跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 17:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張元
研究生(外文):Chang, Yuan
論文名稱:金鈹基極金屬系列異質接面雙極性電晶體之研究
論文名稱(外文):Studis of Heterojunction Bipolar Transistors(HBTs) with AuBe Series Base Metal
指導教授:羅文雄羅文雄引用關係
指導教授(外文):Lour, Wen-Shiung
口試委員:蔡榮輝黃子軒楊偉臣邱紹諺羅文雄
口試委員(外文):Tsai, Jung-HuiHuang, Tze-HsuanYang, Wei-ChenChiu, Shao-YenLour, Wen-Shiung
口試日期:2020-07-11
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:60
中文關鍵詞:異質接面雙極性電晶體熱退火砷化鎵/磷化銦鎵金鈹-基極式
外文關鍵詞:heterojunction bipolar transistorthermal annealingGaAs/InGaPAuBe-Base typeembedded AuBe-Base type
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
鑒於異質接面雙極性電晶體有著高頻及高穩定性等等的優點,使得它在無線通訊中作為功率放大器,是不可或缺的存在。本文中,首先介紹了傳統雙極性電晶體基本特性,將會伴隨些不可免除的寄生效應,再者,透過將傳統窄能隙射極替換成寬能隙射極,以及提高基極摻雜濃度,進而成就現在所熟知的異質接面雙極性電晶體。

而本文採用之異質接面雙極性電晶體使用兩種不同之製程(i)金鈹-基極式(ii)埋入型金鈹-基極式,透過定義其特性參數,分析元件磊晶結構,如何製作及相關重要注意事項。分別以兩種不同參數對其特性作出判斷,其一,即以溫度為參數,透過量測二、三端特性,定義其基本參數,判斷是否具HBT之成效。其二,以時間為參數,即以高溫長時間量測特性變化,決定元件壽命。

而本文的確成功研擬了兩種不同製程之異質接面雙極性電晶體,如:在金鈹-基極式之HBT其射-基接面導通電壓為1.06 volt,透過擬合後發現,每10℃下降約20.7 mV,其射-基接面之反向飽和電流也透過實驗數據擬合後發現每5℃變為2.22倍。而在埋入型金鈹-基極式之HBT中,其最大增益約124,而其與在長時間下其特性也發現,其元件特性是相當穩定的。
Due to the heterojunction bipolar transistor have the high frequency and high stability, making it an indispensable presence as a power amplifier in wireless communication. In this paper, we introduce the bipolar junction transistors, which will be accompanied by some unavoidable parasitic effects. Furthermore, by changing the traditional narrow gap emitter with wide gap emitter, and increase the Base doping the concentration, it becomes the heterojunction bipolar transistor.

The heterojunction bipolar transistor used in this article uses two different processes (i) AuBe-Base type (ii) embedded AuBe-Base type, by defining its characteristic parameters, let us to know how to make it and remember related important notes. Two different parameters are used to judge their characteristics. First, use temperature as a parameter, and the basic parameters are defined by measuring the second and third terminal characteristics to determine whether it has the effect of HBT. Second, taking time as a parameter, and it means by measuring the characteristic change at high temperature for a long time, determines the life of the component.

And we have actually successfully developed two heterojunction bipolar transistors with different processes. The AuBe-Base type we call it “ traditional process “,it turn-on voltage while 0.1 mA is 1.06 volt, and after we fitting the data of turn-on voltage, from the data we can know every 10℃ drop 20.7 mV.

And the embedded AuBe-base type we know the maximum gain is 124, and it by the thermal annealing let this sample more stable.
摘要..........I
Abstract..........II
目錄..........III
圖目錄..........V
表目錄..........VII
第一章..........1
第二章..........3
2-1 簡介..........3
2-2 雙極性接面電晶體之回顧..........3
2-3 異質接面雙極性電晶體之回顧..........6
2-4 結論..........7
第三章..........8
3-1 簡介..........8
3-2 實驗步驟..........9
3-2-1 晶圓結構..........9
3-2-2 重要製程與製程參數..........10
3-2-3 HBT製程步驟及其等示意圖..........11
3-3 結論..........14
第四章..........15
4-1 簡介..........15
4-2金鈹-基極式HBT的實驗與測試..........16
4-3 實驗結果與討論..........17
4-3-1 金鈹-基極式HBT之EBJ特性..........17
4-3-2 金鈹-基極式之CBJ特性..........21
4-3-3 金鈹-基極式HBT之共射極特性..........24
4-3-4 金鈹-基極式之Gummel-plot特性..........26
4-3-5 120℃時之時間相依性特性..........30
4-4 結論..........32
第五章..........33
5-2 埋入型金鈹-基極式HBT製作與測試..........34
5-3-1 埋入型金鈹-基極式HBT之EBJ特性..........35
5-3-2 埋入型金鈹-基極式之CBJ特性..........38
5-3-3 埋入型金鈹-基極式HBT之共射極特性..........41
5-3-4 埋入型金鈹-基極式之Gummel-plot特性..........43
5-3-5 120℃時之時間相依性特性..........46
5-5 結論..........48
第六章..........49
參考文獻..........50
附件A..........54
A-1 金鈹-基極式..........54
A-2 埋入型金鈹-基極式..........56
[1] H. Kroemer, "Theory of a Wide-Gap Emitter for Transistors," in Proceedings of the IRE, vol. 45, no. 11, pp. 1535-1537, Nov. 1957, doi: 10.1109/JRPROC.1957.278348.

[2] P.M. Asbeck, M. F. Chang, D. L. Miller, G. J. Sullivan, N. H. Sheng, E.A. Sovero and J. A. Higgins, ”Heterojunction Bipolar Transistors for Microwave and Millimeter-wave Integrated Circuits”,IEEE Trans.Electron Devices, vol. 34, p. 2571, 1987.

[3] M. E. Kim, A.K. Oki, G.M. Gorman, D.K. Umemoto, and J.B. Camou, “GaAs heterojunction bipolar transistor device-And IC technology for high-performance analog and microwave applications”, IEEE Trans. On Microwave Theory and Techniques, vol. 37, p.1286, 1989.

[4] Y. S. Lin, D. H. Huang, W. C. Hsu, K. H. Su and T. B. Wang, “Enhancing the current gain in InP/InGaAs double heterojunction bipolar transistors using emitter edge thinning”, Semicond. Sci. Technol., vol. 21, p.303, 2006.

[5] A. G. Baca et al., "High-speed performance of NpN InGaAsN-based double heterojunction bipolar transistors," GaAs IC Symposium. IEEE Gallium Arsenide Integrated Circuit Symposium. 23rd Annual Technical Digest 2001 (Cat. No.01CH37191), Baltimore, MD, USA, 2001, pp. 192-195, doi: 10.1109/GAAS.2001.964376.


[6] K. Datta and H. Hashemi, "Watt-Level mm-Wave Power Amplification With Dynamic Load Modulation in a SiGe HBT Digital Power Amplifier," in IEEE Journal of Solid-State Circuits, vol. 52, no. 2, pp. 371-388, Feb. 2017, doi: 10.1109/JSSC.2016.2622710.


[7] J. Jung, G. Lee and J. Song, "A SiGe HBT power amplifier with integrated mode control switches for LTE applications," 2013 IEEE 13th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Austin, TX, 2013, pp. 138-140, doi: 10.1109/SiRF.2013.6489458.

[8] D. Kang et al., "1.6–2.1 GHz broadband Doherty power amplifiers for LTE handset applications," 2011 IEEE MTT-S International Microwave Symposium, Baltimore, MD, 2011, pp. 1-4, doi: 10.1109/MWSYM.2011.5972657.

[9] M. Tu, H. Ueng and Y. Wang, "Performance of High-Reliability and High-Linearity InGaP/GaAs HBT PAs for Wireless Communication," in IEEE Transactions on Electron Devices, vol. 57, no. 1, pp. 188-194, Jan. 2010, doi: 10.1109/TED.2009.2035543.

[10] N. Sarmah, B. Heinemann and U. R. Pfeiffer, "A 135–170 GHz power amplifier in an advanced sige HBT technology," 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Seattle, WA, 2013, pp. 287-290, doi: 10.1109/RFIC.2013.6569584.

[11] V. Radisic, D. W. Scott, A. Cavus and C. Monier, "220-GHz High-Efficiency InP HBT Power Amplifiers," in IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 12, pp. 3001-3005, Dec. 2014, doi: 10.1109/TMTT.2014.2362133.

[11] W. Y. Refai and W. A. Davis, "A linear, highly-efficient, class-J handset power amplifier utilizing GaAs HBT technology," 2015 IEEE 16th Annual Wireless and Microwave Technology Conference (WAMICON), Cocoa Beach, FL, 2015, pp. 1-4, doi: 10.1109/WAMICON.2015.7120353.
[12] V. Do, V. Subramanian, W. Keusgen and G. Boeck, "Design and Optimization of a High Efficiency 60 GHz SiGe-HBT Power Amplifier," 2007 IEEE International Workshop on Radio-Frequency Integration Technology, Rasa Sentosa Resort, 2007, pp. 150-153, doi: 10.1109/RFIT.2007.4443939.

[13] T. Chen, F. Wang, X. Sun and J. Wu, "A high performance 2.4 GHz GaAs HBT class J power amplifier," Fifth International Conference on Computing, Communications and Networking Technologies (ICCCNT), Hefei, 2014, pp. 1-4, doi: 10.1109/ICCCNT.2014.6963062.

[14] R. S. Nitesh, J. Rajendran, H. Ramiah and B. S. Yarman, "A 0.8 mm2 Sub-GHz GaAs HBT Power Amplifier for 5G Application Achieving 57.5% PAE and 28.5 dBm Maximum Linear Output Power," in IEEE Access, vol. 7, pp. 158808-158819, 2019, doi: 10.1109/ACCESS.2019.2949369.

[15] Y. S. Lin, “Breakdown characteristics of InP/InGaAs composite collectordouble heterojunction bipolar transistor”, Appl. Phys.lett., vol.19, p.864, 2004.

[16] 汪逸旻(2017)。鉑基極沉積後回火對磷化銦鎵/砷化鎵異質接面雙極性電晶體的效應。國立臺灣海洋大學電機工程學系碩士論文,基隆市。 取自https://hdl.handle.net/11296/2yra5q

[17] 吳柏翰(2017)。具熱處理後金鋅基極金屬之磷化銦鎵/砷化鎵異質接面雙極性電晶體的研究。國立臺灣海洋大學電機工程學系碩士論文,基隆市。 取自https://hdl.handle.net/11296/w66asv

[18] P. Asbeck, “III-V HBTs for microwave applications: Technology status and modeling challenges,” in Proc. Bipolar/BiCMOS Circuits and Technology Meeting, Minneapolis, MN, pp. 52–57.

[19] T. Takahashi, S. Sasa, A. Kawano, T. Iwai and T. Fujii, "High reliability InGaP/GaAs HBT fabricated by self aligned process", Proc. IEDM, pp. 191-194, 1994.

[20] W. L. Chen, T. S. Kim, H. F. Chau and T. Henderson, "High performance InGaP/GaAs HBT with AlGaAs/InGaP emitter passivated ledges for reliable power applications", Proc. Indium Phosphide and Rel. Mater., pp. 361-364, 1997.

[21] N. Pan, J. Elloiott, D. P. Vu, K. Kishimoto, J. K. Twynam and G. E.Stillman, “High Reliability InGaP/GaAs HBT”, IEEE Electron Devices Lett, vol. 19, p. 115, 1998.

[22] F. Alexander, J. L. Benchimol, P. Launay, J. Dangla and C. Dubon-Chevallier, “Modern Epitaxial Techniques for HBT Structures”,Solid-State Electronics, vol. 38, p. 1667, 1995.

[23] T. S. Low, C. P. Hutchinson, P. C. Canfield, T. S. Shirley, R. E. Yeats,J.S. C.Chang, G. K. Essilfie, M.K. Culver, W.C. Whiteley, D. C. DAvanzo, N. Pan, J. Elliot, and C. Lutz, “Migration fiom an AlGaAs to an InGaP Emitter HBT IC Process for Improved Reliability”, GaAs IC Symp, p. 153, 1998.

[24] J. M. Olson, R, K. Ahrenkiel, D. J. Dunlavy, Brian Keyes, and A. E.Kibbier , “Ultraiow recombination velocity at Ga0.51n0.5P/GaAs heterointerfaces ” ,Appl. Phys. Lett. , vol. 55, p. 1208 , 1989 .

[25] T.S. Low, C.P. Hutchinson, P.C. Canfield, T.S. Shirley, R.E. Yeats,J.S.C. Chang, G.K. Essilfie, M.K. Culver, W.C. Whiteley, D. C. D'Avanzo, N. Pan, J. Elliot, and C. Lutz, “Migration from an AlGaAs to an InGaP Emitter HBT IC Process for Improved Reliability”, IEEE Proc. IEDM, p.153,1998.

[26] 葉人銓(2005)。以高電流密度測試異質接面電晶體之技術研發及用沉積氮化矽來保護磷化銦鎵/砷化鎵異質接面雙極性電晶體之研究。國立東華大學材料科學與工程學系碩士論文,花蓮縣。取自https://hdl.handle.net/11296/76y3yf

[27] R. Hakimzadeh, H. J. Moller and S. Bailey, "Evaluation of the minority carrier diffusion length and surface-recombination velocity in GaAs p/n solar cells," The Conference Record of the Twenty-Second IEEE Photovoltaic Specialists Conference - 1991, Las Vegas, NV, USA, 1991, pp. 335-340 vol.1, doi: 10.1109/PVSC.1991.169234.

[28] S. J. Pearton, F. Ren, W. S. Hobson, C. R. Abernathy and U. K. Chakrabarti, "Effects of wet and dry etching and sulphide passivation on surface recombination velocities of InGaP p-n junctions," Proceedings of 1994 IEEE 6th International Conference on Indium Phosphide and Related Materials (IPRM),Santa Barbara, CA, USA, 1994, pp. 186-189, doi: 10.1109/ICIPRM.1994.328193.

[29] S. W. Tan, H. R. Chen, W. T. Chen, M. Y. Chu and W. S. Lour, "Sulfur- and InGaP-passivated heterojunction bipolar transistors," The Fourth International Workshop on Junction Technology, 2004. IWJT '04., Shanghai, China, 2004, pp. 228-231, doi: 10.1109/IWJT.2004.1306801.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊