跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 02:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃堤瑋
研究生(外文):Ti-Wei Huang
論文名稱:基於KubeEdge邊緣運算微服務部署自動化之系統設計
論文名稱(外文):Designing a KubeEdge-based Edge Computing System with Microservices Deployment Automation
指導教授:陳世穎陳世穎引用關係
指導教授(外文):Shih-Ying Chen
學位類別:碩士
校院名稱:國立臺中科技大學
系所名稱:資訊工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:64
中文關鍵詞:邊緣運算微服務容器
外文關鍵詞:Edge ComputingMicroservicesContainerKubeEdge
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
隨著物聯網技術的發展,使得在網路邊緣端的連線設備數量快速增加,因此必須能即時有效地處理這些設備所產生的大量數據。傳統雲端架構會將資料傳至雲端的資料中心進行運算後,並將運算後的結果回傳至使用者設備,因此消耗大量頻寬,對網際網路與雲端基礎架構將造成極大的負荷。邊緣運算將原本在於雲端的運算擴展至邊緣縮短了與終端裝置的距離,因此得以降低網路的延遲和縮短了服務的回應時間,也減少頻寬的使用。本研究以邊緣運算概念將微服務部署至邊緣端,並採用開放原始碼系統建置一套基於KubeEdge邊緣運算微服務部署自動化系統,微服務所提出解決跨網域雲邊部署與維運的問題,KubeEdge以WebSocket的機制來串連雲端與邊緣端的連結,提供在不同的區域環境下雲端與邊緣端跨網域溝通方式,並提出微服務自動部署機制給KubeEdge容器對部署微服務的應用服務關係或管理。同時,為了確保系統的正常運作,本研究所提出的系統也提供雲端和邊緣端核心元件的資源監控。實驗部分測試部署邊緣端成功率,以驗證本系統部署為服務至邊緣端的可行性。並比較雲端與邊緣端之間的延遲對部署的影響。且本系統支援邊緣節點自我修復功能機制,為遇到節點重啟時能花費較短的時間恢復服務。
With the development of the Internet of Things technology, the number of connected devices at the edge of the network is rapidly increasing. Therefore, it is necessary to be able to effectively process the large amount of data generated by these devices in real time. The traditional cloud architecture transfers data to the cloud data center for computation, and returns the result to the end devices. By this way, the job consumes a large amount of bandwidth and will cause a heavy loading on the Internet and cloud infrastructure. Edge computing deploys the computing job that was originally in the cloud to the edge to shorten the distance from the end device, thereby reducing network latency and shortening the response time of the service, and also reducing the use of bandwidth. This study uses the concept of edge computing to deploy microservices to the edge, and uses an open source system to build an automated system for deployment of microservices based on KubeEdge edge computing to solve the problem of cross-domain cloud side deployment and maintenance. KubeEdge uses WebSocket mechanism is to connect the cloud and the edge to provide a cross-domain communication method between the cloud and the edge in different regional environments. The proposed system is used to deploy and manage microservices on the edge. Fuethermore, to ensure the normal operation of the system, the proposed system provides resource monitoring the core components between cloud and edge. The experimental part tests the success rate of deployment at the edge to verify the feasibility of deploying the microservices configured in the proposed system to the edge. And, the impact of the delay between the cloud and the edge on deployment is compared. In addition, the proposed system supports the self-healing function mechanism of edge nodes, which can take a short time to restore services when a node restarts.
目次
摘要 i
目次 iii
圖目次 v
表目次 viii
第一章 緒論 1
1.1研究背景 1
1.2研究動機 2
1.3論文架構 2
第二章 相關研究 3
2.1微服務 3
2.2 Container 4
2.3 Kubernetes 5
2.3.1 Master核心元件 6
2.3.2 Worker核心元件 8
2.3.3 Labels標籤管理元件 11
2.3.4 Affinity親和性部署元件 11
2.4 K3s 11
2.5 KubeEdge 12
2.5.1 Cloud Core 14
2.5.2 Edge Core 15
2.6 WebSocket 18
第三章 問題分析 20
3.1微服務雲邊跨區部署 20
3.2 KubeEdge核心服務及邊緣節點資源監控 24
3.3微服務雲邊跨區維運管理 26
第四章 系統設計與架構 27
4.1系統設計 27
4.2系統架構 29
4.2.1微服務設定模組 31
4.2.2部署設定模組 34
4.2.3配置部署模組 35
4.2.4核心服務及資源監控模組 36
第五章 系統實作 37
5.1微服務設定版本管理介面 39
5.2部署設定管理介面 43
5.3配置部署管理介面 47
5.4核心服務及資源監控介面 49
第六章 實驗結果 50
6.1實驗環境 50
6.2實驗設計 52
6.2.1邊緣端微服務部署 52
6.2.2邊緣端微服務自我恢復 53
6.2.3雲端與邊緣端微服務回應延遲 53
6.3實驗結果 54
6.3.1 Kubernetes和KubeEdge節點延遲時間 54
6.3.2邊緣運算微服務部署 54
6.3.3邊緣運算微服務自我修復 58
6.3.4雲端與邊緣端微服務回應延遲 59
第七章 結論 61
參考文獻 62
[1]M. Villari, M. Fazio, S. Dustdar, O. Rana and R. Ranjan, "Osmotic Computing: A New Paradigm for Edge/Cloud Integration", IEEE Cloud Computing, vol. 3, no. 6, pp. 76-83.
[2]P. Di Francesco, "Architecting Microservices", 2017 IEEE International Conference on Software Architecture Workshops (ICSAW).
[3]E. Kristiani, C. Yang, C. Huang, Y. Wang and P. Ko, "The Implementation of a Cloud-Edge Computing Architecture Using OpenStack and Kubernetes for Air Quality Monitoring Application", Mobile Networks and Applications.
[4]Z. Zhao et al., "A Novel Framework of Three-Hierarchical Offloading Optimization for MEC in Industrial IoT Networks", IEEE Transactions on Industrial Informatics, vol. 16, no. 8, pp. 5424-5434.
[5]Y. Xiong, Y. Sun, L. Xing and Y. Huang, "Extend Cloud to Edge with KubeEdge", 2018 IEEE/ACM Symposium on Edge Computing (SEC).
[6]D. Skvorc, M. Horvat and S. Srbljic, "Performance evaluation of Websocket protocol for implementation of full-duplex web streams", 2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO).
[7]J. Kim et al., "A highly efficient self-power pack system integrating supercapacitors and photovoltaics with an area-saving monolithic architecture", Journal of Materials Chemistry A, vol. 5, no. 5, pp. 1906-1912.
[8]B. Ruan, H. Huang, S. Wu and H. Jin, "A Performance Study of Containers in Cloud Environment", Lecture Notes in Computer Science, pp. 343-356.
[9]T. Salah, M. Zemerly, C. Yeun, M. Al-Qutayri and Y. Al-Hammadi, "Performance comparison between container-based and VM-based services", 2017 20th Conference on Innovations in Clouds, Internet and Networks (ICIN).
[10]J. Fink, "Docker: a software as a service, operating system-level virtualization framework.", Code4Lib Journal 25.
[11]G. SAYFAN, Mastering Kubernetes: Master the art of container management by using the power of Kubernetes. Packt Publishing Ltd.
[12]B Burns, B Grant, D Oppenheimer, E Brewer, J Wilkes, Borg, omega, and kubernetes, Queue.
[13]D. Vohra, "Using Rolling Updates", Kubernetes Management Design Patterns, pp. 171-198.
[14]V. Medel, R. Tolosana-Calasanz, J. Bañares, U. Arronategui and O. Rana, "Characterising resource management performance in Kubernetes", Computers & Electrical Engineering, vol. 68, pp. 286-297.
[15]H. Netto, L. Lung, M. Correia, A. Luiz and L. Sá de Souza, "State machine replication in containers managed by Kubernetes", Journal of Systems Architecture, vol. 73, pp. 53-59.
[16]Larsson, L., Tärneberg, W., Klein, C., Elmroth, E. and Kihl, M., 2020. Impact of etcd deployment on Kubernetes, Istio, and application performance. Software: Practice and Experience,.
[17]D. Balla, C. Simon and M. Maliosz, "Adaptive scaling of Kubernetes pods", NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium.
[18]M. Song, C. Zhang and E. Haihong, "An Auto Scaling System for API Gateway Based on Kubernetes", 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS).
[19]L. Abdollahi Vayghan, M. Saied, M. Toeroe and F. Khendek, "Deploying Microservice Based Applications with Kubernetes: Experiments and Lessons Learned", 2018 IEEE 11th International Conference on Cloud Computing (CLOUD).
[20]C. Chang, S. Yang, E. Yeh, P. Lin and J. Jeng, "A Kubernetes-Based Monitoring Platform for Dynamic Cloud Resource Provisioning", GLOBECOM 2017 - 2017 IEEE Global Communications Conference.
[21]J. Santos, T. Wauters, B. Volckaert and F. De Turck, "Towards Network-Aware Resource Provisioning in Kubernetes for Fog Computing Applications", 2019 IEEE Conference on Network Softwarization (NetSoft).
[22]Y. Zhang, M. Saberi, M. Wang and E. Chang, "K3S: Knowledge-Driven Solution Support System", Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 9873-9874.
[23]P. Agarwal and M. Alam, "A Lightweight Deep Learning Model for Human Activity Recognition on Edge Devices", Procedia Computer Science, vol. 167, pp. 2364-2373.
[24]Z. Tao et al., "A Survey of Virtual Machine Management in Edge Computing", Proceedings of the IEEE, vol. 107, no. 8, pp. 1482-1499.
[25]C. Anglano, M. Canonico and M. Guazzone, "EasyCloud: a Rule based Toolkit for Multi-platform Cloud/Edge Service Management", 2020 Fifth International Conference on Fog and Mobile Edge Computing (FMEC).
[26]]M. Yassein, M. Shatnawi, S. Aljwarneh and R. Al-Hatmi, "Internet of Things: Survey and open issues of MQTT protocol", 2017 International Conference on Engineering & MIS (ICEMIS).
[27]"Edge Controller – KubeEdge" [Online]. Available: https://docs.kubeedge.io/ en/latest/components/cloud/controller.html (accessed July, 2020).
[28]"Device Controller - KubeEdge" [Online]. Available: https://docs.kubeedge.io/ en/latest/components/cloud/device_controller.html (accessed July, 2020).
[29]"EdgeD Functionalities - KubeEdge"[Online]. Available: https://docs. kubeedge.io/en/latest/components/edge/edged.html (accessed July, 2020).
[30]"MetaManager – KubeEdge" [Online]. Available: https://docs.kubeedge.io/en/ latest/components/edge/metamanager.html (accessed July, 2020).
[31]"EventBus – KubeEdge" [Online]. Available : https://docs.kubeedge.io/en/latest/ components /edge/eventbus.html (accessed July, 2020).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊