(3.215.180.226) 您好!臺灣時間:2021/03/06 16:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡洲濠
研究生(外文):TSAI, HENRY JHOUHAO
論文名稱:都市周邊地區發展策略對因應氣候變遷之綜效與權衡分析-以新莊、五股、泰山地區為例
論文名稱(外文):Synergy and Trade-offs of Urban Development Plans and Projects in Response to Climate Change:A Case Study of Xinzhung,Wugu and Taishan Districts
指導教授:黃書禮黃書禮引用關係
指導教授(外文):HUANG, SHU-LI
口試委員:黃書禮詹士樑李盈潔
口試委員(外文):HUANG, SHU-LICHAN, SHIN-LIANGLEE, YING-CHIEH
口試日期:2020-07-03
學位類別:碩士
校院名稱:國立臺北大學
系所名稱:都市計劃研究所
學門:建築及都市規劃學門
學類:都市規劃學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:114
中文關鍵詞:都市周邊地區氣候變遷衝擊矩陣綜效權衡新莊五股泰山
外文關鍵詞:Peri-urban AreasClimate ChangeImpact MatrixSynergyTrade-offXinzhuangWuguTaishan
相關次數:
  • 被引用被引用:0
  • 點閱點閱:94
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  都市周邊地區(peri-urban areas)作為都市地區與鄉村地區之中介緩衝帶,因受都市地區對周邊地區之各項驅動力,不論社會、經濟與建設發展等各層面皆受其影響。如位於臺北都會區周邊之新莊、五股與泰山地區,近年因水利計畫提供保護與其都市發展所致之快速變遷,帶動交通、水利計畫甚至重劃案等諸多有關都市化發展之計畫於過去二十年間密集投入,使其高度都市化且仍持續發展中,故針對此地區之討論自為相當重要。然面對全球環境變遷與氣候變遷之衝擊,IPCC(2007)提出以綜效(Synergy)與權衡(Trade-off)概念,作為因應氣候變遷衝擊下,檢視各項政策與計畫間互動關係之方法。故本研究即以此概念為基礎,首先了解研究地區都市化過程中,與氣候變遷減緩調適有關的政策其產生影響為何,進而建立研究地區都市化過程相關建設計畫,因應氣候變遷之綜效與權衡分析架構。從而以此架構為基礎,分析上述各項計畫彼此互動是否對研究地區因應氣候變遷具綜效或權衡關係,最終提供改善建議。而針對計畫間關係探討,本研究首先彙整研究地區都市化發展過程產生之各項已核定計畫,並分析計畫實施過程及後續衍生效益,相互實施下是否對造成上述之綜效、權衡關係。為了解其影響關聯性與程度,本研究以上述分析為基礎,進一步採用感受性系統模型(Sensitivity Model)中之衝擊矩陣(Impact Matrix),訪談熟稔本研究地區之公、私部門專家,從而建立研究地區之系統關聯圖。並以此關聯性為基礎分別繪製各項計畫實施後之正負迴路鍊結,了解計畫除直接影響外透過鍊結所衍生之間接影響,綜合評判研究地區中計畫對氣候變遷減緩調適策略產生之影響。最終發現研究地區都市化發展過程所核定之各項計畫,因過往發展時較無注重氣候變遷議題,使計畫直接影響過程全數屬權衡關係。又因可降低淹水風險之水利計畫實施後間接刺激溫室氣體排放以及可降低溫室氣體排放之大眾運輸計畫實施後間接衍生淹水風險等,表示計畫除直接影響外,透過間接影響亦衍生額外負面效益。故本研究建議研究地區未來應先分析與利用對此地區具關鍵影響之計畫,結合大臺北地區整體發展,添入對氣候變遷具正面效益之計畫進而產生綜效關係,提升研究地區面對洪氾災害與各項氣候變遷災害之因應能力。
 Peri-urban areas, which are intermediary or buffer zones between urban and rural areas, are affected by various driving forces of urban areas, especially in terms of social, economic, and infrastructure development. For example, owing to rapid changes in water conservation and land use practices, leading to several urban development-related projects such as transportation and water conservancy, and other intensive investments over the past two decades, Xinzhuang, Wugu, and Taishan Districts located in the vicinity of the Taipei Metropolitan Region have been highly urbanized over recent years; they are still being developed. However, facing the impact of global environmental and climate changes, the Intergovernmental Panel on Climate Change (IPCC) in 2007 proposed using synergies and trade-offs as methods of interaction between policies and programs.
 Based on this concept, the author first wishes to understand the impact of the policies related to the mitigation of, and adaptation to, climate change in the urbanization process of the research areas. Then, the author wants to establish urbanization process-related construction plans for research areas in response to climate change, using the synergy and trade-off analysis. Furthermore, the author wants to check whether the interaction of the above-mentioned construction-related plans has synergistic and trade-off relations with the change in climate of research areas, and finally provide recommendations for policy improvement.
 Regarding the discussion on inter-plan relations, this study summarized the approved plans generated from the urbanization development process in the research areas and analyzed the irrespective implementation processes, as well as subsequent derivative benefits of each plan. This was to assess if they have synergistic or trade-off relations with the climate change policies for research areas. Thereafter, based on the above analysis, several industrial experts, well-informed about the research areas, were interviewed to draw a system correlation map of the research areas through the Impact Matrix of Sensitivity Model to analyze their correlation level. Additionally, this study marked out the positive and negative chaining of the implementation process of each plan based on the correlation to explore the indirect impact of the plan through the chaining. It also comprehensively assessed the effect on strategies of mitigation and adaptation in the research areas.
 Finally, this study found that because of lack of care during past development activities, the plans approved by the urbanization and development processes in Xinzhuang, Wugu, and Taishan Districts lacked synergistic relations among them, and had only trade-off relations. The results show that the water plan, which is supposed to reduce the risk of flooding in the research areas, indirectly stimulated greenhouse gas (GHG) emissions after implementation. The public transport plan, which should reduce GHG emissions, indirectly increased the risk of flooding. Such examples indicate that in addition to the direct impacts of a plan, several indirect negative impacts are also derived. Therefore, this study recommends that plans with a critical impact on the region should be analyzed first. Synergistic relations between the proposed development of the Taipei area with positive effects on climate change should also be observed to improve the adaptability of the research areas for floods and other climate change disasters.
圖目錄 II
表目錄 IV

第一章 緒論 1
第一節 研究動機與目的 1
第二節 研究內容與範圍 5
第三節 研究流程說明 7

第二章 相關理論與文獻回顧 11
第一節 綜效與權衡定義回顧與過往案例 11
第二節 都市周邊地區都市化與氣候變遷相關討論 15
第三節 小結 22

第三章 研究設計與分析架構建立 23
第一節 研究設計 23
第二節 都市化發展相關計畫對因應氣候變遷策略影響評估 27
第三節 衝擊矩陣分析應用 34
第四節 計畫間接影響分析 39
第五節 小結 42

第四章 新莊、五股、泰山地區都市化發展分析 43
第一節 研究地區發展脈絡與計畫彙整 43
第二節 建立綜效與權衡分析架構 61

第五章 綜效、權衡分析及洪災調適能力探討 69
第一節 計畫對因應氣候變遷之綜效與權衡 69
第二節 計畫之系統角色探討 72
第三節 計畫權衡關係再分析 81
第四節 小結 101

第六章 結論與後續建議 102
第一節 結論 102
第二節 後續研究建議 107

參考資料 109

附錄 附-1
中文文獻(按姓氏)
昌明道(1998)。臺灣地區砂石需求預測與供應體系規劃之研究。國立成功大學資源工程學系。
陳保展、羅國峯、林彥宇、許珮蒨與王寧沂(2017)。西濱快速公路八棟寮至九塊厝新建工程之鋪面工程生命週期排碳特性分析。第十九屆鋪面工程學術研討會暨2017世界華人鋪面專家學術研討會。臺北市。
陳瑞玲、吳杰穎、林文苑與林建宏(2014)。都市洪災脆弱度因子與都市規劃防範策略之探討。建築學報。89,75–92。https://doi.org/10.3966/10163212201409008900
何友鋒、王小璘與陸建浩(2002)。臺中市都市永續發展系統動態模擬模式之研究。 建築學報。41。107–128。https://doi.org/10.6377/JA.200210.0107
黃大肯、張文亮(2014)。新海人工溼地水生植物碳吸存量之評估。農業工程學報。60(3)。55–67。
黃國慶、詹士樑(2009)。臺北都會區土地使用/覆蓋變遷驅動力之空間近鄰效果探討。都市與計劃。36(4)。415–443。https://doi.org/10.6128/CP.36.4.415。
黃書禮、王安民(2000)。因應CO2減量之永續都市規劃策略_以臺北市為例。規劃學報。27。1–23。
黃書禮、徐婉玲(2001)。臺北地區都市建設代謝作用物質流分析與能值評估。都市與計劃。28(2)。187–209.
黃書禮、葉佳宗與陳俐伶(2005)。檢視都市永續發展指標的發展歷程與內涵:從指標系統建構到政策評估。都市與計劃。32(2)。227–251。https://doi.org/10.6128/CP.32.2.227
黃書禮、周素卿(2018)。土地遠距連接、治理與都市永續性 (科技部整合型計畫 MOST 105-2621-M-305-001-MY3)
王大立、劉小蘭(2009)。臺灣地區都會發展之空間型態分析。都市與計劃。36(4)。355–359. https://doi.org/10.6128/CP.36.4.355
王思樺、黃書禮、李叢禎與蕭儀婷(2016)。都市能源使用CO2排放變動趨勢之降尺度分析-以臺北都會區與高雄市為例。都市與計劃。369。https://doi.org/10.6128/CP.43.4.369
王思樺、張力方(2009)。都市周邊土地使用與地表覆蓋變遷:驅動力與環境變遷議題。都市與計劃。36(4)。361–385。https://doi.org/10.6128/CP.36.4.361
吳再益、林唐裕、侯仁義、柯亮群與黃永慧(2012)。我國能源政策發展模式及其未來方向探討。臺灣銀行季刊。63(2)。
楊學涑(2003)。臺北地區防洪計畫紀要。水利會訊。7。1–41.
詹士樑、黃書禮(2000)。生物控制論方法應用在都市生態規畫之可行性探討-以靈敏度模型為例。NSC 89-2415-H-005A-012。行政院國家科學委員會。
詹士樑、黃書禮與王思樺(2003)。臺北地區洪水災害風險分區劃設之研究。都市與計劃。263。
昌明道(1998)。臺灣地區砂石需求預測與供應體系規劃之研究。國立成功大學資源工程學系。
陳保展、羅國峯、林彥宇、許珮蒨與王寧沂(2017)。西濱快速公路八棟寮至九塊厝新建工程之鋪面工程生命週期排碳特性分析。第十九屆鋪面工程學術研討會暨2017世界華人鋪面專家學術研討會。臺北市。
陳瑞玲、吳杰穎、林文苑與林建宏(2014)。都市洪災脆弱度因子與都市規劃防範策略之探討。建築學報。89,75–92。https://doi.org/10.3966/10163212201409008900
何友鋒、王小璘與陸建浩(2002)。臺中市都市永續發展系統動態模擬模式之研究。 建築學報。41。107–128。https://doi.org/10.6377/JA.200210.0107
黃大肯、張文亮(2014)。新海人工溼地水生植物碳吸存量之評估。農業工程學報。60(3)。55–67。
黃國慶、詹士樑(2009)。臺北都會區土地使用/覆蓋變遷驅動力之空間近鄰效果探討。都市與計劃。36(4)。415–443。https://doi.org/10.6128/CP.36.4.415。
黃書禮、王安民(2000)。因應CO2減量之永續都市規劃策略_以臺北市為例。規劃學報。27。1–23。
黃書禮、徐婉玲(2001)。臺北地區都市建設代謝作用物質流分析與能值評估。都市與計劃。28(2)。187–209.
黃書禮、葉佳宗與陳俐伶(2005)。檢視都市永續發展指標的發展歷程與內涵:從指標系統建構到政策評估。都市與計劃。32(2)。227–251。https://doi.org/10.6128/CP.32.2.227
黃書禮、周素卿(2018)。土地遠距連接、治理與都市永續性 (科技部整合型計畫 MOST 105-2621-M-305-001-MY3)
王大立、劉小蘭(2009)。臺灣地區都會發展之空間型態分析。都市與計劃。36(4)。355–359. https://doi.org/10.6128/CP.36.4.355
王思樺、黃書禮、李叢禎與蕭儀婷(2016)。都市能源使用CO2排放變動趨勢之降尺度分析-以臺北都會區與高雄市為例。都市與計劃。369。https://doi.org/10.6128/CP.43.4.369
王思樺、張力方(2009)。都市周邊土地使用與地表覆蓋變遷:驅動力與環境變遷議題。都市與計劃。36(4)。361–385。https://doi.org/10.6128/CP.36.4.361
吳再益、林唐裕、侯仁義、柯亮群與黃永慧(2012)。我國能源政策發展模式及其未來方向探討。臺灣銀行季刊。63(2)。
楊學涑(2003)。臺北地區防洪計畫紀要。水利會訊。7。1–41.
詹士樑、黃書禮(2000)。生物控制論方法應用在都市生態規畫之可行性探討-以靈敏度模型為例。NSC 89-2415-H-005A-012。行政院國家科學委員會。
詹士樑、黃書禮與王思樺(2003)。臺北地區洪水災害風險分區劃設之研究。都市與計劃。263。


英文文獻(按字母)
Allen, A. (2003). Environmental planning and management of the peri-urban interface: Perspectives on an emerging field. Environment and Urbanization, 15(1), 135–148. https://doi.org/10.1177/095624780301500103
Butler, J. R. A., Wong, G. Y., Metcalfe, D. J., Honzák, M., Pert, P. L., Rao, N., van Grieken, M. E., Lawson, T., Bruce, C., Kroon, F. J., & Brodie, J. E. (2013). An analysis of trade-offs between multiple ecosystem services and stakeholders linked to land use and water quality management in the Great Barrier Reef, Australia. Agriculture, Ecosystems & Environment, 180, 176–191. https://doi.org/10.1016/j.agee.2011.08.017
Chan, S.-L., & Huang, S.-L. (2004). A systems approach for the development of a sustainable community—The application of the sensitivity model (SM). Journal of Environmental Management, 72(3), 133–147. https://doi.org/10.1016/j.jenvman.2004.04.003
Chang, L.-F., & Huang, S.-L. (2015). Assessing urban flooding vulnerability with an emergy approach. Landscape and Urban Planning, 143, 11–24. https://doi.org/10.1016/j.landurbplan.2015.06.004
Chang, L.-F., Seto, K. C., & Huang, S.-L. (2013). Climate Change, Urban Flood Vulnerability, and Responsibility in Taipei. C. G. Boone & M. Fragkias, Urbanization and Sustainability: Linking Urban Ecology, Environmental Justice and Global Environmental Change. 179–198. https://doi.org/10.1007/978-94-007-5666-3_11
Chang, Y.-T., Lee, Y.-C., & Huang, S.-L. (2017). Integrated spatial ecosystem model for simulating land use change and assessing vulnerability to flooding. Ecological Modelling, 362, 87–100. https://doi.org/10.1016/j.ecolmodel.2017.08.013
Cox, L., Bassi, A., Kolling, J., Procter, A., Flanders, N., Tanners, N., & Araujo, R. (2017). Exploring synergies between transit investment and dense redevelopment: A scenario analysis in a rapidly urbanizing landscape. Landscape and Urban Planning, 167, 429–440. https://doi.org/10.1016/j.landurbplan.2017.07.021
Dennis, M., & James, P. (2017). Ecosystem services of collectively managed urban gardens: Exploring factors affecting synergies and trade-offs at the site level. Ecosystem Services, 26, 17–26. https://doi.org/10.1016/j.ecoser.2017.05.009
Douglas, I. R. (2006). Peri-urban ecosystems and societies: Transitional zones and contrasting values. https://doi.org/10.4324/9781849775878-10
Eakin, H., Lerner, A. M., & Murtinho, F. (2010). Adaptive capacity in evolving peri-urban spaces: Responses to flood risk in the Upper Lerma River Valley, Mexico. Global Environmental Change, 20(1), 14–22. https://doi.org/10.1016/j.gloenvcha.2009.08.005
Houston, P., & Bardsley, D. K. (2018). Climate change adaptation for peri-urban horticulture: A case study of the Adelaide Hills apple and pear industry. South Australian Geographical Journal, 114, 29–43.
Huang, S.-L., & Chen, C.-W. (2009). Urbanization and Socioeconomic Metabolism in Taipei: An Emergy Synthesis. Journal of Industrial Ecology, 13(1), 75–93. https://doi.org/10.1111/j.1530-9290.2008.00103.x
Huang, S.-L., Chen, Y.-H., Kuo, F.-Y., & Wang, S.-H. (2011). Emergy-based evaluation of peri-urban ecosystem services. Ecological Complexity, 8(1), 38–50. https://doi.org/10.1016/j.ecocom.2010.12.002
IPCC. (2007). Fourth Assessment Report. https://www.ipcc.ch/assessment-report/ar4/
IPCC. (2014). Fifth Assessment Report. https://www.ipcc.ch/assessment-report/ar5/
Kager, R., Bertolini, L., & Te Brömmelstroet, M. (2016). Characterisation of and reflections on the synergy of bicycles and public transport. Transportation Research Part A: Policy and Practice, 85, 208–219. https://doi.org/10.1016/j.tra.2016.01.015
Luhmann, N. (1995). Social Systems. Stanford University Press.
Lwasa, S., Mugagga, F., Wahab, B., Simon, D., Connors, J. P., & Griffith, C. (2015). A meta-analysis of urban and peri-urban agriculture and forestry in mediating climate change. Current Opinion in Environmental Sustainability, 13, 68–73. https://doi.org/10.1016/j.cosust.2015.02.003
McGregor, D. F. M., Simon, D., & Thompson, D. A. (2006). The Peri-urban Interface: Approaches to Sustainable Natural and Human Resource Use. Routledge.
Muñoz‐Rojas, M., Jordán, A., Zavala, L. M., Rosa, D. D. la, Abd‐Elmabod, S. K., & Anaya‐Romero, M. (2015). Impact of Land Use and Land Cover Changes on Organic Carbon Stocks in Mediterranean Soils (1956–2007). Land Degradation & Development, 26(2), 168–179. https://doi.org/10.1002/ldr.2194
Narain, V., & Nischal, S. (2007). The peri-urban interface in Shahpur Khurd and Karnera, India. Environment and Urbanization, 19(1), 261–273. https://doi.org/10.1177/0956247807076905
Paul Crutzen. (2000). Have we entered the 「Anthropocene」? IGBP. http://www.igbp.net/news/opinion/opinion/haveweenteredtheanthropocene.5.d8b4c3c12bf3be638a8000578.html
Serrao-Neumann, S., Crick, F., Harman, B., Schuch, G., & Choy, D. L. (2015). Maximising synergies between disaster risk reduction and climate change adaptation: Potential enablers for improved planning outcomes. Environmental Science & Policy, 50, 46–61. https://doi.org/10.1016/j.envsci.2015.01.017
Seto, K. C., Reenberg, A., Boone, C., Fragkias, M., Haase, D., Langanke, T., Marcotullio, P., Munroe, D. K., Olah, B., & Simon, D. (2012). Urban land teleconnections and sustainability. Proceedings of the National Academy of Sciences of the United States of America, 109(20), 7687–7692. https://doi.org/10.1073/pnas.1117622109
Seto, K. C., Sánchez-Rodríguez, R., & Fragkias, M. (2010). The New Geography of Contemporary Urbanization and the Environment. Annual Review of Environment and Resources, 35(1), 167–194. https://doi.org/10.1146/annurev-environ-100809-125336
Shaw, B. J., Van Vliet, J., & Verburg, P. H. (2020). The peri-urbanization of Europe: A systematic review of a multifaceted process. Landscape and Urban Planning, 196, 103733. https://doi.org/10.1016/j.landurbplan.2019.103733
Tapia, C., Abajo, B., Feliu, E., Mendizabal, M., Martinez, J. A., Fernández, J. G., Laburu, T., & Lejarazu, A. (2017). Profiling urban vulnerabilities to climate change: An indicator-based vulnerability assessment for European cities. Ecological Indicators, 78, 142–155. https://doi.org/10.1016/j.ecolind.2017.02.040
Trodahl, M. I., Jackson, B. M., Deslippe, J. R., & Metherell, A. K. (2017). Investigating trade-offs between water quality and agricultural productivity using the Land Utilisation and Capability Indicator (LUCI)–A New Zealand application. Ecosystem Services, 26, 388–399. https://doi.org/10.1016/j.ecoser.2016.10.013
Vester, F. (1988). The biocybernetic approach as a basis for planning our environment. Systems Practice, 1(4), 399–413. https://doi.org/10.1007/BF01066582
Wang, S.-H., Huang, S.-L., & Huang, P.-J. (2018). Can spatial planning really mitigate carbon dioxide emissions in urban areas? A case study in Taipei, Taiwan. Landscape and Urban Planning, 169, 22–36. https://doi.org/10.1016/j.landurbplan.2017.08.001
Westerink, J., Haase, D., Bauer, A., Ravetz, J., Jarrige, F., & Aalbers, C. B. E. M. (2013). Dealing with Sustainability Trade-Offs of the Compact City in Peri-Urban Planning Across European City Regions. European Planning Studies, 21(4), 473–497. https://doi.org/10.1080/09654313.2012.722927
World Bank Group—International Development, Poverty, & Sustainability.
電子全文 電子全文(網際網路公開日期:20220813)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔