(一)中文文獻
1. 交通部運輸研究所(2002),永續運輸之量化指標研究,臺北市:交通部運輸研究所。
2. 吳瑞堯、周駿賢(2011),運用資料探勘技術於六大死因慢性疾病之研究,資訊管理學報,18(1),頁187-211。
3. 李俊嶺、劉慶順(2009),動態決策問題研究及其應用現狀評述,社會科學論壇,2009(5B),頁105-110。
4. 沈育生(2012a),地區性永續運輸課題與發展策略之探討,土地問題研究季刊,11(3),頁113-117。
5. 沈育生(2012b),淺析國家永續發展之課題與策略,土地問題研究季刊,11(1),頁104-108。
6. 林寬裕、鎮明常、李慶華(2015),淺談巨量資料之分析與應用-以臺灣市場為例,數據分析,10(1),頁1-15。
7. 林澔、陳源安、楊朝棟、姜自強(2019),基於深度學習技術應用於空氣品質PM2.5預測,臺灣網際網路研討會,高雄市:高雄國際會議中心。
8. 珍·雅各(1961),偉大城市的誕生與衰亡:美國都市街道生活的啟發,新北市:聯經出版事業公司。
9. 胡世忠(2013),雲端時代的殺手級應用: Big Data海量資料分析 ,臺北市:天下雜誌。
10. 張云濤、龔玲(2007),資料探勘原理與技術,臺北市:五南圖書出版公司。
11. 張斌(2017),結合多重時間序列與深度循環網路模型於短期電力預測,私立元智大學資訊工程學系碩士論文。12. 張瑞益、郭捷、范莎惠(2018),使用深度學習長短期記憶模型推薦適性化教材,資訊與管理科學,11(2),頁32-52。
13. 許添本、劉欽瑜(2004),都會區永續發展目標下之運具分配比例,都市交通,19(2),頁3-
14. 陳垂呈(2003),以資料探勘技術發掘消費者之最適性產品項目,朝陽商管評論,2(1),頁1-13。
15. 陳昱斳、陳文輝(2018)應用深度學習於短期負載預測之研究,先進工程學刊,13(3),頁131-136。
16. 馮正民、林楨家(2003),城際永續運輸的願景與發展策略(一),行政院國家科學委員會專題研究計畫。
17. 黃書猛、張中權(2010),應用空間資料探勘於未來需求規劃之研究-以都會區捷運系統為例,電子商務研究 ,8(1),頁105-121。
18. 黃朝恩(1995),環境問題及永續發展的全球尺度研究,國立臺灣師範大學地理研究報告,臺北市:國立臺灣師範大學地理系。
19. 楊文靜(2017),應用大數據與分析網路程序法建構智慧永續城市評估模型之研究,國立臺北大學不動產與城鄉環境學系碩士論文。20. 葉燉烟、鄭景俗、傅雲龍(2005),電信數據電路客戶流失資料探勘,管理與系統,12(2),頁75-91。
21. 鄧振源、曾國雄(1989),層級分析法的內涵特性與應用(上),中國統計學報,27(6),頁13707-13724。
22. 蕭惠珊(2019),結合DEMATEL和ANP建構未來城市發展評估模型之研究,國立臺北大學都市計劃研究所碩士論文。23. 謝邦昌(2001),資料採礦入門級應用-從統計技術看資料採礦,臺北市:資商訊息顧問公司。
24. 蘇郁、洪富峰(2012)都市永續性評估:以改制前高雄市之能源和運輸永續性為例,中國地理學會會刊,(48),頁63-83。
(二)英文文獻
1. Agrawal, R., & Srikant, R. (1995). Mining sequential patterns. In icde, 95, 3-14.
2. Batty, M. (2013). Big data, smart cities and city planning. Dialogues in Human Geography, 3(3), 274-279.
3. Belzer, D., & Autler, G. (2002). Countering sprawl with transit-oriented development. Issues in Science and Technology, 19(1), 51-58.
4. Berry, M., & Linoff, G. (1997). Data mining techniques: For marketing, sales and marketing support.
5. Bibri, S. E., & Krogstie, J. (2017). Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustainable Cities and Society, 31, 183-212.
6. Black, W. R. (1996). Sustainable transportation: a US perspective. Journal of transport geography, 4(3), 151-159.
7. Bryant, R. E., Katz, R. H., & Lazowska, E. D. (2008). Big-data computing: Creating revolutionary breakthroughs in commerce, science, and society: A white paper prepared for the Computing Community Consortium committee of the Computing Research Association.
8. Council, P. S. R. (2010). Transportation 2040: Toward a sustainable transportation system. Puget Sound Regional Council Information Center, 1011.
9. Czajkowski, A. F., & Jones, S. (1986). Selecting interrelated R & D projects in space technology planning. IEEE Transactions on Engineering management, (1), 17-24.
10. Demchenko, Y., Ngo, C., & Membrey, P. (2013). Architecture framework and components for the big data ecosystem. Journal of System and Network Engineering, 1-31.
11. Diehl, J. C. (2001). Ecodesign methodology development From linear hierarchies to nonlinear networks. European Journal of Operational Research, 26, 229-237.
12. Emani, C. K., Cullot, N., & Nicolle, C. (2015). Understandable big data: a survey. Computer science review, 17, 70-81.
13. Fayyad, U. (1996). Mining scientific data. Communications of the ACM, 39(11), 51-57.
14. Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI magazine, 17(3), 37-37.
15. Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM, 39(11), 27-34.
16. Francois, C., Gondran, N., Nicolas, J. P., & Parsons, D. (2017). Environmental assessment of urban mobility: combining life cycle assessment with land-use and transport interaction modelling—application to Lyon (France). Ecological Indicators, 72, 597-604.
17. Frawley, W. J., Piatetsky-Shapiro, G., & Matheus, C. J. (1992). Knowledge discovery in databases: An overview. AI magazine, 13(3), 57-57.
18. Greene, D. L., & Wegener, M. (1997). Sustainable transport. Journal of Transport Geography, 5(3), 177-190.
19. Grupe, F. H., & Mehdi Owrang, M. (1995). Data base mining discovering new knowledge and competitive advantage. Information System Management, 12(4), 26-31. Gudmundsson, H. (2001). Indicators and performance measures for transportation, environment and sustainability in north America: Report from a German Marshall Fund Fellowship 2000 individual study tour October 2000.
20. Gudmundsson, H. (2004). Sustainable transport and performance indicators. Issues in environmental science and technology, (20), 35-63.
21. Gupta, S., Kar, A. K., Baabdullah, A., & Al-Khowaiter, W. A. (2018). Big data with cognitive computing: a review for the future. International Journal of Information Management, 42, 78-89.
22. Han, J., & Kamber, M. (2006). Data mining: concepts and techniques. San Francisco: Morgan Kauffman.
23. Han, J., Kamber, M., & Tung, A. K. (2001). Spatial clustering methods in data mining. Geographic data mining and knowledge discovery, 188-217.
24. Hand, D. J. (1998). Data mining: statistics and more?. The American Statistician, 52(2), 112-118.
25. Hedges, S. B., Dudley, J., & Kumar, S. (2006). TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics, 22(23), 2971-2972.
26. Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. science, 313(5786), 504-507.
27. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
28. Intergovernmental Panel on Climate Change (2013). Climate Change 2014: Mitigation of Climate Change. Working Group III Contribution to the IPCC 5th Assessment Report. Potsdam, Germany: IPCC WG III.
29. Joumard, R., & Nicolas, J. P. (2010). Transport project assessment methodology within the framework of sustainable development. Ecological Indicators, 10(2), 136-142.
30. Li, C. N. (2012). Low Carbon Management Concepts in TOD Planning. In Sustainable Transportation Systems: Plan, Design, Build, Manage, and Maintain, 160-167.
31. Lim, C., Kim, K. H., Kim, M. J., Heo, J. Y., Kim, K. J., & Maglio, P. P. (2018). From data to value: A nine-factor framework for data-based value creation in information-intensive services. International Journal of Information Management, 39, 121-135.
32. Litman, T. (2007). Developing indicators for comprehensive and sustainable transport planning. Transportation Research Record, 2017(1), 10-15.
33. Litman, T., & Burwell, D. (2006). Issues in sustainable transportation. International Journal of Global Environmental Issues, 6(4), 331-347.
34. Loo, B. P., & Chow, S. Y. (2006). Sustainable urban transportation: Concepts, policies, and methodologies. Journal of urban planning and development, 132(2), 76-79.
35. Loo, B. P., & Du Verle, F. (2017). Transit-oriented development in future cities: Towards a two-level sustainable mobility strategy. International Journal of Urban Sciences, 21, 54-67.
36. Martín, A., Julián, A. B. A., & Cos-Gayón, F. (2019). Analysis of Twitter messages using big data tools to evaluate and locate the activity in the city of Valencia (Spain). Cities, 86, 37-50.
37. May, A. D., Page, M., & Hull, A. (2008). Developing a set of decision-support tools for sustainable urban transport in the UK. Transport Policy, 15(6), 328-340.
38. Mayer-Schönberger, V., & Cukier, K. (2013). Big data: la revolución de los datos masivos.
39. McKinsey Global Institute (2011). Big data: The Next Frontier for Innovation, Competition, and Productivity. New York: McKinsey Global Institute.
40. Mori, K., & Christodoulou, A. (2012). Review of sustainability indices and indicators: Towards a new City Sustainability Index (CSI). Environmental impact assessment review, 32(1), 94-106.
41. Peacock, P. R. (1998). Data mining in Marketing: Part1. Marketing Management, 6(4), 8-18.
42. Pelletier, M. P., Trépanier, M., & Morency, C. (2011). Smart card data use in public transit: A literature review. Transportation Research Part C: Emerging Technologies, 19(4), 557-568.
43. Peña-Ayala, A. (2014). Educational data mining: A survey and a data mining-based analysis of recent works. Expert systems with applications, 41(4), 1432-1462.
44. Petty, S., Banerjee, F., Deakin, E., Jacobsen, J. L., Markle, Y., & Peter Pampu, D. (2001). Sustainable transportation practices in Europe (No. FHWA-PL-02-006). United States. Federal Highway Administration.
45. Priestley, M. B. (1981). Spectral analysis and time series. London: Academic press.
46. Pyle, D. (1999). Data preparation for data mining. San Francisco: Morgan Kauffman.
47. Rekha, J. H., & Parvathi, R. (2015). Survey on software project risks and big data analytics. Procedia Computer Science, 50, 295-300.
48. Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65(6), 386.
49. Rumelhart, D. E., Hinton, G. E., & McClelland, J. L. (1986). A general framework for parallel distributed processing. Parallel distributed processing: Explorations in the microstructure of cognition, 1(26), 45-76.
50. Saaty, T. L. (1990). How to make a decision: the analytic hierarchy process. European journal of operational research, 48(1), 9-26.
51. Saaty, T. L. (1996). Multicriteria decision making: The analytic hierarchy process. Retrieved October 12, 2019, from RWS Publications.
52. aaty, T. L. (1999). Fundamentals of the analytic network process. Kobe, Japan: ISAHP.
53. Saaty, T. L. (2007). Time dependent decision-making; dynamic priorities in the AHP/ANP: Generalizing from points to functions and from real to complex variables. Mathematical and Computer Modelling, 46(7-8), 860-891.
54. Sanders, R. L., Frackelton, A., Gardner, S., Schneider, R., & Hintze, M. (2017). Ballpark method for estimating pedestrian and bicyclist exposure in Seattle, Washington: Potential option for resource-constrained cities in an age of big data. Transportation Research Record, 2605(1), 32-44.
55. Santos, A. S., & Ribeiro, S. K. (2013). The use of sustainability indicators in urban passenger transport during the decision-making process: the case of Rio de Janeiro, Brazil. Current opinion in environmental sustainability, 5(2), 251-260.
56. Soto, V. and Frias-Martinez, E. (2011). Robust Land Use Characterization of Urban Landscapes Using Cell Phone Data. Workshop on Pervasive Urban Applications in Conjunction with 9th International Conference on Advances in Mobile Computing and Multimedia. 151-160.
57. Steenbruggen, J., Nijkamp, P., & Van Der Vlist, M. (2014). Urban traffic incident management in a digital society: An actor–network approach in information technology use in urban Europe. Technological Forecasting and Social Change, 89, 245-261.
58. Tao, S., Corcoran, J., Mateo-Babiano, I., & Rohde, D. (2014). Exploring Bus Rapid Transit passenger travel behaviour using big data. Applied geography, 53, 90-104.
59. United Nations (2015). Transforming our world: The 2030 agenda for sustainable development. New York: United Nations, Department of Economic and Social Affairs.
60. Weber, R., Werners, B., & Zimmermann, H. J. (1990). Planning models for research and development. European Journal of Operational Research, 48(2), 175-188.
61. World Commission on Environment and Development (1987). Our Common Future. Oxford, England: University Press.