跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/26 03:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡雅昕
研究生(外文):TSAI, YA-HSIN
論文名稱:應用巨量資料於永續發展原則下建構未來城市運輸規劃及設計之評估模式研究
論文名稱(外文):A Study of Utilizing Big Data to Construct Future City’s Transportation Planning and Design Evaluation Model under the Principles of Sustainable Development
指導教授:衛萬明衛萬明引用關係
指導教授(外文):WEY, WANN-MING
口試委員:李家儂顧嘉安衛萬明
口試委員(外文):LI, CHIA-NUNGKU, CHIA-ANWEY, WANN-MING
口試日期:2020-07-15
學位類別:碩士
校院名稱:國立臺北大學
系所名稱:不動產與城鄉環境學系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:178
中文關鍵詞:未來城市運輸規劃及設計巨量資料深度學習動態網路程序法
外文關鍵詞:Future CityTransportation Planning and DesigningBig DataDeep LearningDynamic Network Process
相關次數:
  • 被引用被引用:0
  • 點閱點閱:395
  • 評分評分:
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:2
由於時代進步,現今的人口過度聚集於都市中,導致都市持續增長,加速了都市化的發展並衍生出許多問題。快速的都市化現象使得都市中的土地需求日益迫切,加上公路網的便利及機動車的普及,都市人口也開始大幅向外發展,造成蔓延之現象。為了解決這些惡化的情況,如何在都市的發展過程中發揮「永續發展」的理念,並且找尋適當的都市規劃目標已成為各國關注的焦點。

都市的永續發展乃當前人類生活中重要的課題,其中,運輸之問題更因都市運輸需求不斷擾動之特性,需多加考量其未來情勢及策略。在都市規劃中,除了要考量都市發展之狀況,因應電腦及網路技術普及,許多理論及技術更是應運而生,也帶動了將資訊化應用於都市管理策略為主軸之概念,並透過蒐集巨量資料將都市發展中的時間、空間進行串聯,使都市規劃之洪流由原本需長期規劃之情況演變成短期且動態發展。另一方面,新形式的都市規劃已朝向即時性(in time)發展,相對於過去規劃的歷史多重視長期規劃,較少探討數分鐘或數小時城市中所發生的情況,因此,本研究希望將眼光放遠,透過探討即時、動態的城市變化,擬定出長遠且具延續性的目標。據此,本研究巨量資料為基礎,進一步將其應用於都市的永續運輸策略中。

首先,針對國內外相關文獻進行回顧與分析,歸納出符合未來城市的永續運輸指標,並以具有巨量資料之指標為優先考量,期望透過指標之巨量資料,率先利用深度學習(Deep Learning)方法並結合時間序列用以預測指標未來之趨勢狀況;其次,為使研究結果能實際應用於規劃決策中,考量動態環境需以不同策略因應,進一步以動態網路程序法(Dynamic Network Process)研擬出在動態時空變化下,未來城市永續運輸策略的優先順序評估;最後,透過前述方法所求得之優先順序,規劃及設計各項資源的分配,藉以發展出未來城市之運輸規劃及設計策略。本研究藉由擷取眾多具前瞻及創新之文獻,並以值得借鑑的先進國家之未來發展及永續目標為學習之對象,深入發掘及探討與時俱進之都市規劃新理論後,利用客觀且具新穎之研究方法創造出本研究主要之研究核心價值,以此作為臺灣發展未來城市之重要參考及評比指標依據。更期望藉由都市環境規劃和預測都市潛在運作規律以達到未來城市發展之最終目的。

The population is excessively increased and concentrated in the city as the results of continuous city growth which also accelerates the urban sprawl and causes many urbanization problems. The rapid urbanization has also made the land demand in the cities increasingly urgent. In the meantime, due to the reason that road network is more convenient and the increase of motor vehicles in a city, people in the urban also started to travel out of town and caused a phenomenon of urban spread. In order to solve these deteriorating situations in a city, how to utilize "sustainable development" in the process of urban development and find appropriate urban planning goals have been paid more attentions for different countries in the world.

The sustainable development of the city is an important issue in the current real world. Especially, the transportation problem is caused by the high demands of urban transportation. It is necessary to consider its future situation and strategy. In urban planning, in addition to considering the status of urban development, in response to the popularization of computer and network technologies nowadays, many theories and technologies such as information technology have been applied to urban management strategies. The big data connects the time and space in urban development, so that the torrent of urban planning has evolved from the situation that required long-term planning to short-term as well as dynamic development. Compared with traditional planning theories, more attention is paid to long-term planning strategies instead of, to minutes or hours. As a result, this study intends to take a long-term perspective and studies real-time and dynamic city changes to formulate long-term goals. Consequently, this study is utilizing big data for the application to urban sustainable transportation strategies.

First, review and analyze the relevant literature, summarize the sustainable transportation indicators that meet the future city, and take the indicators with big data as the first consideration. I hope that through the huge amounts of indicators, we will take the lead in using deep learning and combine time series are used to predict the future trend of the indicator; secondly, in order to the research results to be practically used in planning and decision-making, the dynamic environment needs to be dealt with by different strategies, and the dynamic network process is further used to develop the priority order assessment of future urban sustainable transportation strategies under dynamic spatiotemporal changes; finally, through the priority order obtained by the aforementioned method, the allocation of various resources is planned and designed to develop the transportation planning and design strategy of the future city.

In this study, by extracting many forward-looking and innovative literatures, and taking the future development and sustainable goals of advanced countries worthy of reference as the learning objects, after in-depth exploration and discussion of the new theory of urban planning that advances with the times, using objective and novel research methods to create the main research core value of this research, as an important reference and evaluation index basis for the development of future cities in Taiwan. It is also expected to achieve the ultimate goal of future urban development through urban environmental planning and forecasting the potential operation rules of the city.

目錄 I
圖目錄 II
表目錄 III
第一章 緒論 1
第一節 研究動機與目的 1
第二節 研究範圍 7
第三節 研究方法 10
第四節 研究內容與流程 13
第二章 文獻回顧 15
第一節 未來城市相關文獻 15
第二節 都市永續運輸相關文獻 19
第三節 巨量資料相關文獻 29
第三章 研究方法與模式建構 41
第一節 時間序列分析 42
第二節 動態網路程序法 51
第三節 指標權重動態趨勢研擬 56
第四章 實證研究與分析 58
第一節 實證對象與範圍 58
第二節 未來城市之永續運輸評估指標歸納與篩選 63
第三節 未來城市之永續運輸評估指標動態趨勢分析 71
第四節 動態網路程序法之實證操作 78
第五節 未來城市之永續運輸指標權重動態趨勢研擬 86
第六節 擬定符合實證地區未來城市目標下之永續運輸規劃策略 90
第五章 結論與建議 98
第一節 結論 98
第二節 後續研究與建議 101
參考文獻 103
(一)中文文獻 103
(二)英文文獻 106
附錄A 動態網路程序法之運算過程 111
(一)中文文獻
1. 交通部運輸研究所(2002),永續運輸之量化指標研究,臺北市:交通部運輸研究所。
2. 吳瑞堯、周駿賢(2011),運用資料探勘技術於六大死因慢性疾病之研究,資訊管理學報,18(1),頁187-211。
3. 李俊嶺、劉慶順(2009),動態決策問題研究及其應用現狀評述,社會科學論壇,2009(5B),頁105-110。
4. 沈育生(2012a),地區性永續運輸課題與發展策略之探討,土地問題研究季刊,11(3),頁113-117。
5. 沈育生(2012b),淺析國家永續發展之課題與策略,土地問題研究季刊,11(1),頁104-108。
6. 林寬裕、鎮明常、李慶華(2015),淺談巨量資料之分析與應用-以臺灣市場為例,數據分析,10(1),頁1-15。
7. 林澔、陳源安、楊朝棟、姜自強(2019),基於深度學習技術應用於空氣品質PM2.5預測,臺灣網際網路研討會,高雄市:高雄國際會議中心。
8. 珍·雅各(1961),偉大城市的誕生與衰亡:美國都市街道生活的啟發,新北市:聯經出版事業公司。
9. 胡世忠(2013),雲端時代的殺手級應用: Big Data海量資料分析 ,臺北市:天下雜誌。
10. 張云濤、龔玲(2007),資料探勘原理與技術,臺北市:五南圖書出版公司。
11. 張斌(2017),結合多重時間序列與深度循環網路模型於短期電力預測,私立元智大學資訊工程學系碩士論文。
12. 張瑞益、郭捷、范莎惠(2018),使用深度學習長短期記憶模型推薦適性化教材,資訊與管理科學,11(2),頁32-52。
13. 許添本、劉欽瑜(2004),都會區永續發展目標下之運具分配比例,都市交通,19(2),頁3-
14. 陳垂呈(2003),以資料探勘技術發掘消費者之最適性產品項目,朝陽商管評論,2(1),頁1-13。
15. 陳昱斳、陳文輝(2018)應用深度學習於短期負載預測之研究,先進工程學刊,13(3),頁131-136。
16. 馮正民、林楨家(2003),城際永續運輸的願景與發展策略(一),行政院國家科學委員會專題研究計畫。
17. 黃書猛、張中權(2010),應用空間資料探勘於未來需求規劃之研究-以都會區捷運系統為例,電子商務研究 ,8(1),頁105-121。
18. 黃朝恩(1995),環境問題及永續發展的全球尺度研究,國立臺灣師範大學地理研究報告,臺北市:國立臺灣師範大學地理系。
19. 楊文靜(2017),應用大數據與分析網路程序法建構智慧永續城市評估模型之研究,國立臺北大學不動產與城鄉環境學系碩士論文。
20. 葉燉烟、鄭景俗、傅雲龍(2005),電信數據電路客戶流失資料探勘,管理與系統,12(2),頁75-91。
21. 鄧振源、曾國雄(1989),層級分析法的內涵特性與應用(上),中國統計學報,27(6),頁13707-13724。
22. 蕭惠珊(2019),結合DEMATEL和ANP建構未來城市發展評估模型之研究,國立臺北大學都市計劃研究所碩士論文。
23. 謝邦昌(2001),資料採礦入門級應用-從統計技術看資料採礦,臺北市:資商訊息顧問公司。
24. 蘇郁、洪富峰(2012)都市永續性評估:以改制前高雄市之能源和運輸永續性為例,中國地理學會會刊,(48),頁63-83。


(二)英文文獻
1. Agrawal, R., & Srikant, R. (1995). Mining sequential patterns. In icde, 95, 3-14.
2. Batty, M. (2013). Big data, smart cities and city planning. Dialogues in Human Geography, 3(3), 274-279.
3. Belzer, D., & Autler, G. (2002). Countering sprawl with transit-oriented development. Issues in Science and Technology, 19(1), 51-58.
4. Berry, M., & Linoff, G. (1997). Data mining techniques: For marketing, sales and marketing support.
5. Bibri, S. E., & Krogstie, J. (2017). Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustainable Cities and Society, 31, 183-212.
6. Black, W. R. (1996). Sustainable transportation: a US perspective. Journal of transport geography, 4(3), 151-159.
7. Bryant, R. E., Katz, R. H., & Lazowska, E. D. (2008). Big-data computing: Creating revolutionary breakthroughs in commerce, science, and society: A white paper prepared for the Computing Community Consortium committee of the Computing Research Association.
8. Council, P. S. R. (2010). Transportation 2040: Toward a sustainable transportation system. Puget Sound Regional Council Information Center, 1011.
9. Czajkowski, A. F., & Jones, S. (1986). Selecting interrelated R & D projects in space technology planning. IEEE Transactions on Engineering management, (1), 17-24.
10. Demchenko, Y., Ngo, C., & Membrey, P. (2013). Architecture framework and components for the big data ecosystem. Journal of System and Network Engineering, 1-31.
11. Diehl, J. C. (2001). Ecodesign methodology development From linear hierarchies to nonlinear networks. European Journal of Operational Research, 26, 229-237.
12. Emani, C. K., Cullot, N., & Nicolle, C. (2015). Understandable big data: a survey. Computer science review, 17, 70-81.
13. Fayyad, U. (1996). Mining scientific data. Communications of the ACM, 39(11), 51-57.
14. Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI magazine, 17(3), 37-37.
15. Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM, 39(11), 27-34.
16. Francois, C., Gondran, N., Nicolas, J. P., & Parsons, D. (2017). Environmental assessment of urban mobility: combining life cycle assessment with land-use and transport interaction modelling—application to Lyon (France). Ecological Indicators, 72, 597-604.
17. Frawley, W. J., Piatetsky-Shapiro, G., & Matheus, C. J. (1992). Knowledge discovery in databases: An overview. AI magazine, 13(3), 57-57.
18. Greene, D. L., & Wegener, M. (1997). Sustainable transport. Journal of Transport Geography, 5(3), 177-190.
19. Grupe, F. H., & Mehdi Owrang, M. (1995). Data base mining discovering new knowledge and competitive advantage. Information System Management, 12(4), 26-31. Gudmundsson, H. (2001). Indicators and performance measures for transportation, environment and sustainability in north America: Report from a German Marshall Fund Fellowship 2000 individual study tour October 2000.
20. Gudmundsson, H. (2004). Sustainable transport and performance indicators. Issues in environmental science and technology, (20), 35-63.
21. Gupta, S., Kar, A. K., Baabdullah, A., & Al-Khowaiter, W. A. (2018). Big data with cognitive computing: a review for the future. International Journal of Information Management, 42, 78-89.
22. Han, J., & Kamber, M. (2006). Data mining: concepts and techniques. San Francisco: Morgan Kauffman.
23. Han, J., Kamber, M., & Tung, A. K. (2001). Spatial clustering methods in data mining. Geographic data mining and knowledge discovery, 188-217.
24. Hand, D. J. (1998). Data mining: statistics and more?. The American Statistician, 52(2), 112-118.
25. Hedges, S. B., Dudley, J., & Kumar, S. (2006). TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics, 22(23), 2971-2972.
26. Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. science, 313(5786), 504-507.
27. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
28. Intergovernmental Panel on Climate Change (2013). Climate Change 2014: Mitigation of Climate Change. Working Group III Contribution to the IPCC 5th Assessment Report. Potsdam, Germany: IPCC WG III.
29. Joumard, R., & Nicolas, J. P. (2010). Transport project assessment methodology within the framework of sustainable development. Ecological Indicators, 10(2), 136-142.
30. Li, C. N. (2012). Low Carbon Management Concepts in TOD Planning. In Sustainable Transportation Systems: Plan, Design, Build, Manage, and Maintain, 160-167.
31. Lim, C., Kim, K. H., Kim, M. J., Heo, J. Y., Kim, K. J., & Maglio, P. P. (2018). From data to value: A nine-factor framework for data-based value creation in information-intensive services. International Journal of Information Management, 39, 121-135.
32. Litman, T. (2007). Developing indicators for comprehensive and sustainable transport planning. Transportation Research Record, 2017(1), 10-15.
33. Litman, T., & Burwell, D. (2006). Issues in sustainable transportation. International Journal of Global Environmental Issues, 6(4), 331-347.
34. Loo, B. P., & Chow, S. Y. (2006). Sustainable urban transportation: Concepts, policies, and methodologies. Journal of urban planning and development, 132(2), 76-79.
35. Loo, B. P., & Du Verle, F. (2017). Transit-oriented development in future cities: Towards a two-level sustainable mobility strategy. International Journal of Urban Sciences, 21, 54-67.
36. Martín, A., Julián, A. B. A., & Cos-Gayón, F. (2019). Analysis of Twitter messages using big data tools to evaluate and locate the activity in the city of Valencia (Spain). Cities, 86, 37-50.
37. May, A. D., Page, M., & Hull, A. (2008). Developing a set of decision-support tools for sustainable urban transport in the UK. Transport Policy, 15(6), 328-340.
38. Mayer-Schönberger, V., & Cukier, K. (2013). Big data: la revolución de los datos masivos.
39. McKinsey Global Institute (2011). Big data: The Next Frontier for Innovation, Competition, and Productivity. New York: McKinsey Global Institute.
40. Mori, K., & Christodoulou, A. (2012). Review of sustainability indices and indicators: Towards a new City Sustainability Index (CSI). Environmental impact assessment review, 32(1), 94-106.
41. Peacock, P. R. (1998). Data mining in Marketing: Part1. Marketing Management, 6(4), 8-18.
42. Pelletier, M. P., Trépanier, M., & Morency, C. (2011). Smart card data use in public transit: A literature review. Transportation Research Part C: Emerging Technologies, 19(4), 557-568.
43. Peña-Ayala, A. (2014). Educational data mining: A survey and a data mining-based analysis of recent works. Expert systems with applications, 41(4), 1432-1462.
44. Petty, S., Banerjee, F., Deakin, E., Jacobsen, J. L., Markle, Y., & Peter Pampu, D. (2001). Sustainable transportation practices in Europe (No. FHWA-PL-02-006). United States. Federal Highway Administration.
45. Priestley, M. B. (1981). Spectral analysis and time series. London: Academic press.
46. Pyle, D. (1999). Data preparation for data mining. San Francisco: Morgan Kauffman.
47. Rekha, J. H., & Parvathi, R. (2015). Survey on software project risks and big data analytics. Procedia Computer Science, 50, 295-300.
48. Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65(6), 386.
49. Rumelhart, D. E., Hinton, G. E., & McClelland, J. L. (1986). A general framework for parallel distributed processing. Parallel distributed processing: Explorations in the microstructure of cognition, 1(26), 45-76.
50. Saaty, T. L. (1990). How to make a decision: the analytic hierarchy process. European journal of operational research, 48(1), 9-26.
51. Saaty, T. L. (1996). Multicriteria decision making: The analytic hierarchy process. Retrieved October 12, 2019, from RWS Publications.
52. aaty, T. L. (1999). Fundamentals of the analytic network process. Kobe, Japan: ISAHP.
53. Saaty, T. L. (2007). Time dependent decision-making; dynamic priorities in the AHP/ANP: Generalizing from points to functions and from real to complex variables. Mathematical and Computer Modelling, 46(7-8), 860-891.
54. Sanders, R. L., Frackelton, A., Gardner, S., Schneider, R., & Hintze, M. (2017). Ballpark method for estimating pedestrian and bicyclist exposure in Seattle, Washington: Potential option for resource-constrained cities in an age of big data. Transportation Research Record, 2605(1), 32-44.
55. Santos, A. S., & Ribeiro, S. K. (2013). The use of sustainability indicators in urban passenger transport during the decision-making process: the case of Rio de Janeiro, Brazil. Current opinion in environmental sustainability, 5(2), 251-260.
56. Soto, V. and Frias-Martinez, E. (2011). Robust Land Use Characterization of Urban Landscapes Using Cell Phone Data. Workshop on Pervasive Urban Applications in Conjunction with 9th International Conference on Advances in Mobile Computing and Multimedia. 151-160.
57. Steenbruggen, J., Nijkamp, P., & Van Der Vlist, M. (2014). Urban traffic incident management in a digital society: An actor–network approach in information technology use in urban Europe. Technological Forecasting and Social Change, 89, 245-261.
58. Tao, S., Corcoran, J., Mateo-Babiano, I., & Rohde, D. (2014). Exploring Bus Rapid Transit passenger travel behaviour using big data. Applied geography, 53, 90-104.
59. United Nations (2015). Transforming our world: The 2030 agenda for sustainable development. New York: United Nations, Department of Economic and Social Affairs.
60. Weber, R., Werners, B., & Zimmermann, H. J. (1990). Planning models for research and development. European Journal of Operational Research, 48(2), 175-188.
61. World Commission on Environment and Development (1987). Our Common Future. Oxford, England: University Press.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊