(3.238.186.43) 您好!臺灣時間:2021/03/01 10:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾稚絜
研究生(外文):TZENG, JHIH-JIE
論文名稱:不動產大量估價準確度之社區差異分析-以臺北大學特定區為例
論文名稱(外文):An Analysis of Real Estate Mass Appraisal Accuracy in Different Communities:A Case Study of National Taipei University District
指導教授:彭建文彭建文引用關係
指導教授(外文):PENG, CHIEN-WEN
口試委員:林左裕林哲群彭建文
口試委員(外文):LIN, TSO-YULIN, CHE-CHUNPENG, CHIEN-WEN
口試日期:2020-06-19
學位類別:碩士
校院名稱:國立臺北大學
系所名稱:不動產與城鄉環境學系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:95
中文關鍵詞:大量估價估價準確性命中率重複交易案例類重複交易案例最適比較標的
外文關鍵詞:Mass AppraisalAppraisal AccuracyHit RateRepeat Sales CasePseudo-Repeat Sales CaseOptimal Comparable Selection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:90
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
過去於大量估價相關的文獻中,著重在大量估價準確度的研究相對少數,然而大量估價因樣本數多可能會造成樣本間的差異性大,進而影響估值的準確性,如何降低樣本的異質性有其重要性。本研究認為除了透過距離計算、樣本配對等方式來找出相似性高的案例,同社區住宅案例、重複交易案例及類重複交易案例亦隱含「最相似的」概念,三者均為同質性高的樣本。因此,有別於過往方式,試圖以社區住宅案例、重複交易案例及類重複交易案例來改善估價的準確性。

本研究透過特徵價格理論建立大量估價模型,以MAPE與Hit Rate衡量估價準確性。研究結果發現社區住宅案例之正負10 %命中率為57.72 %、正負20 %命中率為87.10 %及MAPE為11.17 %,與過往研究相比,有助於提高估價準確度。然而在不同準確性之社區中,以具有離高速公路越遠、學校與賣場越遠及坐落於住宅區、臨路寬度越寬與無社區評比特徵之社區,會有準確性低的情形;透過類重複交易案例進行估價亦有助於提高估價準確度,正負10 %命中率為85.19%及MAPE為6.21%,且相較於利用特徵價格進行大量估價,有較佳的估值表現,命中率提升約11.12 %,MAPE下降約0.76 %。其中,準確度的高低以比較案例的選取為重要關鍵,求得之比較案例面積相似度越高、移轉樓層越近且樣本數越多,越能降低差異樣本間的異質性,使類重複交易價格更接近實際成交價格。最後,以重複交易案例為基準比較真實值與估值間之差距,發現以類重複交易案例及大量估價進行估價,兩種方法所得之估值結果皆會低於真實成交價格。

In the past, there were few studies that focused on the accuracy of the real estate mass appraisal-related literature. However, due to the large sample sizes, real estate mass appraisal may affect the accuracy of valuation due to the large differences among the sampled observations. How to reduce the heterogeneity of the samples is particularly important. This study considers that in addition to finding highly similar cases through distance calculations or sample matching, the same community’s residential cases, repeat sales cases and pseudo-repeated sales cases also imply the concept of “most similar”, all of which lead to highly homogeneous samples. Therefore, in a departure from past methods, we attempt to improve the accuracy of mass appraisal by using community residential cases, repeat sales cases and pseudo-repeated sales cases.

In this study, mass appraisal models are established based on the characteristic price theory, and the accuracy of appraisal is measured using the MAPE and the Hit Rate. The results of the study find that the positive and negative 10% hit rate of community residential cases was 57.72%, the positive and negative 20% hit rate was 87.10%, and the MAPE was 11.17%. Compared with previous studies, it is helpful to improve the accuracy of appraisal. However, among residential communities with different degrees of accuracy, residential communities with the characteristics of being far away from highways, schools and malls and located in residential areas, with wider roads and no community rating will have low accuracy. The valuation of pseudo-repeated cases also helps to improve the accuracy of appraisal, with a positive and negative 10% hit rate of 85.19% and a MAPE of 6.21%. In addition, compared with the use of characteristic prices for a mass appraisal, and better valuation performance, the hit rate increased by 11.12%, and the MAPE decreased by 0.76%.

Among these results, the key to their accuracy is the selection of comparison cases. The higher the degree of similarity between the cases compared, the closer the transfer floors, and the greater the number of samples, the lower the heterogeneity between the different samples, and the closer that the prices of pseudo-repeated sales are to the actual transaction prices. Finally, by comparing the differences between the real value and the valuation on the basis of repeated trading cases, it was found that the valuation results obtained using the two methods involving pseudo-repeated sales cases and mass appraisal valuations were lower than the real transaction prices.
目錄 IV
圖目錄 VI
表目錄 VII
第一章 緒論 1
第一節 研究動機與目的 1
第二節 研究範圍與限制 5
第三節 研究方法 8
第四節 研究架構與流程 10
第二章 相關理論與文獻回顧 13
第一節 大量估價之基礎與方法 13
第二節 大量估價之準確性 17
第三節 最適比較案例選取 21
第四節 小結 24
第三章 研究設計 25
第一節 研究假說建立 25
第二節 變數選取與模型建立 27
第三節 資料來源與說明 41
第四節 小結 46
第四章 實證分析 47
第一節 樣本敘述性統計 47
第二節 不同社區準確度差異分析 50
第三節 重複交易案例與類重複交易案例之準確性分析 67
第四節 小結 77
第五章 結論與建議 79
第一節 結論 79
第二節 建議 82
參考文獻 84
附錄 口試委員意見與回應表 93
中文文獻
毛利琴(2009),房屋價格預測模型分析-以高雄市區爲例,商業現代化學刊,5(1),頁31-42。
江穎慧(2008),不動產價格之估值認知與調整-估價行為、大量估價與估值機率之研究,國立政治大學地政學系,博士論文。
江穎慧(2009),不動產自動估價與估價師個別估價之比較-以比較法之案例選取、權重調整與估值三階段差異分析,住宅學報,18(1),頁39-62。
江穎慧、朱智揚、張金鶚(2019),預售屋大量估價模型之建立,住宅學報,28(2),頁17-36。
邱皓政(2010),量化研究與統計分析SPSS(PASW)資料分析範例解析(五版),台北:五南圖書出版公司。
李月華(1999),台北市住宅價格模型之研究,淡江大學管理科學學系研究所,博士論文。
李泓見、張金鶚、花敬群(2006),台北都會區不同住宅類型價差之研究,住宅學報,9(1),頁3-87。
李春長、游淑滿、張維倫(2012),公共設施、環境品質與不動產景氣對住宅價格影響之研究─兼論不動產景氣之調節效果,住宅學報,21(1),頁67-87。
沈育生、林秋瑾(2012),不同人工神經網路架構在不動產大量估價之應用與比較,台灣土地研究,15(1),頁1-29。
杜宇璇、宋豐荃、曾禹瑄、葛仲寧、陳奉瑤(2013),台灣特徵價格模型之回顧分析,土地問題研究季刊,12(2),頁44-57。
吳岱蓉(2017),以總經變數預測不動產價格之模型,國立清華大學計量財務金融學系,碩士論文。
林左裕、陳慧潔、蔡永利(2010),影響住宅大樓價格因素之探討,評價學報,(3),頁13-23。
林秋瑾、楊宗憲、張金鵬(1996)住宅價格指數之研究-以台北市為例,住宅學報,(4),頁1-30。
林秋瑾、黃瓊瑩(2007),特徵價格法之參數與半參數電腦輔助大量估價(CAMA)模型之研究-台北地區法拍屋住宅市場之實證分析,住宅學報,16(2),頁85-105。
林素菁(2004),台北市國中小明星學區邊際願意支付之估計,住宅學報,13(1),頁15-34。
林祖嘉、馬毓駿(2007),特徵方程式大量估價法在台灣不動產市場之應用,住宅學報,16(2),頁1-22。
林祖嘉、黃麗蓉(2014),嫌惡性風水對商用不動產價格影響之研究,住宅學報,23(1),頁51-72。
林純如(2017),資訊揭露對房價影響分析─以實價登錄制度為例,國立臺北大學不動產與城鄉環境學系,碩士論文。
郁嘉綾、蔡紋琦(2018),應用大數據於杭州市房地產價格模型之建立,Journal of Data Analysis,13(6),頁77-101。
孫文凱、廖理(2007),基於修正重複交易法的房地產價格指數的編制,管理科學與統計決策,4(3),頁23-31。
涂詠鈞(2019),重複交易法於台灣不動產市場之應用-房價變動、投機行為、房價指數,國立臺北大學不動產與城鄉環境學系,碩士論文。
梁仁旭(2012),不動產價值逆折舊之探討,住宅學報,21(2),頁71-89。
陳奉瑤、張欣民(2003),自動估價系統(AVM)到底算不算是估價?,土地問題研究季刊,2(2),頁72-77。
陳奉瑤、楊依蓁(2007),個別估價與大量估價之準確性分析,住宅學報,16(2),頁67-84。
陳信豪(2015),為甚麼估不準?影響大量估價準確性因素之探討,國立政治大學地政學系,碩士論文。
陳樹衡、郭子文、棗厥庸(2007),以決策樹之迴歸樹建構住宅價格模型-台灣地區之實證分析,住宅學報,16(1),頁1-20。
張怡文(2007),特徵價格法在住宅大量估價模型中的延伸-分量迴歸之應用,國立政治大學地政學系,碩士論文。
張怡文、江穎慧、張金鶚(2009),分量迴歸在大量估價模型之應用-非典型住宅估價之改進,都市與計劃,36(3),頁281-304。
彭建文、楊忠憲(2007),自動估價系統對不動產估價師之潛在衝擊分析,住宅學報,16(1),頁79-98。
游適銘、張金鶚(2010),成本法估價偏誤之探討-分量迴歸應用,住宅學報,19(2),頁81-105。
董呈煌、李春長、陳俊麟、吳韻玲(2016),SVR與OLS在住宅價格預測正確率的比較,住宅學報,25(2),頁31-51。
楊宗憲、蘇倖慧(2011),迎毗設施與鄰避設施對住宅價格影響之研究,住宅學報,20(2),頁61-88。
廖英志(2005),最近鄰似法在不動產估價上之應用,國立台北大學不動產與城鄉環境學系,碩士論文。
劉洧綺(2016),配對方法在不動產市場之應用-以新北市為例,國立清華大學計量財務金融學系,碩士論文。
賴永城(2014),不動產大量估價模型建置-以臺中市大樓華廈為例,逢甲大學土地管理學系,碩士論文。
劉乃彰、蔡曉琪(2011),人生最大的投資-不動產投資,會計研究月刊,311,頁98-105。
賴碧瑩(2007),應用類神經網路於電腦輔助大量估價之研究,住宅學報,16(2),頁43-65。
簡淑芬(2012),不動產估價模型之研究-以臺中市為例,逢甲大學財稅學系,碩士論文。
龔永香、江穎慧、張金鶚(2007),客觀標準化不動產估價之可行性分析─市場比較法應用於大量估價,住宅學報,16(2),頁23-42。

英文文獻
Abidoye, R. B., & Chan, A. P. (2018). Improving Property Valuation Accuracy: A Comparison of Hedonic Pricing Model and Artificial Neural Network. Pacific Rim Property Research Journal, 24(1), 71-83.
Adelman, I. & Griliches, Z. (1961). On an Index of Quality Change. Journal of the American Statistical Association, 56, 535-546.
Ali, G., Bashir, M. K., & Ali, H. (2015). Housing Valuation of Different Towns Using The Hedonic Model: A Case of Faisalabad City, Pakistan. Habitat International, 50, 240-249.
Antipov, E. A., & Pokryshevskaya, E. B. (2012). Mass Appraisal of Residential Apartments: An Application of Random Forest for Valuation and A CART-Based Approach for Model Diagnostics. Expert Systems with Applications, 39(2), 1772-1778.
Bailey, M. J., Muth, R. F., & Nourse, H. O. (1963). A Regression Method for Real Estate Price Index Construction. Journal of the American Statistical Association, 58(304), 933-942.
Bourassa, S. C., Hoesli, M., & Peng, V. S. (2003). Do Housing Submarkets Really Matter?. Journal of Housing Economics, 12(1), 12-28.
Bourassa, S. C., Cantoni, E., & Hoesli, M. (2007). Spatial Dependence, Housing Submarkets, and House Price Prediction. The Journal of Real Estate Finance and Economics, 35(2), 143-160.
Cannon, S. E., & Cole, R. A. (2011). How Accurate are Commercial Real Estate Appraisals? Evidence from 25 years of NCREIF Sales Data. The Journal of Portfolio Management, 37(5), 68-88.
Chiarazzo, V., Caggiani, L., Marinelli, M., & Ottomanelli, M. (2014). A Neural Network Based Model for Real Estate Price Estimation Considering Environmental Quality of Property Location. Transportation Research Procedia, 3, 810-817.
Faishal Ibrahim, M., Jam Cheng, F., & How Eng, K. (2005). Automated Valuation Model: An Application to the Public Housing Resale Market in Singapore. Property Management, 23(5), 357-373.
Fan, G. Z., Ong, S. E., & Koh, H. C. (2006). Determinants of House Price: A Decision Tree Approach. Urban Studies, 43(12), 2301-2315.
Ge, J. X., Runeson, G., & Lam, K. C. (2003). Forecasting Hong Kong Housing Prices: An Artificial Neural Network Approach. International conference on methodologies in housing research, Stockholm, Sweden.
Guo, X., Zheng, S., Geltner, D., & Liu, H. (2014). A New Approach for Constructing Home Price Indices: The Pseudo Repeat Sales Model and its Application in China. Journal of Housing Economics, 25, 20-38.
Isakson, H. R. (1986). The Nearest Neighbors Appraisal Technique: An Alternative to the Adjustment Grid Methods. Real Estate Economics, 14(2), 274-286.
Isakson, H. (1997). An Empirical Analysis of the Determinants of the Value of Vacant Land. Journal of Real Estate Research, 13(2), 103-114.
Jud, G. D. (1980). The Effects of Zoning on Single-Family Residential Property Values: Charlotte, North Carolina. Land Economics, 56(2), 142-154.
Kinnard, W. N. & Boyce, B. N. (1978). An Introduction to Appraisal Real Property, Chicago: Society of Real Estate Appraisers.
Kinnard Jr, W. N. (2001). New Thinking in Appraisal Theory. The Appraisal Journal, 69(3), 235.
Krause, A., & Kummerow, M. (2011). An Iterative Approach to Minimizing Valuation Errors Using an Automated Comparable Sales Model. Journal of Property Tax Assessment & Administration, 8(2), 39-52.
Kummerow, M., & Galfalvy, H. (2002). Error Trade-Offs in Regression Appraisal Methods Real Estate Valuation Theory (pp. 105-131): Springer.
Lancaster, K. J. (1966). A New Approach to Consumer Theory. Journal of political economy, 74(2), 132-157.
Laurice, J., & Bhattacharya, R. (2005). Prediction Performance of A Hedonic Pricing Model for Housing. The Appraisal Journal, 73(2), 198.
Malpezzi, S., Ozanne, L., & Thibodeau, T. (1980). Characteristic Prices of Housing in Fifty-Nine Metropolitan Areas. Urban Institute.
Mark, J. H., & Goldberg, M. A. (1986). A Study of the Impacts of Zoning on Housing Values Over Time. Journal of Urban Economics, 20(3), 257-273.
Matysiak, G., & Wang, P. (1995). Commercial Property Market Prices and Valuations: Analysing The Correspondence. Journal of property research, 12(3), 181-202.
McMillen, D. P. & Redfearn, C. L. (2010). Estimation and Hypothesis Testing for Nonparametric Hedonic House Price Functions. Journal of Regional Science, 50(3), 172-733.
Nelson, T. R., & Rabianski, J. (1988). Consumer Preferences in Housing Market Analysis: An Application of Multidimensional Scaling Techniques. Real Estate Economics, 16(3), 138-159.
Rosen, S. (1974). Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition. Journal of Political Economy, 82(1), 34-55.
Sirmans, S., Macpherson, D., & Zietz, E. (2005). The Composition of Hedonic Pricing Models. Journal of real estate literature, 13(1), 1-44.
Todora, J. & Whiterell, D. (2002). Automating The Sales Comparison Approach. Assessment Journal, 9(1), 25-33.
Vandell, K. D. (1991). Optimal Comparable Selection and Weighting in Real Property Valuation. Real Estate Economics, 19(2), 213-239.
Vickey, C. C. L., & Huang, C. Y. (2007). A Comparison between the Semi-Parametric and Parametric CAMA Modeling of Court Auction Residential Housing Market in the Taipei Metropolitan Area. Journal of Housing Studies, 16(2), 85-105.
Yiu, C. Y., Tang, B. S., Chiang, Y. H. & Choy, L. H. T. (2006). Alternative Theories of Appraisal Bias. Journal of Real Estate Literature, 14(3), 321-344.
Zhang, R., Du, Q., Geng, J., Liu, B., & Huang, Y. (2015). An Improved Spatial Error Model for the Mass Appraisal of Commercial Real Estate based on Spatial Analysis: Shenzhen as a Case Study. Habitat International, 46, 196-205.
Zietz, J., Zietz, E. N., & Sirmans, G. S. (2008). Determinants of House Prices: A Quantile Regression Approach. The Journal of Real Estate Finance and Economics, 37(4), 317-333.
電子全文 電子全文(網際網路公開日期:20250619)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔