(3.232.129.123) 您好!臺灣時間:2021/03/06 00:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊善云
研究生(外文):Shan Yun Yang
論文名稱:固定導通時間增強漣波電壓平方降壓轉換器
論文名稱(外文):A Constant On-Time Enhanced Ripple Control V2 Buck Converter
指導教授:葉美玲葉美玲引用關係
指導教授(外文):Yeh, Mei-Ling
口試委員:林嘉洤黃淑絹葉美玲
口試委員(外文):Lin, Jia-ChuanHuang, Shu-ChuanYeh, Mei-Ling
口試日期:2020-01-14
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:63
中文關鍵詞:降壓轉換器漣波控制電壓平方控制固定導通時間
外文關鍵詞:Buck converterripple controlV2 controlconstant on-time control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:45
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來可攜式電子產品日益月新,對於電源管理IC而言,應付頻繁的模式切換,其切換輕重載的快速反應是必要,且可攜式產品因長時間處於待機狀態,因此在輕載效率時,功率消耗是一大考量。由於傳統PWM控制補償元件的因素,使得暫態響應較慢以及控制方式讓輕載效率較差,而漣波控制中的固定導通控制具有快速暫態響應的優點,也因為擁有變頻的特點,在輕載效率有著良好的表現,適合可攜式產品常處於待機狀態下的需求。
本論文設計固定導通時間增強漣波電壓平方降壓轉換器,採用固定導通時間控制為基礎架構。在系統慢速回授路徑使用誤差放大器加強電壓調節率,以及在快速回授路徑加入漣波產生器增強回授漣波訊號使系統Resr需求降低。回授電阻並聯一個電容可以確保較小輸出電容值保持系統穩定,對於雜訊干擾也能改善。本設計以TSMC 0.35μm Mixed-Signal 2P4M Polycide 5V製程設計與實現, 輸入電壓範圍在2.8V ~ 3.6V,輸出電壓為1.8V,操作頻率在1MHz,轉換效率最高可達93.1%。使用電感值4.7uH,負載電容值10uF,暫態響應時間於負載電流範圍100mA變化至500mA以及從500mA變化至100mA,分別為4.65 μs與4.72 μs。

關鍵詞:降壓轉換器,漣波控制,電壓平方控制,固定導通時間。
In recent years, portable electronic products are advancing daily. For power management ICs, to cope with frequent mode switching, fast response of switching light and heavy loads is necessary. Portable products are in standby mode for a long time, power consumption is a big consideration at light loads. Due to the factors of compensating components in traditional PWM control, the transient response is slower and the control method makes the light load efficiency worse. The constant on-time (COT) control in ripple control has the advantage of fast transient response, and because of its frequency conversion characteristics, it has a good performance at light load efficiency, which is suitable for the needs of portable products in standby mode.
In this thesis, we achieve a constant on-time control V2 buck converter with enhanced ripple which the constant on-time control is the basic architecture. The use of an error amplifier in the system's slow feedback path to enhance the voltage regulation, and the addition of a ripple generator to the fast feedback path to enhance the feedback ripple signal reduce the system's Resr demand. A feedback resistor in parallel with a capacitor can ensure a small output capacitance value to keep the system stable, and it can also improve noise interference. This chip is designed and implemented with TSMC 0.35μm Mixed-Signal 2P4M Polycide 5V process. The input voltage range is 2.8V ~ 3.6V, the output voltage is 1.8V, the operating frequency is 1MHz, and the conversion efficiency can reach 93.1%. Using an inductance value of 4.7uH and a load capacitance value of 10uF, the transient response time varies from 100mA to 500mA and from 500mA to 100mA in the load current range, which are 4.65 μs and 4.72 μs, respectively.

Keywords: Buck converter, ripple control, V2 control, constant on-time control
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 論文架構 2
第二章 直流轉直流轉換器概論 4
2.1 線性穩壓器基礎架構 4
2.2 基本切換式穩壓器介紹 5
2.2.1 切換式降壓穩壓器 5
2.3 切換式穩壓器規格介紹 10
2.3.1 暫態響應 10
2.3.2 線性穩壓調節率 11
2.3.3 負載穩壓調節率 11
2.3.4 輸出電壓漣波 11
2.3.5 轉換效率 12
第三章 切換式穩壓器控制模式架構 14
3.1 傳統切換式穩壓器控制簡介 14
3.1.1 電壓控制模式 14
3.1.2 電流控制模式 15
3.2 漣波控制簡介 16
3.2.1 固定導通時間控制 17
3.2.2 固定截止時間控制 18
3.2.3 電壓平方控制 19
3.2.4 磁滯控制 20
3.3 系統架構 21
第四章 子電路設計與模擬 25
4.1前饋電壓漣波產生器電路 25
4.2偏壓電路 26
4.3誤差放大器 29
4.4能隙參考電壓電路 33
4.5遲滯比較器 37
4.6固定導通時間產生器 38
4.7緩啟動電路 40
4.8非重疊導通電路 42
第五章 穩壓器模擬結果與晶片佈局 44
5.1 設計流程 44
5.2 晶片佈局圖與佈局考量 45
5.3 輸出電壓漣波 48
5.4 負載穩壓調節率 52
5.5 線性穩壓調節率 54
5.6 暫態響應 55
5.7 效能總結 56
5.8 預計規格列表 57
5.9 文獻比較表 58
第六章 結論與未來展望 60
6.1 結論 60
6.2 未來展望 60
參考文獻 62
[1] 穿戴式系統的最佳化電源管理, May 2017. [Online]. Available: https://www.eettaiwan.com/news/article/20170518TA31-power-management-considerations-wearable-systems
[2] M. Siu, P. K. T. Mok, K. N. Leung, Y. H. Lam, and W. H. Ki, “A voltage-mode PWM buck regulator with end-point prediction,” IEEE Transactions on Circuits and Systems II, vol. 53, no. 4, pp. 294-298, Apr. 2006.
[3] R. Redl and J. Sun, "Ripple-based control of switching regulators—an overview," IEEE Transactions on Power Electronics, vol. 24, no. 12, pp. 2669-2680, Dec. 2009.
[4] Dennis Solley, “Theory of operation of V2 controllers with emphasis on applications using MLCC’s for output filtering,” Semiconductor Components Industries, May. 2009.
[5] Yu-Cheng Lin, Ching-Jan Chen, Dan Chen, and Brian Wang, “A ripple-based constant on-time control with virtual inductor current and offset cancellation for DC power converters,” IEEE Trans. Power Electron, vol. 27, no. 10, October 2012.
[6] 梁適安, 交換式電源供給器之理論與實務設計, 全華圖書公司, 1994。
[7] G. A. Rincon-Mora and P. E. Allen, "A low-voltage, low quiescent current, low drop-out regulator," IEEE Journal of Solid-State Circuits, vol. 33, no. 1, pp. 36- 44, Jan. 1998.
[8] Wan-Rone Liou, Mei-Ling Yeh, and Yueh Lung Kuo, “A high efficiency dual-mode buck converter IC for portable applications,” IEEE Trans. Power Electron, vol. 23, no. 2, March 2008.
[9] W. Qiu, G. Miller, and Z. Liang, "Dual-edge pulse width modulation scheme for fast transient response of multiple-phase voltage regulators," IEEE Power Electronics Specialists Conference, Orlando, FL, 2007, pp. 1563-1569.
[10] R. Sheehan, "Understanding and applying current-mode control theory" Power Electron. Technol. Exhib. Conference, Oct. 2007.
[11] J. Wang, J. Xu, and B. Bao, "Analysis of pulse bursting phenomenon in constant-on-time-controlled buck converter," IEEE Transactions on Industrial Electronics, vol. 58, no. 12, pp. 5406-5410, Dec. 2011.
[12] Ling-feng Shi, and Ling-yan Xu, “Frequency compensation circuit for adaptive on-time control buck regulator,” IEEE Power Electronics, vol. 7, no. 7, pp. 1805-1809, July 2014.
[13] Y. H. Lee, S. J. Wang, and K. H. Chen, “Quadratic differential and integration technique in V2 control buck converter with small ESR capacitor,”IEEE Trans. Power Electron., vol. 25, no. 4, April 2010
[14] Chunping Song and J. L. Nilles, "Accuracy analysis of hysteretic current-mode voltage regulator," Twentieth Annual IEEE Applied Power Electronics Conference, March 2005.
[15] Richtek Technologies, 穩定度測試,Richtek Technologies Corporation,November 2013
[16] 王禎佑,漣波控制切換式升壓調節器之研究與設計,國立成功大學,臺南,2016。
[17] Ke-Horng Chen, Power Management Techniques for Integrated Circuit Design. New York: Wiley, 2016.
[18] B. Razavi, Design of analog CMOS integrated circuits, Boston, MA: McGraw-Hill, 2001.
[19] David A. Johns, Analog integrated circuit design. New York: Wiley, 1997.
[20] Ka Nang Leung and P.K.T. Mok, “A sub-1-V 15-ppm/°C CMOS bandgap voltage reference without requiring low threshold voltage device,” IEEE J. Solid-State Circuits, vol. 37, no.1, pp.526-530, Apr. 2002.
[21] John Wiley and Sons, Introduction to CMOS OP-AMPs and comparators, New York: Wiley, 1999.
[22] Changsik Yoo, “A CMOS buffer without short-circuit power consumption,” IEEE Transactions on Circuits and Systems II, vol. 47, pp. 935-937, Sept. 2000.
[23] 廖裕平, 陸瑞強, 類比積體電路佈局, 全華圖書股份有限公司, 2014
[24] Y. H. Lee, S. J. Wang, and K. H. Chen, “Quadratic differential and integration technique in V2 control buck converter with small ESR capacitor,”IEEE Trans. Power Electron., vol. 25, no. 4, April 2010
[25] Y. Y. Mai and P. K. T. Mok, “A constant frequency output-ripplevoltage-based buck converter without using large ESR capacitor,” IEEETrans. Circuits Syst. II, Exp. Brief, vol. 55, no. 8, pp. 748–752, Aug.2008.
[26] P.-J. Liu, W.-S. Ye, J.-N. Tai, H.-S. Chen, J.-H. Chen, and Y. E. Chen,“A high-efficiency CMOS DC–DC converter with 9-μs transient recoverytime,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 3, pp. 575–583, Mar. 2012.
[27] Hung-Chih Lin, Bou-Ching Fung, and Tsin-Yuan Chang, “A current mode adaptive on-time control scheme for fast transient DC-DC converters,” in Proc. IEEE Int. Symp. Circuits Syst., 2008, pp. 2602–2605.
[28] 張家豪,使用鎖頻技術之可是硬性導通時間控制的降壓轉換器,國立台北科技大學,台北,2016。
[29] Shuilin Tian, Fred C. Lee, Yingyi Yan, and Qiang Li, “Unified equivalent circuit model and optimal design of V2 controlled buck converters,” IEEE Trans. Power Electron., vol. 31, no. 2, February, 2016.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔