[1] H. Kroemer, "Theory of a Wide-Gap Emitter for Transistors," in Proceedings of the IRE, vol. 45, no. 11, pp. 1535-1537, Nov. 1957, doi: 10.1109/JRPROC.1957.278348.
[2] P.M. Asbeck, M. F. Chang, D. L. Miller, G. J. Sullivan, N. H. Sheng, E.A. Sovero and J. A. Higgins, ”Heterojunction Bipolar Transistors for Microwave and Millimeter-wave Integrated Circuits”,IEEE Trans.Electron Devices, vol. 34, p. 2571, 1987.
[3] M. E. Kim, A.K. Oki, G.M. Gorman, D.K. Umemoto, and J.B. Camou, “GaAs heterojunction bipolar transistor device-And IC technology for high-performance analog and microwave applications”, IEEE Trans. On Microwave Theory and Techniques, vol. 37, p.1286, 1989.
[4] Y. S. Lin, D. H. Huang, W. C. Hsu, K. H. Su and T. B. Wang, “Enhancing the current gain in InP/InGaAs double heterojunction bipolar transistors using emitter edge thinning”, Semicond. Sci. Technol., vol. 21, p.303, 2006.
[5] A. G. Baca et al., "High-speed performance of NpN InGaAsN-based double heterojunction bipolar transistors," GaAs IC Symposium. IEEE Gallium Arsenide Integrated Circuit Symposium. 23rd Annual Technical Digest 2001 (Cat. No.01CH37191), Baltimore, MD, USA, 2001, pp. 192-195, doi: 10.1109/GAAS.2001.964376.
[6] K. Datta and H. Hashemi, "Watt-Level mm-Wave Power Amplification With Dynamic Load Modulation in a SiGe HBT Digital Power Amplifier," in IEEE Journal of Solid-State Circuits, vol. 52, no. 2, pp. 371-388, Feb. 2017, doi: 10.1109/JSSC.2016.2622710.
[7] J. Jung, G. Lee and J. Song, "A SiGe HBT power amplifier with integrated mode control switches for LTE applications," 2013 IEEE 13th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Austin, TX, 2013, pp. 138-140, doi: 10.1109/SiRF.2013.6489458.
[8] D. Kang et al., "1.6–2.1 GHz broadband Doherty power amplifiers for LTE handset applications," 2011 IEEE MTT-S International Microwave Symposium, Baltimore, MD, 2011, pp. 1-4, doi: 10.1109/MWSYM.2011.5972657.
[9] M. Tu, H. Ueng and Y. Wang, "Performance of High-Reliability and High-Linearity InGaP/GaAs HBT PAs for Wireless Communication," in IEEE Transactions on Electron Devices, vol. 57, no. 1, pp. 188-194, Jan. 2010, doi: 10.1109/TED.2009.2035543.
[10] N. Sarmah, B. Heinemann and U. R. Pfeiffer, "A 135–170 GHz power amplifier in an advanced sige HBT technology," 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Seattle, WA, 2013, pp. 287-290, doi: 10.1109/RFIC.2013.6569584.
[11] V. Radisic, D. W. Scott, A. Cavus and C. Monier, "220-GHz High-Efficiency InP HBT Power Amplifiers," in IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 12, pp. 3001-3005, Dec. 2014, doi: 10.1109/TMTT.2014.2362133.
[11] W. Y. Refai and W. A. Davis, "A linear, highly-efficient, class-J handset power amplifier utilizing GaAs HBT technology," 2015 IEEE 16th Annual Wireless and Microwave Technology Conference (WAMICON), Cocoa Beach, FL, 2015, pp. 1-4, doi: 10.1109/WAMICON.2015.7120353.
[12] V. Do, V. Subramanian, W. Keusgen and G. Boeck, "Design and Optimization of a High Efficiency 60 GHz SiGe-HBT Power Amplifier," 2007 IEEE International Workshop on Radio-Frequency Integration Technology, Rasa Sentosa Resort, 2007, pp. 150-153, doi: 10.1109/RFIT.2007.4443939.
[13] T. Chen, F. Wang, X. Sun and J. Wu, "A high performance 2.4 GHz GaAs HBT class J power amplifier," Fifth International Conference on Computing, Communications and Networking Technologies (ICCCNT), Hefei, 2014, pp. 1-4, doi: 10.1109/ICCCNT.2014.6963062.
[14] R. S. Nitesh, J. Rajendran, H. Ramiah and B. S. Yarman, "A 0.8 mm2 Sub-GHz GaAs HBT Power Amplifier for 5G Application Achieving 57.5% PAE and 28.5 dBm Maximum Linear Output Power," in IEEE Access, vol. 7, pp. 158808-158819, 2019, doi: 10.1109/ACCESS.2019.2949369.
[15] Y. S. Lin, “Breakdown characteristics of InP/InGaAs composite collectordouble heterojunction bipolar transistor”, Appl. Phys.lett., vol.19, p.864, 2004.
[16] 汪逸旻(2017)。鉑基極沉積後回火對磷化銦鎵/砷化鎵異質接面雙極性電晶體的效應。國立臺灣海洋大學電機工程學系碩士論文,基隆市。 取自https://hdl.handle.net/11296/2yra5q[17] 吳柏翰(2017)。具熱處理後金鋅基極金屬之磷化銦鎵/砷化鎵異質接面雙極性電晶體的研究。國立臺灣海洋大學電機工程學系碩士論文,基隆市。 取自https://hdl.handle.net/11296/w66asv[18] P. Asbeck, “III-V HBTs for microwave applications: Technology status and modeling challenges,” in Proc. Bipolar/BiCMOS Circuits and Technology Meeting, Minneapolis, MN, pp. 52–57.
[19] T. Takahashi, S. Sasa, A. Kawano, T. Iwai and T. Fujii, "High reliability InGaP/GaAs HBT fabricated by self aligned process", Proc. IEDM, pp. 191-194, 1994.
[20] W. L. Chen, T. S. Kim, H. F. Chau and T. Henderson, "High performance InGaP/GaAs HBT with AlGaAs/InGaP emitter passivated ledges for reliable power applications", Proc. Indium Phosphide and Rel. Mater., pp. 361-364, 1997.
[21] N. Pan, J. Elloiott, D. P. Vu, K. Kishimoto, J. K. Twynam and G. E.Stillman, “High Reliability InGaP/GaAs HBT”, IEEE Electron Devices Lett, vol. 19, p. 115, 1998.
[22] F. Alexander, J. L. Benchimol, P. Launay, J. Dangla and C. Dubon-Chevallier, “Modern Epitaxial Techniques for HBT Structures”,Solid-State Electronics, vol. 38, p. 1667, 1995.
[23] T. S. Low, C. P. Hutchinson, P. C. Canfield, T. S. Shirley, R. E. Yeats,J.S. C.Chang, G. K. Essilfie, M.K. Culver, W.C. Whiteley, D. C. DAvanzo, N. Pan, J. Elliot, and C. Lutz, “Migration fiom an AlGaAs to an InGaP Emitter HBT IC Process for Improved Reliability”, GaAs IC Symp, p. 153, 1998.
[24] J. M. Olson, R, K. Ahrenkiel, D. J. Dunlavy, Brian Keyes, and A. E.Kibbier , “Ultraiow recombination velocity at Ga0.51n0.5P/GaAs heterointerfaces ” ,Appl. Phys. Lett. , vol. 55, p. 1208 , 1989 .
[25] T.S. Low, C.P. Hutchinson, P.C. Canfield, T.S. Shirley, R.E. Yeats,J.S.C. Chang, G.K. Essilfie, M.K. Culver, W.C. Whiteley, D. C. D'Avanzo, N. Pan, J. Elliot, and C. Lutz, “Migration from an AlGaAs to an InGaP Emitter HBT IC Process for Improved Reliability”, IEEE Proc. IEDM, p.153,1998.
[26] 葉人銓(2005)。以高電流密度測試異質接面電晶體之技術研發及用沉積氮化矽來保護磷化銦鎵/砷化鎵異質接面雙極性電晶體之研究。國立東華大學材料科學與工程學系碩士論文,花蓮縣。取自https://hdl.handle.net/11296/76y3yf[27] R. Hakimzadeh, H. J. Moller and S. Bailey, "Evaluation of the minority carrier diffusion length and surface-recombination velocity in GaAs p/n solar cells," The Conference Record of the Twenty-Second IEEE Photovoltaic Specialists Conference - 1991, Las Vegas, NV, USA, 1991, pp. 335-340 vol.1, doi: 10.1109/PVSC.1991.169234.
[28] S. J. Pearton, F. Ren, W. S. Hobson, C. R. Abernathy and U. K. Chakrabarti, "Effects of wet and dry etching and sulphide passivation on surface recombination velocities of InGaP p-n junctions," Proceedings of 1994 IEEE 6th International Conference on Indium Phosphide and Related Materials (IPRM),Santa Barbara, CA, USA, 1994, pp. 186-189, doi: 10.1109/ICIPRM.1994.328193.
[29] S. W. Tan, H. R. Chen, W. T. Chen, M. Y. Chu and W. S. Lour, "Sulfur- and InGaP-passivated heterojunction bipolar transistors," The Fourth International Workshop on Junction Technology, 2004. IWJT '04., Shanghai, China, 2004, pp. 228-231, doi: 10.1109/IWJT.2004.1306801.