跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 16:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李雅筑
研究生(外文):Li, Ya-Zhu
論文名稱:添加不同雙醣對素肉乾品質特性之影響
論文名稱(外文):Effect of Various Types of Disaccharides on Quality Characteristics of Vegan Jerky
指導教授:張正明張正明引用關係
指導教授(外文):Chang, Cheng-Ming
口試委員:莊培梃林昱文張正明
口試委員(外文): Chang, Cheng-Ming
口試日期:2020-07-27
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:62
中文關鍵詞:組織化植物蛋白水活性FTIR雙醣素肉乾
外文關鍵詞:texturized vegetable proteinFTIRdisaccharidevegan jerkywater activity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:665
  • 評分評分:
  • 下載下載:145
  • 收藏至我的研究室書目清單書目收藏:0
隨著素食人口增加,由組織化植物蛋白(Texturized Vegetable Protein, TVP)製成之人造肉食品的需求也逐漸增加,然而TVP二次加工製成素肉乾時,因藉由熱風乾燥以去除水分,卻導致素肉乾過於乾燥,質地乾硬產品接受度低等問題。因此,本研究以薄片狀組織化蛋白作為實驗樣品,添加不同濃度(15、20、25%)之蔗醣(Sucrose, S)、麥芽糖(Maltose, M)及海藻糖(Trehalose, T)作為保濕劑於醃製液中,經熱風乾燥後製成素肉乾產品,改善產品質地乾硬的問題,並以水活性及玻璃轉化溫度為食品安全儲藏之理論描述水分含量、水活性與溫度間的關係,並藉由傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Spectroscopy, FTIR)測定產品之特定官能基吸收波峰,以探討醣類與水及蛋白質之交互作用。
結果顯示,添加不同濃度雙醣製成的素肉乾產品,其水分含量為18~20%且各處理組間無顯著性差異,水活性以S-25為最低(0.719±0.03),添加不同濃度麥芽糖及海藻糖之水活性結果則無顯著性差異。產品質地剖面分析測定結果顯示硬度以M-20最硬,聚合性以T-25最差,彈性以T-15最佳,凝膠強度各組別無顯著性差異,咀嚼性則以S-15最低;品評以硬度為指標,結果顯示T-25質地最軟。色差值以添加20%蔗糖為標準品,各組別均無顯著性差異。於玻璃轉化溫度測定結果顯示,添加海藻糖之素肉乾玻璃轉化溫度最低,此外,由T-20之GAB model等溫吸附線模型與Gordon-Taylor model狀態圖,對比水活性及玻璃轉化理論,發現水活性理論較適合用於預測素肉乾儲存穩定性。於FTIR吸收光譜測定中,可得知蔗糖與水的交互作用力較強,而麥芽糖及海藻糖則會因濃度上升,並形成分子間或分子內的氫鍵,因此降低與水的交互作用力,另外,添加高濃度蔗糖與麥芽糖則會因與蛋白質結合位點達飽和,而導致單層水分含量增加。
添加15~20%之蔗糖為素肉乾最佳醃製液配方組合,其水分含量及水活性均符合中濕性食品標準,且質地及色澤良好、成本效益佳,另外,由於蔗糖較容易與水形成鍵結,因此降低水活性能力較佳,而麥芽糖及海藻糖易形成分子內及與蛋白質形成鍵結,因此降低水活性能力較差。
With the increase in the vegetarian population, the demand for meat analogue products made from texturized vegetable protein (TVP) has increased. TVP is processed into vegan jerky by hot air drying to remove moisture which causes a tough texture, making the vegan jerky too dry and inferior to acceptance. Therefore, in this study, three disaccharides, sucrose (S), maltose (M) and trehalose (T) at three concentration, 15, 20, and 25%, were used as humectants added to marinade and dried with hot air to make vegan jerky that were aimed to improve the softened texture of the product. Water activity (Aw) and glass transition temperature were measured to define the relationship between water content, water activity and temperature. Fourier transform infrared spectroscopy (FTIR) was measured to investigate specific functional groups of the product involving interaction between sugars, water and proteins.
Results showed that all treatments have moisture between 18-20%. S-25 had the lowest Aw, 0.719, while no significant differences were found among M and T groups. M-20 resulted in the hardest in texture. The sensory evaluation results showed that T-25 has the softest texture. And there is no significant difference among all treatments in color difference analysis. The water activity theory in combining with glass transition temperature are more suitable for predicting the storage stability of vegan jerky than GAB model and Gordon-Taylor model. FTIR suggested that the interaction force between S and water is the strongest. However, with the increased concentration of M and T, which formed intermolecular or intramolecular hydrogen bonds, resulted in weakening interaction of them with water. Furthermore, addition of high concentrations of S and M will saturate the binding sites with proteins, which then, increase the monolayer’s moisture content.
Adding 15-20% sucrose is the best marinade for vegan jerky. Its moisture content and water activity meet the standards of intermediate moisture foods, and its texture and color are good and cost-effective. On the other hand, due to sucrose is easier to form hydrogen bond with water, so the ability to reduce water activity is better. While maltose and trehalose are easy to form intramolecular hydrogen bonds and bind with proteins, so the ability to reduce water activity is poor than sucrose.
摘要 I
ABSTRACT II
目錄 III
圖目錄 V
表目錄 VI
壹、前言 1
貳、文獻整理 2
一、 組織化植物蛋白 2
(一) 定義 2
(二) 製造方法 2
(三) 素肉之品質指標 2
(四) 素肉之質地結構 3
二、 中濕性食品 3
(一) 等溫吸濕曲線 4
(二) 蔗糖對食品品質特性之影響 7
(三) 麥芽糖對食品品質特性之影響 7
(四) 海藻糖對食品品質特性之影響 8
三、 醣類與水及蛋白質的交互作用 8
(一) 交互作用型式 8
(二) 交互作用測定方法 8
四、 乾燥食品之玻璃轉化溫度 9
(一) 玻璃轉化溫度對乾燥食品之影響 9
(二) 影響玻璃轉化溫度因素 9
(三) 玻璃轉化溫度曲線模擬 10
(四) 玻璃轉化溫度測定方法 10
五、 質地剖面分析 11
參、研究目的與架構 12
一、 研究目的 12
二、 研究架構 13
肆、研究材料與方法 14
一、 實驗材料 14
二、 實驗藥品及設備 14
三、 素肉乾製品製作 15
四、 產品分析項目 15
(一) 水分(Moisture)測定 15
(二) 水活性(Water Activity)測定 15
(三) 素肉乾質地剖面分析 15
(四) 素肉乾硬度品評 15
(五) 色澤測定 15
(六) 等溫吸附線 16
(七) 玻璃轉化溫度測定 16
(八) FTIR測定 16
(九) 統計分析 16
伍、結果與討論 17
一、 醃漬液可溶性固形物測定 17
二、 素肉乾水分及水活性測定 17
(一) 水分含量 17
(二) 水活性含量 17
三、 素肉乾質地剖面分析 18
四、 素肉乾硬度品評 19
五、 素肉乾色澤測定 19
六、 素肉乾等溫吸附線 20
七、 素肉乾玻璃轉化溫度測定 22
(一) 玻璃轉化溫度結果 22
(二) Gordon-Taylor model曲線 24
八、 素肉乾FTIR測定 25
(一) -OH官能基測定 25
(二) δ(CH2)/δ(HOH)吸收峰強度比 26
(三) δ(CH2)/δ(COH)醣苷鍵吸收峰強度比 26
(四) 醣類與蛋白質交互作用測定 26
九、 相關性分析 27
十、 成本效益分析 28
陸、結論 29
柒、參考文獻 30
白炳蓮、韋玨、王海濤、李敏(2013)。用紅外光譜技術研究氫鍵的鍵合方式。化學通報,76(2),167-170。
石啟龍、趙亞、林雯雯、範勇(2014)。添加劑提高燕麥片貯藏穩定性。農業工程學報,30(2),278-285。
任煒、段續(2016)。凍乾淮山藥貯藏條件研究。食品研究與開發,37(2),187-190。
李兆豐、顧正彪、洪雁(2005)。食品體系中玻璃化轉變溫度的測定方法及其比較。冷飲與速凍食品工業,11(1),31-34。
李玫琳、余豐任、何琪義(2011)。食品化學與分析。台南市:復文圖書有限公司。
易小紅、鄒同華、劉斌(2007)。聚合物玻璃化轉變理論在乾燥食品加工儲藏中的應用。食品研究與開發,28(9),178-182。
林盈君(2003)人造肉之製造與展望。食品科技新知研討會。P9-13。2003年10月 高雄海洋科技大學。
林書賢(2006)。市售組織化植物蛋白(Texturized Vegetable Protein,TVP)物理特性與感官品質間之相關性及其最適品質判定之探討。國立臺灣海洋大學食品科學系碩士論文,基隆市。
區少梅(2016)。食品感官品評學與實習。台中市:華格納企業有限公司。
陳怡德(2006)。不同擠壓加工對組織化植物蛋白理化性質之研究。國立屏東科技大學食品科學系碩士論文,屏東縣。
陳明造(1999)。素食食品-營養、特性與加工。台北市:義軒圖書文具有限公司。
陳盈方、彭盈方、陳信言、林學詩(2016)。小米品種加工適性分析之研究。臺東區農業改良場研究彙報,59-71。
彭亞鋒、周耀斌、李勤、薛峰、馮俊(2009)。海藻糖的特性及其應用。中國食品添加劑,1,65-69。
黃三龍、陳立煌、陳文亮(1998A)利用雙軸擠壓技術製造素肉之研究(Ⅰ)加工條件對素肉品質影響。食品科學,25(3):331-343。
黃三龍、陳立煌、陳文亮(1998B)利用雙軸擠壓技術製造素肉之研究(Ⅱ)原料配方與添加物對素肉品質之影響。食品科學,25(4):394-405。
蒙健宗、趙文報(2005)。海藻糖的性質及其在新型食品開發中的應用。食品科學,26(6),281-283。
劉華、鐘業俊、李資玲、李積華、林麗靜、周偉(2015)。凍乾聖女果粉的水分吸附性質及玻璃化轉變溫度。食品科學,36(23),95-99。
蔡育真(2002)。直立式單軸擠壓機製作薄片狀組織化植物蛋白產品之研究。國立屏東科技大學食品科學系碩士論文,屏東縣。
鬫建全、駱錫能、盧義發、邱思魁、陳振芳、吳柏青(2007)。食品化學。新北市:新文京開發出版股份有限公司。 
Abbott, T. P., Nabetani, H., Sessa, D. J., Wolf, W. J., Liebman, M. N., & Dukor, R. K. (1996). Effects of bound water on FTIR spectra of glycinin. Journal of Agricultural and Food Chemistry, 44(8), 2220-2224.
Achanta, S., Okos, M. R., Cushman, J. H., & Kessler, D. P. (1997). Moisture transport in shrinking gels during saturated drying. AIChE Journal, 43(8), 2112-2122.
Aguerre, R. J., Suarez, C., & Viollaz, P. E. (1989). New BET type multilayer sorption isotherms. Part II: Modelling water sorption in foods. Lebensmittel-Wissenschaft und -Technologie, 22, 192-195.
Allison, S. D., Chang, B., Randolph, T. W., & Carpenter, J. F. (1999). Hydrogen bonding between sugar and protein is responsible for inhibition of dehydration-induced protein unfolding. Archives of Biochemistry and Biophysics, 365(2), 289-298.
Al-Muhtaseb, A. H., McMinn, W. A. M., & Magee, T. R. A. (2004). Water sorption isotherms of starch powders: Part 1: Mathematical description of experimental data. Journal of Food Engineering, 61(3), 297-307.
Andrade, R. D., Lemus, R., & Perez, C. E. (2011). Models of sorption isotherms for food: uses and limitations. Vitae, 18(3), 325-334.
Atarés, L., Chiralt, A., Corradini, M. G., & Gonzalez-Martinez, C. (2009). Effect of the solute on the development of compositional profiles in osmotic dehydrated apple slices. LWT-Food Science and Technology, 42(1), 412-417.
Bhandari, B. R., & Howes, T. (2000). Glass transition in processing and stability of food. Food Australia, 52(12), 579-585.
Bizot, H. (1983). Using the 'GAB' model to construct sorption isotherms. Physical Properties of Foods, 43-54.
Blahovec, J., & Yanniotis, S. (2009). Modified classification of sorption isotherms. Journal of Food Engineering, 91(1), 72-77.
Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a theory of the van der Waals adsorption of gases. Journal of the American Chemical society, 62(7), 1723-1732.
Buehler, M. (2017). Methods of Measurement of Non-Equilibrium States and Glass Transition. In Non-Equilibrium States and Glass Transitions in Foods (pp. 1-35). Cambridge, England: Woodhead Publishing.
Carpenter, J. F., & Crowe, J. H. (1989). An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry, 28(9), 3916-3922.
Cassini, A. S., Marczak, L. D. F., & Noreña, C. P. Z. (2006). Water adsorption isotherms of texturized soy protein. Journal of Food Engineering, 77(1), 194-199.
Chen, C. M., & Lin, H. T. (2017). Supplementary effects of higher levels of various disaccharides on processing yield, quality properties and sensory attributes of Chinese-style pork jerky. Asian-Australasian Journal of Animal Sciences, 30(12), 1773-1783.
Chen, T., Bhowmick, S., Sputtek, A., Fowler, A., & Toner, M. (2002). The glass transition temperature of mixtures of trehalose and hydroxyethyl starch. Cryobiology, 44(3), 301-306.
Chen, W. S., Liu, D. C., & Chen, M. T. (2002). Effects of high level of sucrose on the moisture content, water activity, protein denaturation and sensory properties in Chinese-style pork jerky. Asian-Australasian Journal of Animal Sciences, 15(4), 585-590.
Cooper, J. M. (2006). Sucrose. Optimising Sweet Taste in Foods (pp. 135-152). Cambridge, England: Woodhead Publishing.
Crowe, J. H., Carpenter, J. F., & Crowe, L. M. (1998). The role of vitrification in anhydrobiosis. Annual Review of Physiology, 60(1), 73-103.
Crowe, L. M., Reid, D. S., & Crowe, J. H. (1996). Is trehalose special for preserving dry biomaterials?. Biophysical Journal, 71(4), 2087-2093.
Crowe, J. H., Crowe, L. M., & Jackson, S. A. (1983). Preservation of structural and functional activity in lyophilized sarcoplasmic reticulum. Archives of Biochemistry and Biophysics, 220(2), 477-484.
Erickson, L. E. (1982). Recent developments in intermediate moisture foods. Journal of Food Protection, 45(5), 484-491.
Fan, J., Mitchell, J. R., & Blanshard, J. M. (1996). The effect of sugars on the extrusion of maize grits: I. The role of the glass transition in determining product density and shape. International Journal of Food Science & Technology, 31(1), 55-65.
Fabra, M. J., Talens, P., Moraga, G., & Martínez-Navarrete, N. (2009). Sorption isotherm and state diagram of grapefruit as a tool to improve product processing and stability. Journal of Food Engineering, 93(1), 52-58.
Forni, E., Sormani, A., Scalise, S., & Torreggiani, D. (1997). The influence of sugar composition on the colour stability of osmodehydrofrozen intermediate moisture apricots. Food Research International, 30(2), 87-94.
Fox Jr, T. G., & Flory, P. J. (1950). Second‐order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. Journal of Applied Physics, 21(6), 581-591.
Friedman, H. H., Whitney, J. E., & Szczesniak, A. S. (1963). The texturometer—a new instrument for objective texture measurement. Journal of Food Science, 28(4), 390-396.
Gould, G. W. (1996). Methods for preservation and extension of shelf life. International Journal of Food Microbiology, 33(1), 51-64.
Green, R. W. (1948). The adsorption of water vapor on casein. Transactions and Proceedings of the Royal Society of New Zealand, 77, 313-317.

Gulati, T., & Datta, A. K. (2015). Mechanistic understanding of case-hardening and texture development during drying of food materials. Journal of Food Engineering, 166, 119-138.
Han, D. J., Jeong, J. Y., Choi, J. H., Choi, Y. S., Kim, H. Y., Lee, M. A., ... & Kim, C. J. (2008). Effects of various humectants on quality properties of pork jerky. Food Science of Animal Resources, 28(4), 486-492.
Higashiyama, T. (2002). Novel functions and applications of trehalose. Pure and applied Chemistry, 74(7), 1263-1269.
Jothi, J. S., Le, T. N. D., & Kawai, K. (2020). Effects of trehalose and corn starch on the mechanical glass transition temperature and texture properties of deep-fried food with varying water and oil contents. Journal of Food Engineering, 267, 109731.
Jouppila, K., & Roos, Y. H. (1994). Water sorption and time-dependent phenomena of milk powders. Journal of Dairy Science, 77(7), 1798-1808.
Kačuráková, M., & Mathlouthi, M. (1996). FTIR and laser-Raman spectra of oligosaccharides in water: characterization of the glycosidic bond. Carbohydrate Research, 284(2), 145-157.
Karathanos, V. (1993). Collapse of structure during drying of celery. Drying Technology, 11(5), 1005-1023.
Karel, M., & Heidelbaugh, N. D. (1973). Recent research and development in the field of low‐moisture and intermediate‐moisture foods. Critical Reviews in Food Science & Nutrition, 3(3), 329-373.
Karel, M., & Labuza, T. P. (1968). Nonenzymic browning in model systems containing sucrose. Journal of Agricultural and Food Chemistry, 16(5), 717-719.
Karel, M., Anglea, S., Buera, P., Karmas, R., Levi, G., & Roos, Y. (1994). Stability related transitions of amorphous foods. Thermochimica acta, 246(2), 249-26
Kinsella, J. E., Fox, P. F., & Rockland, L. B. (1986). Water sorption by proteins: milk and whey proteins. Critical Reviews in Food Science & Nutrition, 24(2), 91-139.
Kitcharoenthawornchai, N., & Harnsilawat, T. (2015). Characterization of meat analogue nugget: effect of textured vegetable protein. Food and Applied Bioscience Journal, 3(2), 121-129.
Kubo, S., & Kadla, J. F. (2005). Hydrogen bonding in lignin: a Fourier transform infrared model compound study. Biomacromolecules, 6(5), 2815-2821.
Kuswandi, B., Putri, F. K., Gani, A. A., & Ahmad, M. (2015). Application of class-modelling techniques to infrared spectra for analysis of pork adulteration in beef jerkys. Journal of Food science and Technology, 52(12), 7655-7668.

Lerbret, A., Bordat, P., Affouard, F., Descamps, M., & Migliardo, F. (2005). How homogeneous are the trehalose, maltose, and sucrose water solutions? An insight from molecular dynamics simulations. The Journal of Physical Chemistry B, 109(21), 11046-11057.
Li, Q. E., & Schmidt, S. J. (2011). Use of ramping and equilibrium water vapor sorption methods to determine the critical relative humidity at which the glassy to rubbery transition occurs in polydextrose. Journal of Food Science, 76(1), E149-E157.
Li, Y., Wang, Z., Zheng, J., Su, H., Lin, F., Guo, K., ... & Zhang, W. B. (2013). Cascading one-pot synthesis of single-tailed and asymmetric multitailed giant surfactants. ACS Macro Letters, 2(11), 1026-1032.
Lucchesi, P. J., & Glasson, W. A. (1956). Infrared investigation of bound water in hydrates. Journal of the American Chemical Society, 78(7), 1347-1348.
Malav, O. P., Talukder, S., Gokulakrishnan, P., & Chand, S. (2015). Meat analog: A review. Critical Reviews in Food Science and Nutrition, 55(9), 1241-1245.
Martinez, O., Salmeron, J., Guillen, M. D., & Casas, C. (2004). Texture profile analysis of meat products treated with commercial liquid smoke flavourings. Food Control, 15(6), 457-461.
Maskan, M. (2001). Kinetics of colour change of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48(2), 169-175.
Mayor, L., & Sereno, A. M. (2004). Modelling shrinkage during convective drying of food materials: a review. Journal of Food Engineering, 61(3), 373-386.
Miller, D. P., de Pablo, J. J., & Corti, H. (1997). Thermophysical properties of trehalose and its concentrated aqueous solutions. Pharmaceutical Research, 14(5), 578-590.
Muguruma, M., Nishimura, T., Umetsu, R., Goto, I., & Yamaguchi, M. (1987). Humectants improve myosin extractability and water activity of raw, cured intermediate moisture meats. Meat Science, 20(3), 179-194.
Multon, J. L., & JL, M. (1981). L’état actuel des travaux de la Commission “Aliments à humidité intermédiaire” du C.N.E.R.N.A. “Industries Alimentaires et Agricoles”, 98 (4), 291-302.
Mrad, N. D., Bonazzi, C., Boudhrioua, N., Kechaou, N., & Courtois, F. (2012). Influence of sugar composition on water sorption isotherms and on glass transition in apricots. Journal of Food Engineering, 111(2), 403-411.
Nam, D. G., Jeong, B. G., & Chun, J. (2017). Physicochemical properties and oxidative stabilities of chicken breast jerky treated various sweetening agents. Korean Journal of Food Preservation, 24(1), 84-92.
Ohtake, S., & Wang, Y. J. (2011). Trehalose: current use and future applications. Journal of Pharmaceutical Sciences, 100(6), 2020-2053.
Patist, A., & Zoerb, H. (2005). Preservation mechanisms of trehalose in food and biosystems. Colloids and Surfaces B: Biointerfaces, 40(2), 107-113.
Pauling, L. (1945). The adsorption of water by proteins. Journal of the American Chemical Society, 67(4), 555-557.
Pittia, P., & Antonello, P. (2016). Safety by control of water activity: drying, smoking, and salt or sugar addition. In Regulating Safety of Traditional and Ethnic Foods(pp. 7-28). Academic Press, USA.
Prabhakar, K. (1999). Intermediate moisture foods. Encyclopedia of Food Microbiology, 1095-1101.
Quinton, R. D., Cornforth, D. P., Hendricks, D. G., Brennand, C. P., & Su, Y. K. (1997). Acceptability and composition of some acidified meat and vegetable stick products. Journal of Food Science, 62(6), 1250-1254.
Quirijns, E. J., Van Boxtel, A. J., van Loon, W. K., & Van Straten, G. (2005). Sorption isotherms, GAB parameters and isosteric heat of sorption. Journal of the Science of Food and Agriculture, 85(11), 1805-1814.
Rao, M., & Rizvi, S. (1995). Engineering Properties of Foods, New York: Marcel Dekker.
Rahman, M. S., & Labuza, T. P. (1999). Water activity and food preservation. In M. S. Rahman (Ed.), Handbook of food preservation (pp. 339–382). New York: Marcel Dekker.
Riaz, M. N. (2011). Texturized vegetable proteins. In Handbook of Food Proteins (pp. 395-418). Cambridge, England: Woodhead Publishing.
Rockland, L. B., & Nishi, S. K. (1980). Influence of water activity on food product quality and stability. Food Technology (USA), 34, 42–51.
Roos, Y. (1993A). Melting and glass transitions of low molecular weight carbohydrates. Carbohydrate Research, 238, 39-48.
Roos, Y. H. (1993B). Water activity and physical state effects on amorphous food stability. Journal of Food Processing and Preservation, 16(6), 433-447.
Roos, Y., & Karel, M. (1991). Plasticizing effect of water on thermal behavior and crystallization of amorphous food models. Journal of Food Science, 56(1), 38-43.
Roos, Y. (1995). Characterization of food polymers using state diagrams. Journal of Food Engineering, 24(3), 339-360.
Roser, B. (1991). Trehalose, a new approach to premium dried foods. Trends in Food Science & Technology, 2, 166-169.
Sablani, S. S., Kasapis, S., & Rahman, M. S. (2007). Evaluating water activity and glass transition concepts for food stability. Journal of Food Engineering, 78(1), 266-271.
Sablani, S. S., Kasapis, S., Rahman, M. S., Al-Jabri, A., & Al-Habsi, N. (2004). Sorption isotherms and the state diagram for evaluating stability criteria of abalone. Food Research International, 37(10), 915-924.

Sablani, S. S., Syamaladevi, R. M., & Swanson, B. G. (2010). A review of methods, data and applications of state diagrams of food systems. Food Engineering Reviews, 2(3), 168-203.
Samard, S., & Ryu, G. H. (2019). A comparison of physicochemical characteristics, texture, and structure of meat analogue and meats. Journal of the Science of Food and Agriculture, 99(6), 2708-2715.
Schoebel, T., Tannenbaum, S. R., & Labuza, T. P. (1969). Reaction at limited water concentration 1. Sucrose hydrolysis. Journal of Food Science, 34(4), 324-329.
Shallenberger, R. S., & Birch, G. G. (1975). Sugar Chemistry. AVI Publishing Co., Inc..
Silva, M. M. D., de Gouveia, J. P., & Almeida, F. D. A. (2002). Desorption and isosteric heat of mango pulp. Revista Brasileira de Engenharia Agrícola e Ambiental, 6(1), 123-127.
Sloan, A. E., & Labuza, T. P. (1976). Prediction of water activity lowering ability of food humectants at high aw. Journal of Food Science, 41(3), 532-535.
Slade, L., Levine, H., & Finley, J. W. Protein-water interactions: Water as a plasticizer of gluten and other protein polymers (1989) Protein Quality and the Effects of Processing, (pp. 9-123). New York: Marcel Dekker.
Smith, S. E. (1947). The sorption of water vapor by high polymers. Journal of the American Chemical Society, 69(3), 646-651.
Surana, R., Pyne, A., & Suryanarayanan, R. (2004). Effect of aging on the physical properties of amorphous trehalose. Pharmaceutical Research, 21(5), 867-874.
Syamaladevi, R. M., Sablani, S. S., Tang, J., Powers, J., & Swanson, B. G. (2009). State diagram and water adsorption isotherm of raspberry (Rubus idaeus). Journal of Food Engineering, 91(3), 460-467.
Timmermann, E. O. (1989). A BET-like three sorption stage isotherm. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 85(7), 1631-1645.
Udovičić, M., Baždarić, K., Bilić-Zulle, L., & Petrovečki, M. (2007). What we need to know when calculating the coefficient of correlation?. Biochemia medica: Biochemia medica, 17(1), 10-15.
Vinogradov, S. N., & Linnell, R. H. (1971). Hydrogen bonding. Van Nostrand Reinhold.
Wang, B., Tchessalov, S., Warne, N. W., & Pikal, M. J. (2009). Impact of sucrose level on storage stability of proteins in freeze-dried solids: I. Correlation of protein–sugar interaction with native structure preservation. Journal of Pharmaceutical Sciences, 98(9), 3131-3144.
Wiedemann, W., & Strobel, E. (1987). Processing and economic advantages of extrusion cooking in comparison with conventional processes in the food industry. Extrusion Technology for the Food Industry, 132-169.  
Yu, H., & Li, Y. (2012). State diagrams of freeze dried colostral whey powders: Effects of additives on the stability of colostral whey powders. Journal of Food Engineering, 110(1), 117-126.
Yuryev, V. P., Nemirovskaya, I. E., & Maslova, T. D. (1995). Phase state of starch gels at different water contents. Carbohydrate Polymers, 26(1), 43-4
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top