跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/11 14:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:程映慈
研究生(外文):Cheng, Ying-Tzu
論文名稱:微波真空乾燥應用對香蕉片品質之影響
論文名稱(外文):Effects of Microwave Vacuum Drying Applications on the Quality of Banana (Musa spp.) Chips
指導教授:張祐維張祐維引用關係
指導教授(外文):Chang, Yu-Wei
口試委員:邱致穎鄭光成蔡敏郎宋文杰陳冠文
口試委員(外文):Ciou, Jhih-YingCheng, Kuan-ChenTsai, Min LangSung, Wen-ChiehChen, Guan-Wen
口試日期:2020-06-11
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:56
中文關鍵詞:香蕉微波真空乾燥複合乾燥多孔性脆度
外文關鍵詞:bananamicrowave-vacuum dryingcombined dryingporositycrispness
相關次數:
  • 被引用被引用:3
  • 點閱點閱:657
  • 評分評分:
  • 下載下載:117
  • 收藏至我的研究室書目清單書目收藏:0
香蕉營養價值高且風味獨特,但高含水量的特性使香蕉容易腐敗,故如何延長保存期限更顯重要。乾燥是常見的香蕉加工方式;但傳統熱風乾燥所需時間長,更造成產品顏色、外觀及質地改變;因此本研究以熱風乾燥 (Hot-air dry, HAD)、冷凍乾燥 (Freeze-dry, FD)、微波真空乾燥 (Microwave-vacuum dry, MVD) 及冷凍複合微波真空乾燥 (FD / MVD) 等技術製作香蕉片,探討乾燥條件與水溶液浸泡對香蕉片酵素活與物理性質之影響,以及乾燥香蕉片之感官接受度。乾燥香蕉片水活性控制在 0.2–0.4 間,FD 所需乾燥時間最長約 1680 min;MVD 組乾燥時間最短約 80 min,而兩組 FD / MVD 與 FD 相比縮短約 4–7 倍。兩種褐變酵素相對活性以 FD 組為最低,分別 19.25% 及 4.72%,而 MVD 組中浸泡鹽水後酵素活性明顯降低; b* 值受乾燥條件影響較大,其中 MVD 浸水容液組相較於未浸泡組其 L*、a*、b* 皆下降,且 b* 下降幅度最大,而 FD 與 HAD 組之 ΔE* 分別為 22.14 及 33.44,顯示兩者與新鮮香蕉色差最大。體積密度以 FD 20 / MVD 為最低,HAD為最高,顯示 HAD 在乾燥後明顯皺縮,且在橫截面圖可以發現其不具有孔洞,因此復水能力最差。MVD 組硬度及脆度為最高,且經水溶液浸泡後,脆度略微下降但無顯著差異,而 HAD 組硬度及脆度皆最低。整體接受度而言,除 HAD 外,其餘組別得分皆高於 5 分且沒有顯著差異,顯示不同乾燥條件有其市場性。綜合上述 FD / MVD 不僅能減少乾燥時間、提供較佳之物化性質,顯示 FD / MVD 在食品工業具有發展潛力。
Banana (Musa spp.) has high nutritional value and unique flavor, but it is perishable because of its high moisture content. Therefore, to extend the shelf life of the banana is an essential issue. Drying is the most common technique in the process of prolonging shelf life. Hot-air convention dry required a long period of drying time and also caused the change of color, appearance, and texture tremendously. With the improvement of the drying technique recently, the product quality elevated. The purpose of this study was to dry the banana by using hot-air dry (HAD), freeze-dry (FD), microwave-vacuum dry (MVD), and freeze-dry combine microwave-vacuum dry (FD / MVD) to investigate the influence of different drying conditions on enzyme activity, physical properties, and sensory acceptability. The water activity of the banana chips manipulates within 0.2-0.4. The drying time of the FD group is the longest about 1680 min and the MVD group is shortest around 80 min. Compared with the FD group, the drying time of FD / MVD groups reduce remarkably around 4–7 folds, respectively. The polyphenol oxidase (PPO) and peroxide (POD) relative enzyme activity of the FD group is the lowest, which is 19.25% and 4.27%, respectively. Moreover, the relative activity of the MVD treated with a sodium chloride solution is apparently lower than the other two MVD groups. In the color analysis, the drying conditions are more influential on b* value. In comparison, the L*, a*, and b* value decreased in MVD solution pretreatment, noticeably the greatest drop inspect in b* value. The ΔE* value of the FD and HAD is 22.14 and 33.44 individually which shows the color difference between these two and the fresh banana is significant. The bulk density of FD 20 / MVD is the highest and HAD is the lowest which indicates severed volume shrinkage occurs in HAD, and there is no pores observed from the cross-section structure, therefore, the rehydration capacity is the poorest. MVD gets the highest hardness and crispness, however, after immersing in solutions the crispness slightly decreased but no significant difference. Aside from HAD, the scores of the rest groups are higher than 5 and there is no significant difference between other groups which means that different drying methods have development potential. In summary, FD / MVD not only can reduce the drying time, but also can provide better physical and chemical properties which indicates that FD / MVD has the development potential in the food industry.
壹、 前言 1
貳、 文獻回顧 3
一、 香蕉簡介 3
1. 分布與產值 3
2. 常見栽培種 3
3. 香蕉熟成指標 6
4. 營養價值 9
5. 香蕉相關加工製品 9
二、 水活性對保存之影響 10
三、 乾燥對產品品質之影響 11
1. 乾燥技術 11
2. 乾燥與品質 15
四、 抑制褐變 17
1. 非酵素性褐變 17
2. 酵素性褐變 18
參、 實驗架構 19
肆、 材料與方法 20
一、 實驗材料 20
二、 實驗方法 20
1. 一般成分分析 20
2. 乾燥方法 20
3. 水活性 22
4. 顏色分析 22
5. 物性測定 22
6. 復水能力測定 22
7. 酵素活性測定 23
8. 體積密度 24
9. 電子掃描顯微鏡 25
10. 感官品評 25
11. 統計分析 25
伍、 結果與討論 26
陸、 結論 32
柒、 未來研究方向 33
捌、 參考文獻 34
玖、 附錄 55
鄧澄欣、黃新川、朱慶國。(1993)。香蕉品種改良之研究。果樹育種研習會專刊,37期,57-75。
鄧澄欣。(2002)。台灣香蕉栽培種特性介紹。農業世界雜誌,224期,2-10。
林德勝。(2017)。香蕉。重要外銷水果採收後處理專刊,1期,48-76。
林敬恩。(2018)。滲透預處理及熱風乾燥對鳳梨果乾品質的影響。國立中興大學園藝學系碩士論文。臺中,臺灣。
邱輝龍、許圳塗。(2007)。芭蕉屬植物野生近緣種之遺傳資源與利用,林業研究專訊,14期,6-10。
行政院農委會。(2019)。農業統計年報。https://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx
莊遠紅、林嬌芬、萬漪、王麗霞、龐傑。(2011)。香蕉片凍乾工藝条件。福建農林大學學報,40期,540-545。
施明智、蕭思玉、蔡敏郎。(2019)。食品加工學。五南圖書出版股份有限公司。 臺北,臺灣。
楊惠芳、陳泓杉。(2009)。香蕉補充對人體生理利弊之探討。嘉大體育健康休閒期刊,1期,222-227。
AOAC. (2005). Official methods of analysis, 18th edn. AOAC International, Maryland.
Akubor, P. I., Obio, S. O., Nwadomere, K. A., & Obiomah, E. (2003). Production and quality evaluation of banana wine. Plant Foods for Human Nutrition, 58, 1-6.
Alibas, I. (2007). Microwave, air and combined microwave–air-drying parameters of pumpkin slices. LWT-Food Science and Technology, 40, 1445-1451.
Alipoorfard, F., Jouki, M., & Tavakolipour, H. (2020). Application of sodium chloride and quince seed gum pretreatments to prevent enzymatic browning, loss of texture and antioxidant activity of freeze dried pear slices. Journal of Food Science and Technology, 57, 1-11.
Ando, Y., Hagiwara, S., Nabetani, H., Sotome, I., Okunishi, T., Okadome, H., Orikasa, T., & Tagawa, A. (2019). Effects of prefreezing on the drying characteristics, structural formation and mechanical properties of microwave-vacuum dried apple. Journal of Food Engineering, 244, 170-177.
Andreou, V., Dimopoulos, G., Katsaros, G., & Taoukis, P. (2016). Comparison of the application of high pressure and pulsed electric fields technologies on the selective inactivation of endogenous enzymes in tomato products. Innovative Food Science and Emerging Technologies, 38, 349-355.
Antal, T., Kerekes, B., Sikolya, L., & Tarek, M. (2015). Quality and drying characteristics of apple cubes subjected to combined drying (FD pre‐drying and HAD finish‐drying). Journal of Food Processing and Preservation, 39, 994-1005.
Atzingen, D., Penazzo, A., Muzetti, J., Rezende, T., Mendonça, E., Castro, G., Alvarenga, V., Mesquita Filho, M., & Mendonça, A. (2017). Repair of wounds in rats: gel with the green peel of musa sapientum 10%. Asian Journal of Science and Technology, 8, 5176-5180.
Aurore, G., Parfait, B., & Fahrasmane, L. (2009). Bananas, raw materials for making processed food products. Trends in Food Science and Technology, 20, 78-91.
Blankenship, S. M., Ellsworth, D. D., & Powell, R. L. (1993). A ripening index for banana fruit based on starch content. Hort Technology, 3, 338-339.
Cao, X. M., Cai, C. F., Wang, Y. L., & Zheng, X. J. (2018). The inactivation kinetics of polyphenol oxidase and peroxidase in bayberry juice during thermal and ultrasound treatments. Innovative Food Science and Emerging Technologies, 45, 169-178.
Chaisakdanugull, C., Theerakulkait, C., & Wrolstad, R. E. (2007). Pineapple juice and its fractions in enzymatic browning inhibition of banana [Musa (AAA Group) Gros Michel]. Journal of Agricultural and Food Chemistry, 55, 4252-4257.
Cheirsilp, B., & Umsakul, K. (2008). Process of banana-based wine product using pectinase and α-amylase. Journal of Food Process Engineering, 31, 78-90.
Chirife, J., & Fontan, C. F. (1982). Water activity of fresh foods. Journal of Food Science, 47, 661-663.
Choi, H. D., Lee, H. C., Kim, Y. S., Choi, I. W., Park, Y. K., & Seog, H. M. (2008). Effect of combined osmotic dehydration and hot-air drying on the quality of dried apple products. Korean Journal of Food Science and Technology, 40, 36-41.
Chong, C. H., Law, C. L., Figiel, A., Wojdyło, A., & Oziembłowski, M. (2013). Colour, phenolic content and antioxidant capacity of some fruits dehydrated by a combination of different methods. Food Chemistry, 141, 3889-3896.
Choo, C. L., & Aziz, N. A. A. (2010). Effects of banana flour and β-glucan on the nutritional and sensory evaluation of noodles. Food Chemistry, 119, 34-40.
Corzo-Mart´ınez, M., Corzo, N., Villamiel, M., & Castillo, M. D. d. (2012). 4 Browning reactions. In K. S. Benjamin, L. M. L. Nollet, F. Toldrá, S. Benjakul, G. Paliyath & Y. H. Hui (Eds.), Food Biochemistry and Food Processing): John Wiley & Sons.
Cui, Z. W., Li, C. Y., Song, C. F., & Song, Y. (2008). Combined microwave-vacuum and freeze drying of carrot and apple chips. Drying Technology, 26, 1517-1523.
Dandamrongrak, R., Young, G., & Mason, R. (2002). Evaluation of various pre-treatments for the dehydration of banana and selection of suitable drying models. Journal of Food Engineering, 55, 139-146.
Ditchfield, C., Tadini, C. C., Singh, R., & Toledo, R. T. (2004). Rheological properties of banana puree at high temperatures. International Journal of Food Properties, 7, 571-584.
Durance, T. D., & Wang, J. H. (2002). Energy consumption, density, and rehydration rate of vacuum microwave- and hot-Air convection- dehydrated tomatoes. Journal of Food Science, 67, 2212-2216.
El Hadi, M. A. M., Zhang, F. J., Wu, F. F., Zhou, C. H., & Jun, T. (2013). Advances in fruit aroma volatile research. Molecules, 18, 8200-8229.
Eskin, N. A. M. (1990). Biochemistry of food processing: browning reactions in foods. Biochemistry of foods, 2.
Figiel, A. (2010). Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuum-microwave methods. Journal of Food Engineering, 98, 461-470.
Forster, M., Rodríguez Rodríguez, E., Darias Martín, J., & Díaz Romero, C. (2003). Distribution of nutrients in edible banana pulp. Food Technology and Biotechnology, 41, 167-171.
Fox, M., Loncin, M., & Weiss, M. (1983). Investigations into the influence of water activity, pH and heat treatment on the velocity of the Maillard reaction in foods. Journal of Food Quality, 6, 103-118.
Gomes, J. F. S., Vieira, R. R., & Leta, F. R. (2013). Colorimetric indicator for classification of bananas during ripening. Scientia Horticulturae, 150, 201-205.
González-Montelongo, R., Gloria Lobo, M., & González, M. (2010). Antioxidant activity in banana peel extracts: Testing extraction conditions and related bioactive compounds. Food Chemistry, 119, 1030-1039.
Gu, F. L., Kim, J. M., Abbas, S., Zhang, X. M., Xia, S. Q., & Chen, Z. X. (2010). Structure and antioxidant activity of high molecular weight Maillard reaction products from casein–glucose. Food Chemistry, 120, 505-511.
Han, Q. H., Yin, L. J., Li, S. J., Yang, B. N., & Ma, J. W. (2010). Optimization of process parameters for microwave vacuum drying of apple slices using response surface method. Drying Technology, 28, 523-532.
Hapsari, L., & Lestari, D. A. (2016). Fruit characteristic and nutrient values of four Indonesian banana cultivars (Musa spp.) at different genomic groups. AGRIVITA, Journal of Agricultural Science, 38, 303-311.
Hardisson, A., Rubio, C., Baez, A., Martin, M., Alvarez, R., & Diaz, E. (2001). Mineral composition of the banana (Musa acuminata) from the island of Tenerife. Food Chemistry, 73, 153-161.
Hayashi, S. (1989). Drying characteristics of japanese-persimmon (in Japanese). Japanese Society of Agricultural Machinery, 51, 71-76.
Huang, L. L., Zhang, M., Mujumdar, A. S., Sun, D. F., Tan, G. W., & Tang, S. (2009). Studies on decreasing energy consumption for a freeze-drying process of apple slices. Drying Technology, 27, 938-946.
Huang, L. L., Zhang, M., Wang, L. P., Mujumdar, A. S., & Sun, D. F. (2012). Influence of combination drying methods on composition, texture, aroma and microstructure of apple slices. LWT-Food Science and Technology, 47, 183-188.
Iyengar, R., & McEvily, A. J. (1992). Anti-browning agents: alternatives to the use of sulfites in foods. Trends in Food Science and Technology, 3, 60-64.
Jiang, H., Zhang, M., & Mujumdar, A. S. (2010). Microwave freeze-drying characteristics of banana crisps. Drying Technology, 28, 1377-1384.
Jiang, H., Zhang, M., Mujumdar, A. S., & Lim, R. X. (2014). Comparison of drying characteristic and uniformity of banana cubes dried by pulse-spouted microwave vacuum drying, freeze drying and microwave freeze drying. Journal of the Science of Food and Agriculture, 94, 1827-1834.
Kamel, N. A., Abd El-messieh, S. L., & Saleh, N. M. (2017). Chitosan/banana peel powder nanocomposites for wound dressing application: Preparation and characterization. Materials Science and Engineering: C, 72, 543-550.
Khampakool, A., Soisungwan, S., & Park, S. H. (2019). Potential application of infrared assisted freeze drying (IRAFD) for banana snacks: Drying kinetics, energy consumption, and texture. LWT-Food Science and Technology, 99, 355-363.
Khoozani, A. A., Birch, J., & Bekhit, A. E.-D. A. (2019). Production, application and health effects of banana pulp and peel flour in the food industry. Journal of Food Science and Technology, 56, 548-559.
Khraisheh, M. A. M., Cooper, T. J. R., & Magee, T. R. A. (1997). Shrinkage characteristics of potatos dehydrated under combined microwave and convective air conditions. Drying Technology, 15, 1003-1022.
Kim, M. H., Kim, K. S., Song, Y. B., Seo, W. J., & Song, K. B. (2009). Characteristics of apple, persimmon, and strawberry slices dried with maltodextrin. Preventive Nutrition and Food Science, 14, 367-372.
Korbel, E., Servent, A., Billaud, C., & Brat, P. (2013). Heat inactivation of polyphenol oxidase and peroxidase as a function of water activity: A case study of mango drying. Drying Technology, 31, 1675-1680.
Krokida, M. K., & Philippopoulos, C. (2006). Volatility of apples during air and freeze drying. Journal of Food Engineering, 73, 135-141.
Kudra, T. (2004). Energy aspects in drying. Drying Technology, 22, 917-932.
Labuza, T. P., Tannenbaum, S. R., & Karel, M. (1970). Water content and stability of low moisture and intermediate moisture foods. Food Technology, 24, 543-550.
Lachowicz, S., Michalska, A., Lech, K., Majerska, J., Oszmiański, J., & Figiel, A. (2019). Comparison of the effect of four drying methods on polyphenols in saskatoon berry. LWT-Food Science and Technology, 111, 727-736.
Lee, W. C., Yusof, S., Hamid, N. S. A., & Baharin, B. S. (2006). Optimizing conditions for enzymatic clarification of banana juice using response surface methodology (RSM). Journal of Food Engineering, 73, 55-63.
Lim, T. K. (2012). Musa acuminata (AAA Group) ‘Dwarf Cavendish’. In T. K. Lim (Ed.), Edible Medicinal And Non Medicinal Plants: Volume 3, Fruits, (pp. 502-527). Dordrecht, Netherlands: Springer Netherlands.
Lopez, A., Pique, M. T., Boatella, J., Parcerisa, J., Romero, A., Ferrá, A., & Garcí, J. (1997). Influence of drying conditions on the hazelnut quality. II. Enzymatic activity. Drying Technology, 15, 979-988.
Lozano-de-Gonzalez, P. G., Barrett, D. M., E., W. R., & Durst, R. W. (1993). Enzymatic browning inhibited in fresh and dried apple rings by pineapple juice. Journal of Food Science, 58, 399-404.
MacDonald, L., & Schaschke, C. J. (2000). Combined effect of high pressure, temperature and holding time on polyphenoloxidase and peroxidase activity in banana (Musa acuminata). Journal of the Science of Food and Agriculture, 80, 719-724.
Machado, A. V., de Souza, J. A., & da Silva Novaes, R. (2015). Estudo cinético da secagem da uva Isabel para produção de uva passa. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 10, 47-51.
Manzocco, L., Calligaris, S., Mastrocola, D., Nicoli, M. C., & Lerici, C. R. (2000). Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends in Food Science and Technology, 11, 340-346.
Marques, L. G., Ferreira, M. C., & Freire, J. T. (2007). Freeze-drying of acerola (Malpighia glabra L.). Chemical Engineering and Processing: Process Intensification, 46, 451-457.
Maskan, M. (2000). Microwave/air and microwave finish drying of banana. Journal of Food Engineering, 44, 71-78.
Maskan, M. (2001). Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48, 177-182.
Mayor, L., & Sereno, A. M. (2004). Modelling shrinkage during convective drying of food materials: A review. Journal of Food Engineering, 61, 373-386.
Mejia-Meza , E. I., Yanez, J. A., Davies, N. M., Rasco, B., Younce, F., Remsberg, C. M., & Clary, C. (2008). Improving nutritional value of dried blueberries (Vaccinium corymbosum L.) combining microwave-vacuum, hot-air drying and freeze drying technologies. International Journal of Food Engineering, 4.
Michalska, A., Wojdyło, A., Lech, K., Łysiak, G. P., & Figiel, A. (2016). Physicochemical properties of whole fruit plum powders obtained using different drying technologies. Food Chemistry, 207, 223-232.
Mohapatra, D., Mishra, S., & Sutar, N. (2010). Banana and its by-product utilisation: An overview. Journal of Scientific and Industrial Research, 69, 323-329.
Mokbel, M. S., & Hashinaga, F. (2005). Antibacterial and antioxidant activities of banana (Musa, AAA cv. Cavendish) fruits peel. American Journal of Biochemistry and Biotechnology, 1, 125-131.
Moreira, R., Figueiredo, A., & Sereno, A. (2000). Shrinkage of apple disks during drying by warm air convection and freeze drying. Drying Technology, 18, 279-294.
Mothibe, K. J., Zhang, M., Nsor-atindana, J., & Wang, Y. C. (2011). Use of ultrasound pretreatment in drying of fruits: Drying rates, quality attributes, and shelf life extension. Drying Technology, 29, 1611-1621.
Mui, W. W. Y., Durance, T. D., & Scaman, C. H. (2002). Flavor and texture of banana chips dried by combinations of hot air, vacuum, and microwave processing. Journal of Agricultural and Food Chemistry, 50, 1883-1889.
Nahimana, H., & Zhang, M. (2011). Shrinkage and color change during microwave vacuum drying of carrot. Drying Technology, 29, 836-847.
Nawirska, A., Figiel, A., Kucharska, A. Z., Sokół-Łętowska, A., & Biesiada, A. (2009). Drying kinetics and quality parameters of pumpkin slices dehydrated using different methods. Journal of Food Engineering, 94, 14-20.
Ndiaye, C., Xu, S. Y., & Wang, Z. (2009). Steam blanching effect on polyphenoloxidase, peroxidase and colour of mango (Mangifera indica L.) slices. Food Chemistry, 113, 92-95.
Oba, K., Yamamoto, A., Ito, S., Fujie, A., & Takeuchi, W. (2002). Mechanism of the suppressive effect of NaCl on the polyphenol oxidase activity of vegetables. Bulletin of the Society of Sea Water Science, Japan, 56, 234-240.
Orikasa, T., Wu, L., Ando, Y., Muramatsu, Y., Roy, P., Yano, T., Shiina, T., & Tagawa, A. (2010). Hot air drying characteristics of sweet potato using moisture sorption isotherm analysis and its quality changes during drying. International Journal of Food Engineering, 6.
Osorio, C., Carriazo, J. G., & Barbosa, H. (2011). Thermal and structural study of guava (Psidium guajava L) powders obtained by two dehydration methods. Química Nova, 34, 636-640.
Pan, Z., Shih, C., McHugh, T. H., & Hirschberg, E. (2008). Study of banana dehydration using sequential infrared radiation heating and freeze-drying. LWT-Food Science and Technology, 41, 1944-1951.
Pereira, A., & Maraschin, M. (2015). Banana (Musa spp.) from peel to pulp: Ethnopharmacology, source of bioactive compounds and its relevance for human health. Journal of Ethnopharmacology, 160, 149-163.
Perez-Locas, C., & Yaylayan, V. A. (2010). The Maillard reaction and food quality deterioration. In L. H. Skibsted, J. Risbo & M. L. Andersen (Eds.), Chemical Deterioration and Physical Instability of Food and Beverages, (pp. 70-94). Great Abington, UK: Woodhead Publishing.
Peroni-Okita, F. H. G., Simão, R. A., Cardoso, M. B., Soares, C. A., Lajolo, F. M., & Cordenunsi, B. R. (2010). In vivo degradation of banana starch: Structural characterization of the degradation process. Carbohydrate Polymers, 81, 291-299.
Prachayawarakorn, S., Tia, W., Plyto, N., & Soponronnarit, S. (2008). Drying kinetics and quality attributes of low-fat banana slices dried at high temperature. Journal of Food Engineering, 85, 509-517.
Rahman, M. S., & Labuza, T. P. (2007). Handbook of Food Preservation. Florida, USA: CRC press.
Ramirez‐Martinez, J. R., Levi, A., Padua, H., & Bakal, A. (1977). Astringency in an intermediate moisture banana product. Journal of Food Science, 42, 1201-1203.
Ranjha, M. M. A. N., Irfan, S., Nadeem, M., & Mahmood, S. (2020). A comprehensive review on nutritional value, medicinal uses, and processing of banana. Food Reviews International, 1-27.
Rebello, L. P. G., Ramos, A. M., Pertuzatti, P. B., Barcia, M. T., Castillo-Muñoz, N., & Hermosín-Gutiérrez, I. (2014). Flour of banana (Musa AAA) peel as a source of antioxidant phenolic compounds. Food Research International, 55, 397-403.
Robinson, J. C., & Saúco, V. G. (2010). Bananas and Plantains. Wallingford, UK: Cabi.
Roos, Y. H. (2000). Water activity and plasticization. In Food Shelf Life Stability: Chemical, Biochemical, and Microbiological Changes, (pp. 3-36). New York, USA: CRC Press.
Saca, S. A., & Lozani, J. E. (1992). Explosion puffing of bananas. International Journal of Food Science and Technology, 27, 419-426.
Sagar, V. R., & Kumar, P. S. (2010). Recent advances in drying and dehydration of fruits and vegetables: a review. Journal of Food Science and Technology, 47, 15-26.
Sagu, S. T., Nso, E. J., Karmakar, S., & De, S. (2014). Optimisation of low temperature extraction of banana juice using commercial pectinase. Food Chemistry, 151, 182-190.
Sarpong, F., Yu, X., Zhou, C., Amenorfe, L. P., Bai, J., Wu, B., & Ma, H. (2018a). The kinetics and thermodynamics study of bioactive compounds and antioxidant degradation of dried banana (Musa spp.) slices using controlled humidity convective air drying. Journal of Food Measurement and Characterization, 12, 1935-1946.
Sarpong, F., Yu, X. J., Zhou, C. S., Oteng-Darko, P., Amenorfe, L. P., Wu, B. G., Bai, J. W., & Ma, H. (2018b). Drying characteristic, enzyme inactivation and browning pigmentation kinetics of controlled humidity-convective drying of banana slices. Heat and Mass Transfer, 54, 3117-3130.
Scott, W. J. (1957). Water relations of food spoilage microorganisms. In E. M. Mark & G. F. Stewart (Eds.), Advances in food research, vol. 7 (pp. 83-127). New York, USA: Academic Press.
Shishehgarha, F., Makhlouf, J., & Ratti, C. (2002). Freeze-drying characteristics of strawberries Drying Technology, 20, 131-145.
Singh, B., Singh, J. P., Kaur, A., & Singh, N. (2016). Bioactive compounds in banana and their associated health benefits – A review. Food Chemistry, 206, 1-11.
Sjöholm, I., & Gekas, V. (1995). Apple shrinkage upon drying. Journal of Food Engineering, 25, 123-130.
Sojo, M. M., Nuñez-Delicado, E., García-Carmona, F., & Sánchez-Ferrer, A. (1999). Cyclodextrins as activator and inhibitor of latent banana pulp polyphenol oxidase. Journal of Agricultural and Food Chemistry, 47, 518-523.
Someya, S., Yoshiki, Y., & Okubo, K. (2002). Antioxidant compounds from bananas (Musa Cavendish). Food Chemistry, 79, 351-354.
Son, S. M., Moon, K. D., & Lee, C. Y. (2001). Inhibitory effects of various antibrowning agents on apple slices. Food Chemistry, 73, 23-30.
Sousa, W. A., Pitombo, R. N. M., Da Silva, M. A. A. P., & Marsaioli, A. (2006). Sensory Evaluation of Dried Bananas Obtained from Air Dehydration Assisted by Microwaves. Berlin, Germany: Springer Berlin Heidelberg, Bayreuth.
Sunthonvit, N., Srzednicki, G., & Craske, J. (2007). Effects of drying treatments on the composition of volatile compounds in dried nectarines. Drying Technology, 25, 877-881.
Talla, A., Puiggali, J.-R., Jomaa, W., & Jannot, Y. (2004). Shrinkage and density evolution during drying of tropical fruits: Application to banana. Journal of Food Engineering, 64, 103-109.
Tamanna, N., & Mahmood, N. (2015). Food processing and Maillard reaction products: effect on human health and nutrition. International journal of food science, 2015.
Tapia, M. S., Alzamora, S. M., & Chirife, J. (2008). Effects of water activity (aw) on microbial stability: As a hurdle in food preservation. In Water activity in foods, (pp. 239-271). State Avenue, Ames, Iowa, USA: Blackwell.
Terefe, N. S., Yang, Y. H., Knoerzer, K., Buckow, R., & Versteeg, C. (2010). High pressure and thermal inactivation kinetics of polyphenol oxidase and peroxidase in strawberry puree. Innovative Food Science and Emerging Technologies, 11, 52-60.
Therdthai, N., & Zhou, W. B. (2009). Characterization of microwave vacuum drying and hot air drying of mint leaves (Mentha cordifolia Opiz ex Fresen). Journal of Food Engineering, 91, 482-489.
Tsen, J. H., & King, V. A. E. (2002). Density of banana puree as a function of soluble solids concentration and temperature. Journal of Food Engineering, 55, 305-308.
Turkiewicz, I. P., Wojdyło, A., Lech, K., Tkacz, K., & Nowicka, P. (2019). Influence of different drying methods on the quality of Japanese quince fruit. LWT-Food Science and Technology, 114, 108416.
Ünal, M. Ü. (2007). Properties of polyphenol oxidase from Anamur banana (Musa cavendishii). Food Chemistry, 100, 909-913.
Valadez-Carmona, L., Plazola-Jacinto, C. P., Hernández-Ortega, M., Hernández-Navarro, M. D., Villarreal, F., Necoechea-Mondragón, H., Ortiz-Moreno, A., & Ceballos-Reyes, G. (2017). Effects of microwaves, hot air and freeze-drying on the phenolic compounds, antioxidant capacity, enzyme activity and microstructure of cacao pod husks (Theobroma cacao L.). Innovative food science & emerging technologies, 41, 378-386.
Wang, J., Li, Y. Z., Chen, R. R., Bao, J. Y., & Yang, G. M. (2007). Comparison of volatiles of banana powder dehydrated by vacuum belt drying, freeze-drying and air-drying. Food Chemistry, 104, 1516-1521.
Wang, N., & Brennan, J. G. (1995). Changes in structure, density and porosity of potato during dehydration. Journal of Food Engineering, 24, 61-76.
Wickramarachchi, K. S., & Ranamukhaarachchi, S. L. (2005). Preservation of fiber-rich banana blossom as a dehydrated vegetable. Science Asia, 31, 265-271.
Wills, R. B. H., Lim, J. S. K., & Greenfield, H. (1984). Changes in chemical composition of ‘Cavendish’ banana (Musa acuminata) during ripening. Journal of Food Biochemistry, 8, 69-77.
Wills, R. B. H., Lim, J. S. K., & Greenfield, H. (1986). Composition of Australian foods. Tropical and sub-tropical fruit. Food Technology in Australia, 38, 118-123.
Xie, L., Zheng, Z. A., Mujumdar, A. S., Fang, X. M., Wang, J., Zhang, Q., Ma, Q., Xiao, H. W., Liu, Y. H., & Gao, Z. J. (2018). Pulsed vacuum drying (PVD) of wolfberry: Drying kinetics and quality attributes. Drying Technology, 36, 1501-1514.
Yadollahinia, A., & Jahangiri, M. (2009). Shrinkage of potato slice during drying. Journal of Food Engineering, 94, 52-58.
Yamsaengsung, R., Ariyapuchai, T., & Prasertsit, K. (2011). Effects of vacuum frying on structural changes of bananas. Journal of Food Engineering, 106, 298-305.
Yan, Z., Sousa-Gallagher, M. J., & Oliveira, F. A. R. (2008). Shrinkage and porosity of banana, pineapple and mango slices during air-drying. Journal of Food Engineering, 84, 430-440.
Yilmaz, Y., & Toledo, R. (2005). Antioxidant activity of water-soluble Maillard reaction products. Food Chemistry, 93, 273-278.
Yongsawatdigul, J., & Gunasekaran, S. (1996). Microwave‐vacuum drying of cranberries: Part I. Energy use and efficiency. Journal of Food Processing and Preservation, 20, 121-143.
Yoruk, R., & Marshall, M. R. (2007). Physicochemical properties and function of plant polyphenol oxidase: A review. Journal of Food Biochemistry, 27, 361-422.
Zhang, M., Li, C. L., & Ding, X. L. (2005). Effects of heating conditions on the thermal denaturation of white mushroom suitable for dehydration. Drying Technology, 23, 1119-1125.
Zhang, W. J., Zhang, X. Y., & Xia, Y. K. (2008). Chapter 12-An overview and prospect on banana processing technologies in China. In L. V. Greco & M. N. Bruno (Eds.), Food Science and Technology: New Research, (pp. 393-406). New York, USA: Nova Science.
Zhang, Z. Y., Niu, L. Y., Li, D. J., Liu, C. Q., Ma, R., Song, J. F., & Zhao, J. T. (2017). Low intensity ultrasound as a pretreatment to drying of daylilies: Impact on enzyme inactivation, color changes and nutrition quality parameters. Ultrasonics Sonochemistry, 36, 50-58.
Zielinska, M., & Michalska, A. (2016). Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture. Food Chemistry, 212, 671-680.
Zielinska, M., Sadowski, P., & Błaszczak, W. (2015). Freezing/thawing and microwave-assisted drying of blueberries (Vaccinium corymbosum L.). LWT-Food Science and Technology, 62, 555-563.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top