-Food Science and Technology, 92, 600-606.
Qadri, O. S., Yousuf, B., and Srivastava, A. K. 2015. Fresh-cut fruits and vegetables: Critical factors influencing microbiology and novel approaches to prevent microbial risks—A review. Cogent Food and Agriculture, 1, 1-11.
Qi, H., Huang, Q. G., and Hung, Y. C. (2018). Effectiveness of electrolyzed oxidizing water treatment in removing pesticide residues and its effect on produce quality. Food Chemistry, 239, 561-568.
Rankin, J. D., and Taylor, R. J. (1966). The estimation of doses of Salmonella typhimurium suitable for the experimental production of disease in calves. Veterinary Record, 78, 7-706.
Riondet, C., Cachon, R., Wache, Y., Alcaraz, G., and Divies, C. (2000). Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli. Journal of Bacteriology, 182, 620-626.
Rolfe, M. D., Rice, C. J., Lucchini, S., Pin, C., Thompson, A., Cameron, A. D. S., Alston, M., Stringer, M. F., Betts, R. P. Baranyi, J., Peck, M. W., and Hinton, J. C. D. (2011). Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. Journal of Bacteriology, 194(3), 686-701.
Shimada, K., Fujikawa, K., Yahara, K., and Nakamura, T. (1992). Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry, 40(6), 945-948.
Shiroodi, S. G., Ovissipour, M., Ross, C. F., and Rasco, C. F. (2016). Efficacy of electrolyzed oxidizing water as a pretreatment method for reducing Listeria monocytogenes contamination in cold-smoked Atlantic salmon (Salmo salar). Food Control, 60, 401-407.
Tamaki, S., Bui, V. N., Ngo, L. H., Ogawa, H., and Imai, K. (2014). Virucidal effect of acidic electrolyzed water and neutral electrolyzed water on avian influenza viruses. Archives of Virology, 159, 405-412.
Tantratian, S., and Kaephen, K. (2020). Shelf-life of shucked oyster in epigallocatechin-3-gallate with slightly acidic electrolyzed water washing under refrigeration temperature. LWT- Food Science and Technology,118, 108733.
Tang, W., Zeng, X., Zhao, Y., Ye, G., Gui, W., and Ni, Y. (2011). Disinfection effect and its mechanism of electrolyzed oxidizing water on spores of Bacillus subtilis var. niger. Food Science and Biotechnology, 20, 889–895.
Tauxe, R. V., Doyle, M. P., Kuchenmüller, T., Schlundt, J., and Stein, C. E. (2010). Evolving public health approaches to the global challenge of foodborne infections. International Journal of Food Microbiology, 139, S16-S28.
Veasey, S., and Muriana, P. (2016). Evaluation of electrolytically-generated hypochlorous acid (“electrolyzed water”) for sanitation of meat and meat-contact surfaces. Foods, 5(4), 42.
Villanueva, C. M., Cantor, K.P., Grimalt, J. O., Malats, N., Silverman, D., Tardon, A., Garcia-Closas, R., Serra, C., Carrato, A., Castano-Vinals, G., Marcos, R., Rothman, N., Real, F. X., Dosemici, M., and Kogevinas, M. (2006). Bladder cancer and exposure to water disinfection by-products through ingestion, bathing, showering, and swimming in pools. American Journal of Epidemiology. 165, 148-156.
Waters, B., and Hung, Y. C. (2014). The effect of organic loads on stability of various chlorine-based sanitizers. International Journal of Food Science and Technology, 49, 867-875.
Wray, C., and Sojka, W. J. (1978). Experimental Salmonella typhimurium infection in calves. Research in Veterinary Science, 25, 43-139.
Zeng, X., Tang, W., Ye, G., Ouyang, T., Tian, L., Ni, Y., and Li, P. (2010). Studies on disinfection mechanism of electrolyzed oxidizing water on E. coli and Staphylococcus aureus. Journal of Food Science, 75, 253-260.
Zhao, T., Doyle, M. P., and Zhao, P. (2001). Chlorine inactivation of Escherichia coli O157:H7 in water. Journal of Food Protection, 64, 1607-1609.
Yang, H., Feirtag, J., and Diez-Gonzalez, F. (2013). Sanitizing effectiveness of commercial “active water” technologies on Escherichia coli O157:H7, Salmonella enterica and Listeria monocytogenes. Food Control, 33, 232-238.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔