|
Abeare, S. (2009). Comparisons of boosted regression tree, GLM and GAM performance in the standardization of yellowfin tuna catch-rate data from the Gulf of Mexico lonline [sic] fishery. Arocha, F., Ortiz, M., and Marcano, L. A. (2001). Standardized catch rates for yellowfin tuna (Thunnus albacares) from the Venezuelan pelagic longline fishery off the Caribbean Sea and the western central Atlantic. ICCAT Col. Vol. Sci. Pap, 52, 177-189. Bangley, C. W., Paramore, L., Dedman, S. and Rulifson, R. A. (2018). Delineation and mapping of coastal shark habitat within a shallow lagoonal estuary. PloS one, 13(4). Brill, R. W., Bigelow, K. A., Musyl, M. K., Fritsches, K. A. and Warrant, E. J. (2005). Bigeye tuna (Thunnus obesus) behavior and physiology and their relevance to stock assessments and fishery biology. Collective Volume Scientific Papers ICCAT, 57(2), 142-161. Breiman, L., Friedman, J., Stone, C. J. and Olshen, R. A. (1984). Classification and regression trees. CRC press. Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123-140. Breiman, L. (2001a). Statistical modeling: the two cultures. Statistical Science, 16(3), 199–231. Breiman, L. (2001b). Random forests. Machine Learning, 45(1), 5-32. Brodie, S. J., Thorson, J. T., Carroll, G., Hazen, E. L., Bograd, S., Haltuch, M. A., Holsman, K.K., Kotwicki, S., Samhouri, J.F., Willis‐Norton, E. and Selden, R. L. (2020). Trade‐offs in covariate selection for species distribution models: a methodological comparison. Ecography, 43(1), 11-24. Chai, T. and Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247-1250. Carruthers, T.R., McAllister, M.K. and Ahrens, R.N.M. (2010). Simulating spatial dynamics to evaluate methods of deriving abundance indices for tropical tunas. Canadian Journal of Fisheries and Aquatic Sciences, 67(9), 1409-1427. Carvalho, F., Ahrens, R., Murie, D., Ponciano, J. M., Aires-da-Silva, A., Maunder, M. N. and Hazin, F. (2014). Incorporating specific change points in catchability in fisheries stock assessment models: An alternative approach applied to the blue shark (Prionace glauca) stock in the south Atlantic Ocean. Fisheries Research, 154, 135-146. Carvalho, F. C., Murie, D. J., Hazin, F. H., Hazin, H. G., Leite-Mourato, B., Travassos, P. and Burgess, G. H. (2010). Catch rates and size composition of blue sharks (Prionace glauca) caught by the Brazilian pelagic longline fleet in the southwestern Atlantic Ocean. Aquatic Living Resources, 23(4), 373-385. Chang, S. K., Hoyle, S. and Liu, H. I. (2011). Catch rate standardization for yellowfin tuna (Thunnus albacares) in Taiwan's distant-water longline fishery in the Western and Central Pacific Ocean, with consideration of target change. Fisheries Research, 107(1-3), 210-220. Chow, S., Okamoto, H., Miyabe, N., Hiramatsu, K. and Barut, N. (2000). Genetic divergence between Atlantic and Indo‐Pacific stocks of bigeye tuna (Thunnus obesus) and admixture around South Africa. Molecular Ecology, 9(2), 221-227. Cooke, J. G. and Beddington, J. R. (1984). The relationship between catch rates and abundance in fisheries. Mathematical Medicine and Biology: A Journal of the IMA, 1(4), 391-405. De'Ath, G. (2007). Boosted trees for ecological modeling and prediction. Ecology, 88(1), 243-251. Dickson, K. A. (1995). Unique adaptations of the metabolic biochemistry of tunas and billfishes for life in the pelagic environment. Environmental Biology of Fishes, 42(1), 65-97. Elith, J., Leathwick, J. R. and Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77(4), 802-813. Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics, 1189-1232. Friedman, J. H. (2002). Stochastic gradient boosting. Computational statistics & data analysis, 38(4), 367-378. Friedman, J. H. and Meulman, J. J. (2003). Multiple additive regression trees with application in epidemiology. Statistics in Medicine, 22(9), 1365-1381. Fonteneau, A., Ariz, J., Delgado, A., Pallares, P. and Pianet, R. (2005). A comparison of bigeye (Thunnus obesus) stocks and fisheries in the Atlantic, Indian and Pacific Oceans. Collective Volume Scientific Papers ICCAT, 57(2), 41-66. Forselledo, R., Mas, F., Pons, M. and Domingo, A. (2019). Standardized CPUE of bigeye tuna, Thunnus obesus, based on data gathered by the national observer program on board the Uruguayan longline fleet (2003-2012). Collective Volume Scientific Papers ICCAT, 75(7), 1935-1945. Froeschke, J. T. and Froeschke, B. F. (2011). Spatio-temporal predictive model based on environmental factors for juvenile spotted seatrout in Texas estuaries using boosted regression trees. Fisheries Research, 111(3), 131-138. Gonzalez, E. G., Beerli, P. and Zardoya, R. (2008). Genetic structuring and migration patterns of Atlantic bigeye tuna, Thunnus obesus (Lowe, 1839). BMC Evolutionary Biology, 8(1), 252. Goodyear, C. P. (2002). Spatio-temporal distribution of longline CPUE and sea surface temperature for Atlantic marlins. Collective Volume Scientific Papers ICCAT, 54(3), 834-845. Guisan, A., Edwards Jr, T. C. and Hastie, T. (2002). Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological modelling, 157(2-3), 89-100. Hallier, J. P., Stequert, B., Maury, O. and Bard, F. X. (2005). Growth of bigeye tuna (Thunnus obesus) in the eastern Atlantic Ocean from tagging-recapture data and otolith readings. Collective Volume Scientific Papers ICATT, 57, 181-194. Hampton, J., Bigelow, K. and Labelle, M. (1998). Effect of longline fishing depth, water temperature and dissolved oxygen on bigeye tuna (Thunnus obesus) abundance indices. Oceanic Fisheries Programme, Secretariat of the Pacific Community, New Caledonia, 18. Hastie, T. J. and Tibshirani, R. J. (1990). Generalized additive models. CRC press. Hastie, T., Tibshirani, R. and Friedman, J. (2009). The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media. Hazin, H. G., Hazin, F., Travassos, P., Carvalho, F. C. and Erzini, K. (2007). Standardization of swordfish CPUE series caught by Brazilian longliners in the Atlantic Ocean, by GLM, using the targeting strategy inferred by cluster analysis. Collective Volume Scientific Papers ICCAT, 60(6), 2039-2047. Hazin, H., Sant’Ana, R., Mourato, B. L., Travassos, P. and Hazin, G. S. F. (2019). Catch rate standardization for bigeye tuna caught by the Brazilian pelagic longline fleet (1978-2016). Collective Volume Scientific Papers ICCAT, 1968-1980. He, X., Bigelow, K. A. and Boggs, C. H. (1997). Cluster analysis of longline sets and fishing strategies within the Hawaii-based fishery. Fisheries Research, 31(1-2), 147-158. Hilborn, R. and Walters, C. J. (2013). Quantitative fisheries stock assessment: choice, dynamics and uncertainty. Springer Science & Business Media. Hiraoka, Y., Kanaiwa, M., Ohshimo, S., Takahashi, N., Kai, M. and Yokawa, K. (2016). Relative abundance trend of the blue shark Prionace glauca based on Japanese distant-water and offshore longliner activity in the North Pacific. Fisheries science, 82(5), 687-699. Holland, K. N., Kleiber, P. and Kajiura, S. M. (1999). Different residence times of yellowfin tuna, Thunnus albacares, and bigeye tuna, T. obesus, found in mixed aggregations over a seamount. Fishery Bulletin-National Oceanic and Atmospheric Administration, 97, 392-395. Honma, M. and Suzuki, Z. (1977). Revised catch and effort statistics by area on Taiwanese tuna longline fleets in the Atlantic, 1967-1974. Collective Volume Scientific Papers ICCAT, 6, 175-180. Hoyle, S. D., Huang, H., Kim, D. N., Lee, M. K., Matsumoto, T. and Walter, J. (2019a). Collaborative study of bigeye tuna CPUE from multiple Atlantic Ocean longline fleets in 2018. Collective Volume Scientific Papers ICCAT, 75(7), 2033-2080. Hoyle, S. D., Lauretta, M., Lee, M. K., Matsumoto, T., Sant’Ana, R., Yokoi, H. and Su, N. J. (2019b). Collaborative study of yellowfin tuna CPUE from multiple Atlantic Ocean longline fleets in 2019. Collective Volume Scientific Papers ICCAT, 76(6), 241-293. Hsu, C. C. (1999). Standardized abundance index of Taiwanese longline fishery for bigeye tuna in the Atlantic. Collective Volume Scientific Papers ICCAT, 49, 459-465. Hsu, C. C. (2007). Preliminary analysis of standardized catch per unit effort of bigeye tuna (Thunnus obesus) caught by Taiwanese longline fleets in the Atlantic Ocean by general additive model. Collective Volume Scientific Papers ICCAT, 60, 102-116. Hsu, C. C. (2008). Standardized catch per unit effort of bigeye tuna (Thunnus obesus) for Taiwanese longline fishery in the Atlantic Ocean by general additive model. Collective Volume Scientific Papers ICCAT, 62, 372-396. Hsu, C. C. (2011). Verification of catch-effort data and standardization of abundance index of bigeye tuna by Taiwanese longline fishery in the Atlantic Ocean. Collective Volume Scientific Papers ICCAT, 66(1), 368-386. Hsu, C. C. and Liu, H. C. (1992). Status of Taiwanese longline fisheries in the Atlantic. Collective Volume Scientific Papers ICCAT, 39, 258-264. Hsu, C. C. and Lee, H. H. (2003). General linear mixed model analysis for standardication of Taiwanese longline CPUE for bigeye tuna in the Atlantic Ocean. Collective Volume Scientific Papers ICCAT, 1892-1915. Hsu, C. C. and Lee, H. H. (2005). Standardized catch per unit effort of bigeye tuna (Thunnus obesus) caught by Taiwanese longline fleets in the Atlantic Ocean. Collective Volume Scientific Papers ICCAT, 58, 192-207. Huang, H. W. (2019). Standardized CPUE of bigeye tuna (Thunnus obesus) of the Chinese Taipei longline fisheries operated in the Atlantic Ocean (1967-2017). Collective Volume Scientific Papers ICCAT, 75(7), 1946-1967. ICCAT (2015). Report of the 2015 ICCAT bigeye tuna stock assessment session. Collective Volume Scientific Papers ICCAT, 72: 86-183. ICCAT (2018). Report of the 2018 ICCAT bigeye tuna stock assessment session. Collective Volume Scientific Papers ICCAT, 75: 1634-1720. Itano, D. G. and Holland, K. N. (2000). Movement and vulnerability of bigeye (Thunnus obesus) and yellowfin tuna (Thunnus albacares) in relation to FADs and natural aggregation points. Aquatic Living Resources, 13(4), 213-223. Lam, C. H., Galuardi, B. and Lutcavage, M. E. (2014). Movements and oceanographic associations of bigeye tuna (Thunnus obesus) in the Northwest Atlantic. Canadian Journal of Fisheries and Aquatic Sciences, 71(10), 1529-1543. Langley, A., Bigelow, K., Maunder, M. and Miyabe, N. (2005). Longline CPUE indices for bigeye and yellowfin in the Pacific Ocean using GLM and statistical habitat standardisation methods. WP SA-8, WCPFC-SC1, Noumea, New Caledonia, 8-19. Li, M., Zhang, C., Xu, B., Xue, Y. and Ren, Y. (2017). Evaluating the approaches of habitat suitability modelling for whitespotted conger (Conger myriaster). Fisheries Research, 195, 230-237. Li, Z., Ye, Z., Wan, R. and Zhang, C. (2015). Model selection between traditional and popular methods for standardizing catch rates of target species: a case study of Japanese Spanish mackerel in the gillnet fishery. Fisheries Research, 161, 312-319. Liaw, A. and Wiener, M. (2002). Classification and regression by randomForest. R news, 2(3), 18-22. Majkowski, J. (2007). Global fishery resources of tuna and tuna-like species. Food and Agriculture Organization, Rome, 54pp. Mateo, I. and Hanselman, D. H. (2014). A comparison of statistical methods to standardize catch-per-unit-effort of the Alaska longline Sablefish fishery. NOAA Technical Memorandum NMFS-AFSC-269. Martínez, P., González, E. G., Castilho, R. and Zardoya, R. (2006). Genetic diversity and historical demography of Atlantic bigeye tuna (Thunnus obesus). Molecular Phylogenetics and Evolution, 39(2), 404-416. Matsumoto, T., Saito, H. and Miyabe, N. (2005). Swimming behavior of adult bigeye tuna using pop-up tags in the central Atlantic Ocean. Collective Volume Scientific Papers ICCAT, 57(1), 151-170. Matsumoto, T. and Satoh, K. (2017). Standardization of bigeye tuna CPUE in the main fishing ground of Atlantic Ocean by the Japanese longline fishery using revised method. Collective Volume Scientific Papers ICCAT, 2013-2021. Matsumoto, T., Satoh, K., Kitakado, T. and Hoyle, S. (2019). Standardization of bigeye tuna CPUE in the Atlantic Ocean by the Japanese longline fishery which includes cluster analysis. Collective Volume Scientific Papers ICCAT, 75(7), 2098-2116. Maunder, M. N. and Punt, A. E. (2004). Standardizing catch and effort data: a review of recent approaches. Fisheries research, 70(2), 141-159. Maunder, M. N., Sibert, J. R., Fonteneau, A., Hampton, J., Kleiber, P. and Harley, S. J. (2006). Interpreting catch per unit effort data to assess the status of individual stocks and communities. Ices Journal of Marine Science, 63(8), 1373-1385. Maunder, M. N., Thorson, J. T., Xu, H., Oliveros-Ramos, R., Hoyle, S. D., Tremblay-Boyer, L., Lee, H.H., Kai, M., Chang, S.K., Kitakado, T. and Albertsen, C.M., (2020). The need for spatio-temporal modeling to determine catch-per-unit effort based indices of abundance and associated composition data for inclusion in stock assessment models. Fisheries Research, 229, 105594. Milborrow, S. (2019). Plotting model residuals with plotres. Montero, J. T., Chesney, T. A., Bauer, J. R., Froeschke, J. T. and Graham, J. (2016). Brown shrimp (Farfantepenaeus aztecus) density distribution in the Northern Gulf of Mexico: an approach using boosted regression trees. Fisheries Oceanography, 25(3), 337-348. Mourato, B. L., Arfelli, C. A., Amorim, A. F., Hazin, H. G., Carvalho, F. C. and Hazin, F. H. (2011). Spatio-temporal distribution and target species in a longline fishery off the southeastern coast of Brazil. Brazilian Journal of Oceanography, 59(2), 185-194. Naghibi, S. A., Pourghasemi, H. R. and Dixon, B. (2016). GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environmental monitoring and assessment, 188(1), 44. Nelder, J. A. and Wedderburn, R. W. (1972). Generalized linear models. Journal of the Royal Statistical Society: Series A (General), 135(3), 370-384. Nieto, K., Xu, Y., Teo, S. L., McClatchie, S. and Holmes, J. (2017). How important are coastal fronts to albacore tuna (Thunnus alalunga) habitat in the Northeast Pacific Ocean. Progress in Oceanography, 150, 62-71. Okamura, H., Morita, S. H., Funamoto, T., Ichinokawa, M. and Eguchi, S. (2018). Target-based catch-per-unit-effort standardization in multispecies fisheries. Canadian Journal of Fisheries and Aquatic Sciences, 75(3), 452-463. Ono, K., Punt, A. E. and Hilborn, R. (2015). Think outside the grids: An objective approach to define spatial strata for catch and effort analysis. Fisheries Research, 170, 89-101. Ortiz, M. and Arocha, F. (2004). Alternative error distribution models for standardization of catch rates of non-target species from a pelagic longline fishery: billfish species in the Venezuelan tuna longline fishery. Fisheries Research, 70(2-3), 275-297. Potts, S. E. and Rose, K. A. (2018). Evaluation of GLM and GAM for estimating population indices from fishery independent surveys. Fisheries Research, 208, 167-178. Punt, A. E., Walker, T. I., Taylor, B. L. and Pribac, F. (2000). Standardization of catch and effort data in a spatially-structured shark fishery. Fisheries Research, 45(2), 129-145. Quattrocchi, F., Mamouridis, V. and Maynou, F. (2016). Occurrence of adult anchovy in Catalonia (NW Mediterranean) in relation to sea surface conditions. Scientia Marina, 80(4), 457-466. Quinn, T. J. and Deriso, R. B. (1999). Quantitative fish dynamics. Oxford university Press. Reygondeau, G., Maury, O., Beaugrand, G., Fromentin, J. M., Fonteneau, A. and Cury, P. (2012). Biogeography of tuna and billfish communities. Journal of Biogeography, 39(1), 114-129. Ridgeway, G. (2007). Generalized Boosted Models: A guide to the gbm package. Update, 1(1), 2007. Runcie, R., Holts, D., Wraith, J., Xu, Y., Ramon, D., Rasmussen, R. and Kohin, S. (2016). A fishery-independent survey of juvenile shortfin mako (Isurus oxyrinchus) and blue (Prionace glauca) sharks in the Southern California Bight, 1994–2013. Fisheries Research, 183, 233-243. Sacau, M., Pierce, G. J., Wang, J., Arkhipkin, A. I., Portela, J., Brickle, P., Santos, M.B., Zuur, A.F. and Cardoso, X. (2005). The spatio-temporal pattern of Argentine shortfin squid Illex argentinus abundance in the southwest Atlantic. Aquatic Living Resources, 18(4), 361-372. Sagarese, S. R., Frisk, M. G., Cerrato, R. M., Sosebee, K. A., Musick, J. A. and Rago, P. J. (2014). Application of generalized additive models to examine ontogenetic and seasonal distributions of spiny dogfish (Squalus acanthias) in the Northeast (US) shelf large marine ecosystem. Canadian Journal of Fisheries and Aquatic Sciences, 71(6), 847-877. Song, L., Xu, L. and Chen, X. (2004). Relationship between bigeye tuna vertical distribution and the temperature, salinity in the Central Atlantic Ocean. Journal of Fishery Sciences of China, 11(6), 561-566. Stephens, A. and MacCall, A. (2004). A multispecies approach to subsetting logbook data for purposes of estimating CPUE. Fisheries Research, 70(2), 299-310. Stock, B. C., Ward, E. J., Thorson, J. T., Jannot, J. E. and Semmens, B. X. (2019). The utility of spatial model-based estimators of unobserved bycatch. ICES Journal of Marine Science, 76(1), 255-267. Su, N. J., Yeh, S. Z., Sun, C. L., Punt, A. E., Chen, Y. and Wang, S. P. (2008). Standardizing catch and effort data of the Taiwanese distant-water longline fishery in the western and central Pacific Ocean for bigeye tuna, Thunnus obesus. Fisheries Research, 90(1), 235-246. Sun, C. L., Huang, C. L. and Yeh, S. Z. (2001). Age and growth of the bigeye tuna, Thunnus obesus, in the western Pacific Ocean. Fishery Bulletin, 99(3), 502-502. Suykens, J. A. and Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural Processing Letters, 9(3), 293-300. Tallis, H., Levin, P. S., Ruckelshaus, M., Lester, S. E., McLeod, K. L., Fluharty, D. L. and Halpern, B. S. (2010). The many faces of ecosystem-based management: making the process work today in real places. Marine Policy, 34(2), 340-348. Tanaka, K. R., Chang, J. H., Xue, Y., Li, Z., Jacobson, L. and Chen, Y. (2019). Mesoscale climatic impacts on the distribution of Homarus americanus in the US inshore Gulf of Maine. Canadian Journal of Fisheries and Aquatic Sciences, 76(4), 608-625. Thorson, J. T. (2019). Guidance for decisions using the Vector Autoregressive Spatio-Temporal (VAST) package in stock, ecosystem, habitat and climate assessments. Fisheries Research, 210, 143-161. Thorson, J. T., Fonner, R., Haltuch, M. A., Ono, K. and Winker, H. (2016). Accounting for spatiotemporal variation and fisher targeting when estimating abundance from multispecies fishery data. Canadian Journal of Fisheries and Aquatic Sciences, 74(11), 1794-1807. Tidd, A. N. (2013). Effective fishing effort indicators and their application to spatial management of mixed demersal fisheries. Fisheries Management and Ecology, 20(5), 377-389. Todorović, S., Juan-Jordá, M. J., Arrizabalaga, H. and Murua, H. (2019). Pelagic ecoregions: Operationalizing an ecosystem approach to fisheries management in the Atlantic Ocean. Marine Policy, 109, 103700. Veall, M. R. and Zimmermann, K. F. (1994). Evaluating Pseudo-R 2's for binary probit models. Quality and Quantity, 28(2), 151-164. Walsh, W. A. and Brodziak, J. (2015). Billfish CPUE standardization in the Hawaii longline fishery: model selection and multimodel inference. Fisheries Research, 166, 151-162. Walters, C. (2003). Folly and fantasy in the analysis of spatial catch rate data. Canadian Journal of Fisheries and Aquatic Sciences, 60(12), 1433-1436. Walters, C. J. and Martell, S. J. D. (2004). Fisheries Ecology and Management Princeton University Press. Princeton, New Jersey. Wang, S. P. (2019). Data analysis and CPUE standardization of albacore caught by Taiwanese longline fishery in the Indian Ocean. IOTC–2019–WPTmT07 (DP)–14_Rev1, 46 pp. Wang, S. P. and Nishida, T. (2014). CPUE standardization with targeting analysis for swordfish (Xiphias gladius) caught by Taiwanese longline fishery in the Indian Ocean. IOTC–2014–WPB12–22, 25 pp. Yang, R. M., Zhang, G. L., Liu, F., Lu, Y. Y., Yang, F., Yang, F. and Li, D. C. (2016). Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem. Ecological Indicators, 60, 870-878. Yang, S., Song, L., Zhang, Y., Fan, W., Zhang, B., Dai, Y. and Wu, Y. (2020). The Potential Vertical Distribution of Bigeye Tuna (Thunnus obesus) and Its Influence on the Spatial Distribution of CPUEs in the Tropical Atlantic Ocean. Journal of Ocean University of China, 19, 669-680. Youssef, A. M., Pourghasemi, H. R., Pourtaghi, Z. S. and Al-Katheeri, M. M. (2016). Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides, 13(5), 839-856.
|