跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/14 09:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林廷憬
研究生(外文):Lin, Ting-Jing
論文名稱:噴嘴受對稱鈍體影響的流場特性分析
論文名稱(外文):Analysis of symmetric bluff body on characteristics of the nozzle flow fields
指導教授:閻順昌
指導教授(外文):Yen, Shun-Chang
口試委員:閻順昌單國卿許清閔吳俊毅
口試委員(外文):Yen, Shun-ChangSan, kuo-ChingHsu, Ching-MinWu, chun-I
口試日期:2020-07-03
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:機械與機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:30
中文關鍵詞:對稱鈍體旋噴流紊流強度
外文關鍵詞:symmetric bluff-bodyswirl jetturbulence intensity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:66
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 I
Abstract II
目錄 III
表圖索引 V
符號說明 VI
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 研究目標 3
第二章 實驗方法與設備 4
2.1 實驗方法 4
2.2 實驗設備 4
2.3 實驗儀器 5
2.3.1 浮子式流量計-對氣體速度控制 5
2.3.2 拍攝器材 5
2.3.3 移動機構 5
2.3.4 流場可視化—雷射光頁輔助煙線流場觀察法 5
2.3.5 二維熱線風速儀搭配資料擷取器-紊流強度 6
2.3.6 一維熱線測速儀搭配FFT-渦旋逸散平率 6
第三章 等溫流場之性質分析 7
3.1 煙線流場可視化 7
3.1.1 鈍體前視煙線流場可視化 7
3.1.1.1 s/R = 0.15鈍體 7
3.1.1.2 s/R = 0.4鈍體 8
3.1.1.3 s/R = 0.54鈍體 9
3.1.2 鈍體側視煙線流場可視化 9
3.1.2.1 s/R = 0.15鈍體 9
3.1.2.2 s/R = 0.4鈍體 11
3.1.2.3 s/R = 0.54鈍體 12
3.2 特徵模態暨特徵模態分區 13
3.2.1 特徵模態 13
3.2.2 特徵模態分區 13
3.3 渦漩結構暨頻率特性 14
3.4 速度、擾動速度、雷諾應力暨紊流強度特性 15
第四章 結果暨建議 16
4.1 結果 16
4.2 建議 16
參考文獻 17
[1] C. Popiel, and J. Turner, 1991, "Visualization of high blockage flow behind a flat plate in a rectangular channel,'' American Society of Mechanical Engineers, Vol. 113, no. 1, pp. 143-146.
[2] R. Baker, P. Hutchinson, E. Khalil, and J. Whitelaw, 1975, "Measurements of three velocity components in a model furnace with and without combustion,'' In Symposium (International) on Combustion, Vol. 15, no. 1: Elsevier, pp. 553-559.
[3] R.-H. Chen, J. F. Driscoll, J. Kelly, M. Namazian, R. J. C. S. Schefer, and Technology, 1990, "A comparison of bluff-body and swirl-stabilized flames," Combustion Science and Technology, Vol. 71, no. 4-6, pp. 197-217.
[4] D. Duraõ , and J. Whitelaw, 1973 "Turbulent mixing in the developing region of coaxial jets, " Journal of Fluids Engineering, Vol. 95, no. 3, pp. 467-473.
[5] R. F. Huang, and G. M. Bear, 1995, "The axisymmetric recirculation wake flushed by a central jet," Journal of wind engineering and industrial aerodynamics, Vol. 56, no. 1, pp. 41-54.
[6] Y. M. Al-Abdeli, and A. R. Masri, 2003, "Recirculation and flowfield regimes of unconfined non-reacting swirling flows," Experimental thermal and fluid science, vol. 27, no. 5, pp. 655-665.
[7] A. Taylor, and J. Whitelaw, 1984, "Velocity characteristics in the turbulent near wakes of confined axisymmetric bluff bodies," Journal of fluid mechanics, vol. 139, pp. 391-416.
[8] A. Olivani, G. Solero, F. Cozzi, and A. Coghe, 2007, "Near field flow structure of isothermal swirling flows and reacting non-premixed swirling flames," Experimental Thermal and Fluid Science, vol. 31, no. 5, pp. 427-436.
[9] J. Calvert, 1967, "Experiments on the low-speed flow past cones," Journal of Fluid Mechanics, vol. 27, no. 2, pp. 273-289.
[10] A. Hübner, M. Tummers, K. Hanjalić, and T. H. Van der Meer, 2003, "Experiments on a rotating-pipe swirl burner," Experimental thermal and fluid science, vol. 27, no. 4, pp. 481-489.
[11] H. Gotoda, and T. Ueda, 2005, "Orbital instability and prediction of a Bunsen flame tip motion with burner rotation," Combustion and flame, vol. 140, no. 4, pp. 287-298.
[12] R. Cheng, 1995, "Velocity and scalar characteristics of premixed turbulent flames stabilized by weak swirl," Combustion and flame, vol. 101, no. 1-2, pp. 1-14.
[13] A. K. Gupta, 2000, "Effect of swirl and flow distribution on the spray flame characteristics," in Collection of Technical Papers. 35th Intersociety Energy Conversion Engineering Conference and Exhibit (IECEC)(Cat. No. 00CH37022), vol. 2: IEEE, pp. 1300-1305.
[14] W. A. Guttenfelder, M. W. Renfro, N. M. Laurendeau, J. Ji, G. B. King, and J. P. Gore, 2006, "Hydroxyl time series and recirculation in turbulent nonpremixed swirling flames," Combustion and flame, vol. 147, no. 1-2, pp. 11-21.
[15] Z. Yuan, Y. Chen, J. Jiang, and C. Ma, 2006, "Swirling effect of jet impingement on heat transfer from a flat surface to CO2 stream," Experimental thermal and fluid science, vol. 31, no. 1, pp. 55-60.
[16] T. Carmody, 1964, "Establishment of the wake behind a disk," Journal of Fluids Engineering, Vol. 86, no. 4, pp. 869-880.
[17] K. LI, and R. S. Tankin, 1987, "A study of cold and combusting flow around bluff-body combustors," Combustion science and technology, vol. 52, no. 4-6, pp. 173-206.
[18] I. Esquiva-Dano, H. Nguyen, and D. Escudie, 2001, "Influence of a bluff-body’s shape on the stabilization regime of non-premixed flames," Combustion and Flame, vol. 127, no. 4, pp. 2167-2180.
[19] Y. Tong, X. Liu, S. Chen, Z. Li, and J. J. A. T. E. Klingmann, 2018, "Effects of the position of a bluff-body on the diffusion flames: A combined experimental and numerical study," Applied Thermal Engineering, vol. 131, pp. 507-521.
[20] K. C. San, and H. J. Hsu, 2009, "Characteristics of flow and flame behavior behind rifled/unrifled nozzles," Journal of engineering for gas turbines and power, vol. 131, no. 5, pp. 051502.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top