跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 07:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳佳妤
研究生(外文):Chia-Yu Chen
論文名稱:運用人工蜂群演算法於物聯網中優化節能封包路由之研究-以軟體定義網路為實驗案例
論文名稱(外文):Research on Optimizing Energy-Efficient Packet Routing in the Internet of Things Using Artificial Bee Colony Algorithms: A Case Study of Software-Defined Networks
指導教授:柯志坤柯志坤引用關係
指導教授(外文):Chih-Kun Ke
學位類別:碩士
校院名稱:國立臺中科技大學
系所名稱:資訊管理系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:83
中文關鍵詞:物聯網無線感測器網路人工蜂群演算法多準則決策分析路徑優化軟體定義網路
外文關鍵詞:Internet of ThingWireless Sensor NetworkSoftware-Defined NetworkRouting Path OptimizationArtificial Bee Colony AlgorithmMultiple-criteria decision analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
物聯網(Internet of Thing,IoT)可以提供人們日常生活中許多便捷的服務,而無線感測器網路(Wireless Sensor Network,WSN)是物聯網發展的關鍵技術之一,但是無線感測器具有一些限制和挑戰,例如有限的電力、計算能力、儲存空間以及網路頻寬,尤其是有限的電力,無論是感測環境透過無線電訊號彼此之間進行通信和共享資料皆會造成電力的消耗,加上一般無線感測器常被安裝在人們無法到達的區域進行環境監測,若無線感測器能量耗盡是無法對其提供電力支援,只能遺棄這些感測器卻會導致環境災害,因此要如何找到一種方法能根據網路中每個感測器的狀態進行更靈活、更快速的程序來延長無線感測器網路的壽命成為一個重要的問題。而軟體定義網路(Software-Defined Network,SDN)將控制功能與硬體設備分開,使硬體設備僅具有封包轉發的功能,透過控制軟體根據網路狀態動態控制網路和資料封包的傳輸狀態和應用程序要求,為了提供靈活性和適應性,軟體定義網路需要一種動態方法來解決和優化路由規劃的問題。
本研究提出基於多準則之人工蜂群演算法 (Multiple-criteria Artificial Bee Colony,MABC)來優化無線感測器網路中能耗的問題,該方法中首先使用人工蜂群演算法(Artificial Bee Colony,ABC)尋找網路中數個感測器節點作為群頭組合,其中將根據當前網路中節點狀態動態選擇不同數量的節點,選擇群頭的目的是先為網路中的感測器節點進行分群,如此其他節點成員將封包傳遞給隸屬的群頭即可,接著再為群頭們尋找最佳的節能封包傳輸路徑至IoT基台,其中透過多準則決策分析方法評估路徑中多個屬性包括剩餘能量、能量消耗、路徑距離、跳躍數以及頻率做出決策評分來幫助演算法能找到更佳的解,本研究於實驗中架設以軟體定義網路為架構的無線感測器網路,基礎架構層中感測器節點無需自行計算封包傳輸路徑而是由軟體控制層進行運算,因此於網路運作中隨時將所有感測節點的資訊儲存於資料庫中,接著依據節點們的資訊執行MABC演算法計算出的最佳的節能封包傳輸路徑並通知網路中各節點,本研究進行兩種實驗模式來評估方法的可行性,其一透過單次運算群頭們最佳封包傳輸路徑比較基本的人工蜂群演算法與粒子群演算法、貪婪演算法於第一個節點能耗耗盡時網路運作回合數與平均能耗來分析方法的優劣,其二為根據網路中的狀態進行動態的最佳封包傳輸路由運算,比較基本人工蜂群演算法、動態群頭模式之人工蜂群演算法、MABC與動態群頭模式之MABC的四種方法並以三種準則網路壽命週期、平均能耗與存活節點進行評估。
從實驗結果中可以證實本研究所提出的MABC方法可較基本的人工蜂群演算法提供較為節能的封包傳遞路徑並且能使無線感測器網路較慢才死亡,也證實透過多準則分析對候選路徑多方面的評估是能為演算法提供更佳的運算方向,在實驗過程中也發現加上動態群頭策略可以更延長節點們的使用壽命,而本研究的貢獻為運用群體智慧演算法於無線感測器網路的路由運算,並提出能運用於無線感測器網路中基於多準則的人工蜂群演算法來改善演算法快速收斂的問題,以及將軟體定義網路結合無線感測器網路實驗,透過軟體定義網路的特性動態調整網路中路由策略,最後使用NS3網路模擬器模擬無線感測器網路的節點封包的運作。
本研究遇到的挑戰為雖然於實驗中可以證實所提出的方法可以用更節能方式進行封包傳輸與延長網路壽命,但對於網路中封包延遲與遞送率並沒有討論到,以及對於網路大小與IoT基地台放置的位置差異是否會影響到結果,因此未來可以再做進一步的探究,或是將多準則決策分析結合其他演算法並針對無線網路中的其他特性對路徑進行更多方面的評估。
Internet of Thing (IoT) can provide many convenient services in people’s daily lives, and Wireless Sensor Network (WSN) is one of the key technologies for the development of Internet of Things, but wireless sensors have Some limitations and challenges, such as limited power, computing power, storage space, and network bandwidth, especially limited power, whether the sensing environment communicates with each other through radio signals and shares data will cause power consumption. In addition, general wireless sensors are often installed in areas inaccessible to people for environmental monitoring. If the energy of the wireless sensors is exhausted, they will not be able to provide power support. Only abandoning these sensors will cause environmental disasters. Therefore, How to find a way to extend the life of the wireless sensor network by performing more flexible and faster procedures based on the status of each sensor in the network has become an important issue. Software-Defined Network (SDN) separates the control function from the hardware device, so that the hardware device only has the function of packet forwarding, and dynamically controls the transmission status of the network and data packets according to the network status through the control software And application requirements, in order to provide flexibility and adaptability, software-defined networks need a dynamic method to solve and optimize routing planning problems.
This research proposes multiple-criteria Artificial Bee Colony (MABC) algorithm to optimize the energy consumption of wireless sensor networks. The method first uses the Artificial Bee Colony algorithm (ABC) Find several sensor nodes in the network as the cluster head combination, which will dynamically select different numbers of nodes according to the current node status in the network. The purpose of selecting the cluster head is to first be the sensor node in the network Perform grouping, so that other node members can pass the packets to the group heads they belong to, and then find the best energy-saving packet transmission path for the group heads to the IoT base station, in which multiple attributes in the path are evaluated through a multi-criteria decision analysis method Including remaining energy, energy consumption, path distance, number of hops, and frequency to make a decision score to help the algorithm find a better solution. In this study, a wireless sensor network based on a software-defined network was set up in the experiment. The sensor nodes in the infrastructure layer do not need to calculate the packet transmission path by themselves, but are calculated by the software control layer. Therefore, the information of all the sensor nodes is stored in the database at any time during the network operation, and then executed based on the information of the nodes The MABC algorithm calculates the best energy-saving packet transmission path and informs each node in the network. This study conducts two experimental modes to evaluate the feasibility of the method. One is to compare the best packet transmission paths between all of cluster heads. We analysis the artificial bee colony algorithm, particle swarm algorithm and greedy algorithm by the number of network operation rounds and average energy consumption when the first node die.The second is based on the state of the network Perform dynamic optimal packet transmission routing calculations, compare the four methods of artificial bee colony algorithm, artificial bee colony algorithm in dynamic cluster heads, MABC and MABC in dynamic cluster heads mode, and use three criteria for network life round, the average energy consumption and alive nodes.
From the experimental results, it can be confirmed that the MABC method proposed in this research can provide a more energy-efficient packet transmission path with a more artificial bee colony algorithm and make the wireless sensor network death slower. It also proves that the multi-criteria analysis is correct The multi-faceted evaluation of candidate paths can provide a better computing direction for the algorithm. In the experiment process, it was also found that adding a dynamic cluster heads can extend the life of nodes. The contribution of this research is the use of group intelligence algorithm It is used in the routing calculation of wireless sensor networks, and proposes a multi-criteria-based artificial bee colony algorithm that can be used in wireless sensor networks to improve the problem of rapid algorithm convergence, and combines software-defined networks with wireless sensors. In the sensor network experiment, the routing strategy in the network is dynamically adjusted through the characteristics of the software-defined network, and finally the NS3 network simulator is used to simulate the operation of the node packet of the wireless sensor network.
The challenge encountered in this study is that although experiments can prove that the proposed method can use a more energy-efficient way to transmit packets and extend the life of the network, but the packets delay and packets delivery rate in the network are not discussed. Whether the difference between the network size and the location of the IoT base station will affect the results, so we can do in further research , or combine multi-criteria decision analysis with other algorithms and make more aspects of the path for other characteristics in the wireless network.
中文摘要 i
英文摘要 iii
誌謝 v
目錄 vii
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 研究目的 3
1.4 研究方法 4
第二章 文獻探討 6
2.1 物聯網發展與趨勢(Internet of Thing,IoT) 6
2.2 無線感測器網路(Wireless Sensor Network,WSN) 7
2.3 人工蜂群演算法(Artificial Bee Colony algorithm,ABC) 9
2.4 多準則決策分析(Multiple-criteria decision analysis,MCDA) 13
2.5 粒子群演算法(Particle Swarm Optimization,PSO) 14
2.6 軟體定義網路(Software Define Network,SDN) 17
第三章 研究架構 20
3.1 情境定義 20
3.2 實驗情境需求 21
3.3 實驗架構 21
第四章 各模組詳細功能說明 23
4.1 基礎架構模組 23
4.2 MABC模組 24
4.2.1 感測節點分群 25
4.2.2 封包路徑規劃 31
4.3 SDN模組 46
4.4 應用模組 47
第五章 實驗設計與分析 48
5.1 實驗平台 48
5.2 系統實驗架構設計 49
5.2.1 無線網路拓撲定義 49
5.2.2 模擬模型開發 50
5.2.3 運行模擬程式 56
5.3 實驗設計 57
5.3.1 實驗流程 57
5.3.2 實驗參數介紹 60
第六章 討論與建議 63
6.1 實驗結果討論 63
6.1.1 實驗模式(一)結果討論 64
6.1.2 實驗模式(二)結果討論 65
6.2 演算法複雜度分析 74
第七章 結論與未來展望 75
參考文獻 76
[1]王派洲譯. (2008). 資料探勘概念與方法. 滄海書局.
[2]周迪之編著(2019). 開源網路模擬器ns-3架構與實戰 機械工業出版社
[3]國土與公共治理季刊第五卷第四期106 年12 月
[4]粘詠翔. (2013). 人工蜂群演算法於工作流量排程問題之探討. 元智大學工業工程與管理學系學位論文, 1-161.
[5]陳伯奇,&洪勇智. (2016). 適於環境與安全監測之自我供電金氧半溫度感測器.
[6]陳旻政. (2016). 多準則決策分析方法運用於應用市集App推薦機制比較之研究. 臺中科技大學資訊管理系碩士班學位論文, 1-164.
[7]智慧路燈技術及應用白皮書https://www.fetnet.net/enterprise/upload-file/Street%20Light_web_final.pdf
[8]無線感測網路系統之簡介 https://reurl.cc/Nj3Y1q
[9]發展智慧科技農業,邁向臺灣農業4.0時代 https://www.coa.gov.tw/ws.php?id=2505131
[10]經濟部水利署推廣水資源智慧管理系統及節水技術計畫https://www.wra.gov.tw/cl.aspx?n=386
[11]Abdullah, L., & Adawiyah, C. R. (2014). Simple additive weighting methods of multi criteria decision making and applications: A decade review. International Journal of Information Processing and Management, 5(1), 39.
[12]Ai, Z. Y., Zhou, Y. T., & Song, F. (2018). A smart collaborative routing protocol for reliable data diffusion in IoT scenarios. Sensors, 18(6), 1926.
[13]Akkari, W., Bouhdid, B., & Belghith, A. (2015). LEATCH: Low energy adaptive tier clustering hierarchy. Procedia Computer Science, 52, 365-372.
[14]Al‐Baz, A., & El‐Sayed, A. (2018). A new algorithm for cluster head selection in LEACH protocol for wireless sensor networks. International journal of communication systems, 31(1), e3407.
[15]Albreem, M. A., El-Saleh, A. A., Isa, M., Salah, W., Jusoh, M., Azizan, M. M., & Ali, A. (2017, November). Green internet of things (IoT): An overview. In 2017 IEEE 4th International Conference on Smart Instrumentation, Measurement and Application (ICSIMA) (pp. 1-6). IEEE.
[16]Arjunan, S., & Sujatha, P. (2018). Lifetime maximization of wireless sensor network using fuzzy based unequal clustering and ACO based routing hybrid protocol. Applied Intelligence, 48(8), 2229-2246.
[17]Aruldoss, M., Lakshmi, T. M., & Venkatesan, V. P. (2013). A survey on multi criteria decision making methods and its applications. American Journal of Information Systems, 1(1), 31-43.
[18]Azharuddin, M., & Jana, P. K. (2017). PSO-based approach for energy-efficient and energy-balanced routing and clustering in wireless sensor networks. Soft Computing, 21(22), 6825-6839.
[19]Azizi, M. S., & Hasnaoui, M. L. (2019). Software defined networking for energy efficient wireless sensor network. In Proceedings-2019 International Conference on Advanced Communication Technologies and Networking, CommNet 2019. Institute of Electrical and Electronics Engineers Inc..
[20]Bakaraniya, P., & Mehta, S. (2012). Features of wsn and various routing techniques for wsn: a survey. International Journal of Research in Engineering and Technology, 1(3), 349-354.
[21]Behera, T. M., Mohapatra, S. K., Samal, U. C., Khan, M. S., Daneshmand, M., & Gandomi, A. H. (2019). Residual energy-based cluster-head selection in WSNs for IoT application. IEEE Internet of Things Journal, 6(3), 5132-5139.
[22]Bera, S., Misra, S., & Vasilakos, A. V. (2017). Software-defined networking for internet of things: A survey. IEEE Internet of Things Journal, 4(6), 1994-2008.
[23]Bhandari, R. R., & Rajasekhar, K. (2020). Energy-Efficient Routing-Based Clustering Approaches and Sleep Scheduling Algorithm for Network Lifetime Maximization in Sensor Network: A Survey. In Inventive Communication and Computational Technologies (pp. 293-306). Springer, Singapore.
[24]Bharathi, D. D., & Jayaparvathy, R. (2018, April). Efficient Node Distribution Strategies for Minimizing Energy Hole Problem in WSN. In 2018 International Conference on Communication and Signal Processing (ICCSP) (pp. 0858-0862). IEEE.
[25]Bhunia, S. S., Das, B., & Mukherjee, N. (2014, September). EMCR: Routing in WSN using multi criteria decision analysis and entropy weights. In International Conference on Internet and Distributed Computing Systems (pp. 325-334). Springer, Cham.
[26]Chithaluru, Premkumar, Ravi Prakash, and Subodh Srivastava. "WSN Structure Based on SDN." Innovations in Software-Defined Networking and Network Functions Virtualization. IGI Global, 2018. 240-253.
[27]Das, B., Bhunia, S. S., Roy, S., & Mukherjee, N. (2015, February). Multi criteria routing in wireless sensor network using weighted product model and relative rating. In 2015 Applications and Innovations in Mobile Computing (AIMoC) (pp. 132-136). IEEE.
[28]Djellali, H., Djebbar, A., Zine, N. G., & Azizi, N. (2018, May). Hybrid artificial bees colony and particle swarm on feature selection. In IFIP International Conference on Computational Intelligence and Its Applications (pp. 93-105). Springer, Cham.
[29]Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE computational intelligence magazine, 1(4), 28-39.
[30]Ejaz, W., Naeem, M., Shahid, A., Anpalagan, A., & Jo, M. (2017). Efficient energy management for the internet of things in smart cities. IEEE Communications Magazine, 55(1), 84-91.
[31]Fauzi, N., Noviarti, T., Muslihudin, M., Irviani, R., Maseleno, A., & Pringsewu, S. T. M. I. K. (2018). Optimal dengue endemic region prediction using fuzzy simple additive weighting based algorithm. Int. J. Pure Appl. Math, 118(7), 473-478.
[32]Goodridge, W., Bernard, M., Jordan, R., & Rampersad, R. (2017). Intelligent diagnosis of diseases in plants using a hybrid Multi-Criteria decision making technique. Computers and electronics in agriculture, 133, 80-87.
[33]Gou, J., Lei, Y. X., Guo, W. P., Wang, C., Cai, Y. Q., & Luo, W. (2017). A novel improved particle swarm optimization algorithm based on individual difference evolution. Applied Soft Computing, 57, 468-481.
[34]Guleria, K., & Verma, A. K. (2019). Comprehensive review for energy efficient hierarchical routing protocols on wireless sensor networks. Wireless Networks, 25(3), 1159-1183.
[35]Guo, S., & Zhao, H. (2017). Fuzzy best-worst multi-criteria decision-making method and its applications. Knowledge-Based Systems, 121, 23-31.
[36]Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000, January). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference on system sciences (pp. 10-pp). IEEE.
[37]Hwang, C., & Yoon, K. (1981). Multiple Attribute Decision Making: Methods and Applications Springer-Verlag. New York.
[38]Jaladi, A. R., Khithani, K., Pawar, P., Malvi, K., & Sahoo, G. (2017). Environmental monitoring using wireless sensor networks (WSN) based on IOT. Int. Res. J. Eng. Technol, 4(1).
[39]Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization (Vol. 200, pp. 1-10). Technical report-tr06, Erciyes university, engineering faculty, computer engineering department.
[40]Karaboga, D., & Gorkemli, B. (2019). Solving Traveling Salesman Problem by Using Combinatorial Artificial Bee Colony Algorithms. International Journal on Artificial Intelligence Tools, 28(01), 1950004.
[41]Karaboga, D., Gorkemli, B., Ozturk, C., & Karaboga, N. (2014). A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review, 42(1), 21-57.
[42]Karaboga, Dervis, and Bahriye Akay. "A comparative study of artificial bee colony algorithm." Applied mathematics and computation 214.1 (2009): 108-132.
[43]Kaushik, N., & Bagga, T. (2020). Internet of Things (IOT): Implications in Society. Available at SSRN 3563104.
[44]Kennedy, J., & Eberhart, R. (1995, November). Particle swarm optimization. In Proceedings of ICNN''95-International Conference on Neural Networks (Vol. 4, pp. 1942-1948). IEEE.
[45]Khalil, E. A., & Bara’a, A. A. (2011). Energy-aware evolutionary routing protocol for dynamic clustering of wireless sensor networks. Swarm and Evolutionary Computation, 1(4), 195-203.
[46]Kharkongor, C., Chithralekha, T., & Varghese, R. (2017). Trust and Energy-Efficient Routing for Internet of Things—Energy Evaluation Model. In Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications (pp. 585-597). Springer, Singapore.
[47]Kim, S., Cho, C., Park, K. J., & Lim, H. (2017). Increasing network lifetime using data compression in wireless sensor networks with energy harvesting. International Journal of Distributed Sensor Networks, 13(1), 1550147716689682.
[48]Kishor, A., Chandra, M., & Singh, P. K. (2017). An astute artificial bee colony algorithm. In Proceedings of Sixth International Conference on Soft Computing for Problem Solving (pp. 153-162). Springer, Singapore.
[49]Kobo, H. I., Abu-Mahfouz, A. M., & Hancke, G. P. (2017). A survey on software-defined wireless sensor networks: Challenges and design requirements. IEEE access, 5, 1872-1899.
[50]Kocakulak, M., & Butun, I. (2017, January). An overview of Wireless Sensor Networks towards internet of things. In 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC) (pp. 1-6). IEEE.
[51]Kumar, D., & Mishra, K. K. (2017). Artificial bee colony as a frontier in evolutionary optimization: a survey. In Advances in Computer and Computational Sciences (pp. 541-548). Springer, Singapore.
[52]Kusek, M. (2018, May). Internet of things: Today and tomorrow. In 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 0335-0338). IEEE.
[53]Li, G., Cui, L., Fu, X., Wen, Z., Lu, N., & Lu, J. (2017). Artificial bee colony algorithm with gene recombination for numerical function optimization. Applied Soft Computing, 52, 146-159.
[54]Li, G., Guo, S., Yang, Y., & Yang, Y. (2018). Traffic load minimization in software defined wireless sensor networks. IEEE Internet of Things Journal, 5(3), 1370-1378.
[55]Li, X., & Yang, G. (2016). Artificial bee colony algorithm with memory. Applied Soft Computing, 41, 362-372.
[56]Li, Y., Lim, M. K., & Tseng, M. L. (2019). A green vehicle routing model based on modified particle swarm optimization for cold chain logistics. Industrial Management & Data Systems, 119(3), 473-494.
[57]Liu, D., Zhou, Q., Zhang, Z., & Liu, B. (2016, April). Cluster-based energy-efficient transmission using a new hybrid compressed sensing in WSN. In 2016 IEEE conference on computer communications workshops (INFOCOM WKSHPS) (pp. 372-376). IEEE.
[58]Maksimovic, M. (2018). Greening the future: Green Internet of Things (G-IoT) as a key technological enabler of sustainable development. In Internet of things and big data analytics toward next-generation intelligence (pp. 283-313). Springer, Cham.
[59]Mann, P. S., & Singh, S. (2017). Artificial bee colony metaheuristic for energy-efficient clustering and routing in wireless sensor networks. Soft Computing, 21(22), 6699-6712.
[60]Marinakis, Y., Marinaki, M., & Migdalas, A. (2019). A multi-adaptive particle swarm optimization for the vehicle routing problem with time windows. Information Sciences, 481, 311-329.
[61]Masoudi, R., & Ghaffari, A. (2016). Software defined networks: A survey. Journal of Network and computer Applications, 67, 1-25.
[62]Maystre, L. Y., Pictet, J., & Simos, J. (1994). Méthodes multicritères ELECTRE: description, conseils pratiques et cas d''application à la gestion environnementale (Vol. 8). PPUR presses polytechniques.
[63]Mazinani, A., Mazinani, S. M., & Mirzaie, M. (2019). FMCR-CT: An energy-efficient fuzzy multi cluster-based routing with a constant threshold in wireless sensor network. Alexandria Engineering Journal, 58(1), 127-141.
[64]McKeown, Nick, et al. "OpenFlow: enabling innovation in campus networks." ACM SIGCOMM Computer Communication Review 38.2 (2008): 69-74.
[65]Mehta, D., & Saxena, S. (2018, August). A Comparative Analysis of Energy Efficient Hierarchical Routing Protocols for Wireless Sensor Networks. In 2018 4th International Conference on Computing Sciences (ICCS) (pp. 53-58). IEEE.
[66]Mostafaei, H., & Menth, M. (2018). Software-defined wireless sensor networks: A survey. Journal of Network and Computer Applications, 119, 42-56.
[67]Mulla, M. M., Khot, A., Patil, A., & Chandani, D. G. (2019). Dynamic Routing in Software-Defined Networks. In Emerging Research in Electronics, Computer Science and Technology (pp. 1027-1037). Springer, Singapore.
[68]Nabaei, A., Hamian, M., Parsaei, M. R., Safdari, R., Samad-Soltani, T., Zarrabi, H., & Ghassemi, A. (2018). Topologies and performance of intelligent algorithms: a comprehensive review. Artificial Intelligence Review, 49(1), 79-103.
[69]Nayyar, A., & Singh, R. (2017). Ant colony optimization (ACO) based routing protocols for wireless sensor networks (WSN): A survey. Int. J. Adv. Comput. Sci. Appl, 8(2), 148-155.
[70]Ng, K. K. H., Lee, C. K. M., Zhang, S. Z., Wu, K., & Ho, W. (2017). A multiple colonies artificial bee colony algorithm for a capacitated vehicle routing problem and re-routing strategies under time-dependent traffic congestion. Computers & Industrial Engineering, 109, 151-168.
[71]Nguyen, T. D., Khan, J. Y., & Ngo, D. T. (2017, May). An effective energy-harvesting-aware routing algorithm for WSN-based IoT applications. In 2017 IEEE International Conference on Communications (ICC) (pp. 1-6). IEEE.
[72]Olivier, Flauzac, Gonzalez Carlos, and Nolot Florent. "SDN based architecture for clustered WSN." 2015 9th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing. IEEE, 2015.
[73]Pan, T. S., Dao, T. K., & Pan, J. S. (2017). An Unmanned Aerial Vehicle Optimal Route Planning Based on Compact Artificial Bee Colony. In Advances in Intelligent Information Hiding and Multimedia Signal Processing (pp. 361-369). Springer, Cham.
[74]Panag, T. S., & Dhillon, J. S. (2018). Dual head static clustering algorithm for wireless sensor networks. AEU-International Journal of Electronics and Communications, 88, 148-156.
[75]Rao, P. S., Jana, P. K., & Banka, H. (2017). A particle swarm optimization based energy efficient cluster head selection algorithm for wireless sensor networks. Wireless networks, 23(7), 2005-2020.
[76]Ray, P. P. (2018). A survey on Internet of Things architectures. Journal of King Saud University-Computer and Information Sciences, 30(3), 291-319.
[77]Riley, G. F., & Henderson, T. R. (2010). The ns-3 network simulator. In Modeling and tools for network simulation (pp. 15-34). Springer, Berlin, Heidelberg.
[78]Robinson, Y. H., Julie, E. G., Balaji, S., & Ayyasamy, A. (2017). Energy aware clustering scheme in wireless sensor network using neuro-fuzzy approach. Wireless Personal Communications, 95(2), 703-721.
[79]Roy, S. S., Puthal, D., Sharma, S., Mohanty, S. P., & Zomaya, A. Y. (2018). Building a sustainable Internet of Things: Energy-efficient routing using low-power sensors will meet the need. IEEE Consumer Electronics Magazine, 7(2), 42-49.
[80]Saaty, T. L. (2004). Decision making—the analytic hierarchy and network processes (AHP/ANP). Journal of systems science and systems engineering, 13(1), 1-35.
[81]Salehi_Panahi, M., & Abbaszadeh, M. (2018). Proposing a method to solve energy hole problem in wireless sensor networks. Alexandria engineering journal, 57(3), 1585-1590.
[82]Sarkar, A., & Murugan, T. S. (2019). Cluster head selection for energy efficient and delay-less routing in wireless sensor network. Wireless Networks, 25(1), 303-320.
[83]Shahraki, A., Taherkordi, A., Haugen, Ø., & Eliassen, F. (2020). Clustering Objectives in Wireless Sensor Networks: A Survey and Research Direction Analysis. Computer Networks, 107376.
[84]Shen, J., Wang, A., Wang, C., Hung, P. C., & Lai, C. F. (2017). An efficient centroid-based routing protocol for energy management in WSN-assisted IoT. IEEE Access, 5, 18469-18479.
[85]Sisodia, A., & Kundu, S. (2019, November). Enrichment of Performance of Operation based Routing Protocols of WSN using Data Compression. In 2019 8th International Conference System Modeling and Advancement in Research Trends (SMART) (pp. 193-199). IEEE.
[86]Srikanth, N., Neha, N., Mamatha, K., Adithya, P., & Rutvik, P. (2020). Enhanced Sleep/Awake Schedule with Multi-Hop Hierarchical Routing Algorithm for Wireless Sensor Networks. K and Adithya, P and Rutvik, P, Enhanced Sleep/Awake Schedule with Multi-Hop Hierarchical Routing Algorithm for Wireless Sensor Networks (January 19, 2020).
[87]Tabibi, S., & Ghaffari, A. (2019). Energy-Efficient Routing Mechanism for Mobile Sink in Wireless Sensor Networks Using Particle Swarm Optimization Algorithm. Wireless Personal Communications, 104(1), 199-216.
[88]Tayyaba, S. K., Shah, M. A., Khan, O. A., & Ahmed, A. W. (2017, July). Software defined network (SDN) based Internet of Things (IoT): A road ahead. In Proceedings of the International Conference on Future Networks and Distributed Systems (p. 15). ACM.
[89]Thanka, M. R., Maheswari, P. U., & Edwin, E. B. (2019). An improved efficient: artificial bee colony algorithm for security and QoS aware scheduling in cloud computing environment. Cluster Computing, 22(5), 10905-10913.
[90]Triantaphyllou, E. (2000). Multi-criteria decision making methods. In Multi-criteria decision making methods: A comparative study (pp. 5-21). Springer, Boston, MA.
[91]Valdez, F., Vazquez, J. C., Melin, P., & Castillo, O. (2017). Comparative study of the use of fuzzy logic in improving particle swarm optimization variants for mathematical functions using co-evolution. Applied Soft Computing, 52, 1070-1083.
[92]Verhoeven, M. G. A., Aarts, E. H., & Swinkels, P. C. J. (1995). A parallel 2-opt algorithm for the traveling salesman problem. Future Generation Computer Systems, 11(2), 175-182.
[93]Wang, D., Tan, D., & Liu, L. (2018). Particle swarm optimization algorithm: an overview. Soft Computing, 22(2), 387-408.
[94]Wang, J., Cao, Y., Li, B., Kim, H. J., & Lee, S. (2017). Particle swarm optimization based clustering algorithm with mobile sink for WSNs. Future Generation Computer Systems, 76, 452-457.
[95]Wang, J., Zhai, P., Zhang, Y., Shi, L., Wu, G., Shi, X., & Zhou, P. (2016). Software defined network routing in wireless sensor network. In Cloud Computing, Security, Privacy in New Computing Environments (pp. 3-11). Springer, Cham.
[96]Whitley, D. (1994). A genetic algorithm tutorial. Statistics and computing, 4(2), 65-85.
[97]Xiang, W. L., Meng, X. L., Li, Y. Z., He, R. C., & An, M. Q. (2018). An improved artificial bee colony algorithm based on the gravity model. Information Sciences, 429, 49-71.
[98]Xue, Y., Jiang, J., Zhao, B., & Ma, T. (2018). A self-adaptive artificial bee colony algorithm based on global best for global optimization. Soft Computing, 22(9), 2935-2952.
[99]Yang, C. M., Shih, K. P., & Chang, S. H. (2017, March). A priority-based energy replenishment scheme for wireless rechargeable sensor networks. In 2017 31st International Conference on Advanced Information Networking and Applications Workshops (WAINA) (pp. 547-552). IEEE.
[100]Yang, X. S., Deb, S., Zhao, Y. X., Fong, S., & He, X. (2018). Swarm intelligence: past, present and future. Soft Computing, 22(18), 5923-5933.
[101]Yassein, Muneer Bani, et al. "Combined software-defined network (SDN) and Internet of Things (IoT)." 2017 International Conference on Electrical and Computing Technologies and Applications (ICECTA). IEEE, 2017.
[102]Zanakis, S. H., Solomon, A., Wishart, N., & Dublish, S. (1998). Multi-attribute decision making: A simulation comparison of select methods. European journal of operational research, 107(3), 507-529.
[103]Zedadra, O., Guerrieri, A., Jouandeau, N., Spezzano, G., Seridi, H., & Fortino, G. (2018). Swarm intelligence-based algorithms within IoT-based systems: A review. Journal of Parallel and Distributed Computing, 122, 173-187.
[104]Zhong, Y., Lin, J., Wang, L., & Zhang, H. (2017). Hybrid discrete artificial bee colony algorithm with threshold acceptance criterion for traveling salesman problem. Information Sciences, 421, 70-84.
[105]Zhou, J., Yao, X., Chan, F. T., Lin, Y., Jin, H., Gao, L., & Wang, X. (2019). An individual dependent multi-colony artificial bee colony algorithm. Information Sciences, 485, 114-140.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊