[1]王派洲譯. (2008). 資料探勘概念與方法. 滄海書局.
[2]周迪之編著(2019). 開源網路模擬器ns-3架構與實戰 機械工業出版社
[3]國土與公共治理季刊第五卷第四期106 年12 月
[4]粘詠翔. (2013). 人工蜂群演算法於工作流量排程問題之探討. 元智大學工業工程與管理學系學位論文, 1-161.
[5]陳伯奇,&洪勇智. (2016). 適於環境與安全監測之自我供電金氧半溫度感測器.
[6]陳旻政. (2016). 多準則決策分析方法運用於應用市集App推薦機制比較之研究. 臺中科技大學資訊管理系碩士班學位論文, 1-164.[7]智慧路燈技術及應用白皮書https://www.fetnet.net/enterprise/upload-file/Street%20Light_web_final.pdf
[8]無線感測網路系統之簡介 https://reurl.cc/Nj3Y1q
[9]發展智慧科技農業,邁向臺灣農業4.0時代 https://www.coa.gov.tw/ws.php?id=2505131
[10]經濟部水利署推廣水資源智慧管理系統及節水技術計畫https://www.wra.gov.tw/cl.aspx?n=386
[11]Abdullah, L., & Adawiyah, C. R. (2014). Simple additive weighting methods of multi criteria decision making and applications: A decade review. International Journal of Information Processing and Management, 5(1), 39.
[12]Ai, Z. Y., Zhou, Y. T., & Song, F. (2018). A smart collaborative routing protocol for reliable data diffusion in IoT scenarios. Sensors, 18(6), 1926.
[13]Akkari, W., Bouhdid, B., & Belghith, A. (2015). LEATCH: Low energy adaptive tier clustering hierarchy. Procedia Computer Science, 52, 365-372.
[14]Al‐Baz, A., & El‐Sayed, A. (2018). A new algorithm for cluster head selection in LEACH protocol for wireless sensor networks. International journal of communication systems, 31(1), e3407.
[15]Albreem, M. A., El-Saleh, A. A., Isa, M., Salah, W., Jusoh, M., Azizan, M. M., & Ali, A. (2017, November). Green internet of things (IoT): An overview. In 2017 IEEE 4th International Conference on Smart Instrumentation, Measurement and Application (ICSIMA) (pp. 1-6). IEEE.
[16]Arjunan, S., & Sujatha, P. (2018). Lifetime maximization of wireless sensor network using fuzzy based unequal clustering and ACO based routing hybrid protocol. Applied Intelligence, 48(8), 2229-2246.
[17]Aruldoss, M., Lakshmi, T. M., & Venkatesan, V. P. (2013). A survey on multi criteria decision making methods and its applications. American Journal of Information Systems, 1(1), 31-43.
[18]Azharuddin, M., & Jana, P. K. (2017). PSO-based approach for energy-efficient and energy-balanced routing and clustering in wireless sensor networks. Soft Computing, 21(22), 6825-6839.
[19]Azizi, M. S., & Hasnaoui, M. L. (2019). Software defined networking for energy efficient wireless sensor network. In Proceedings-2019 International Conference on Advanced Communication Technologies and Networking, CommNet 2019. Institute of Electrical and Electronics Engineers Inc..
[20]Bakaraniya, P., & Mehta, S. (2012). Features of wsn and various routing techniques for wsn: a survey. International Journal of Research in Engineering and Technology, 1(3), 349-354.
[21]Behera, T. M., Mohapatra, S. K., Samal, U. C., Khan, M. S., Daneshmand, M., & Gandomi, A. H. (2019). Residual energy-based cluster-head selection in WSNs for IoT application. IEEE Internet of Things Journal, 6(3), 5132-5139.
[22]Bera, S., Misra, S., & Vasilakos, A. V. (2017). Software-defined networking for internet of things: A survey. IEEE Internet of Things Journal, 4(6), 1994-2008.
[23]Bhandari, R. R., & Rajasekhar, K. (2020). Energy-Efficient Routing-Based Clustering Approaches and Sleep Scheduling Algorithm for Network Lifetime Maximization in Sensor Network: A Survey. In Inventive Communication and Computational Technologies (pp. 293-306). Springer, Singapore.
[24]Bharathi, D. D., & Jayaparvathy, R. (2018, April). Efficient Node Distribution Strategies for Minimizing Energy Hole Problem in WSN. In 2018 International Conference on Communication and Signal Processing (ICCSP) (pp. 0858-0862). IEEE.
[25]Bhunia, S. S., Das, B., & Mukherjee, N. (2014, September). EMCR: Routing in WSN using multi criteria decision analysis and entropy weights. In International Conference on Internet and Distributed Computing Systems (pp. 325-334). Springer, Cham.
[26]Chithaluru, Premkumar, Ravi Prakash, and Subodh Srivastava. "WSN Structure Based on SDN." Innovations in Software-Defined Networking and Network Functions Virtualization. IGI Global, 2018. 240-253.
[27]Das, B., Bhunia, S. S., Roy, S., & Mukherjee, N. (2015, February). Multi criteria routing in wireless sensor network using weighted product model and relative rating. In 2015 Applications and Innovations in Mobile Computing (AIMoC) (pp. 132-136). IEEE.
[28]Djellali, H., Djebbar, A., Zine, N. G., & Azizi, N. (2018, May). Hybrid artificial bees colony and particle swarm on feature selection. In IFIP International Conference on Computational Intelligence and Its Applications (pp. 93-105). Springer, Cham.
[29]Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE computational intelligence magazine, 1(4), 28-39.
[30]Ejaz, W., Naeem, M., Shahid, A., Anpalagan, A., & Jo, M. (2017). Efficient energy management for the internet of things in smart cities. IEEE Communications Magazine, 55(1), 84-91.
[31]Fauzi, N., Noviarti, T., Muslihudin, M., Irviani, R., Maseleno, A., & Pringsewu, S. T. M. I. K. (2018). Optimal dengue endemic region prediction using fuzzy simple additive weighting based algorithm. Int. J. Pure Appl. Math, 118(7), 473-478.
[32]Goodridge, W., Bernard, M., Jordan, R., & Rampersad, R. (2017). Intelligent diagnosis of diseases in plants using a hybrid Multi-Criteria decision making technique. Computers and electronics in agriculture, 133, 80-87.
[33]Gou, J., Lei, Y. X., Guo, W. P., Wang, C., Cai, Y. Q., & Luo, W. (2017). A novel improved particle swarm optimization algorithm based on individual difference evolution. Applied Soft Computing, 57, 468-481.
[34]Guleria, K., & Verma, A. K. (2019). Comprehensive review for energy efficient hierarchical routing protocols on wireless sensor networks. Wireless Networks, 25(3), 1159-1183.
[35]Guo, S., & Zhao, H. (2017). Fuzzy best-worst multi-criteria decision-making method and its applications. Knowledge-Based Systems, 121, 23-31.
[36]Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000, January). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference on system sciences (pp. 10-pp). IEEE.
[37]Hwang, C., & Yoon, K. (1981). Multiple Attribute Decision Making: Methods and Applications Springer-Verlag. New York.
[38]Jaladi, A. R., Khithani, K., Pawar, P., Malvi, K., & Sahoo, G. (2017). Environmental monitoring using wireless sensor networks (WSN) based on IOT. Int. Res. J. Eng. Technol, 4(1).
[39]Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization (Vol. 200, pp. 1-10). Technical report-tr06, Erciyes university, engineering faculty, computer engineering department.
[40]Karaboga, D., & Gorkemli, B. (2019). Solving Traveling Salesman Problem by Using Combinatorial Artificial Bee Colony Algorithms. International Journal on Artificial Intelligence Tools, 28(01), 1950004.
[41]Karaboga, D., Gorkemli, B., Ozturk, C., & Karaboga, N. (2014). A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review, 42(1), 21-57.
[42]Karaboga, Dervis, and Bahriye Akay. "A comparative study of artificial bee colony algorithm." Applied mathematics and computation 214.1 (2009): 108-132.
[43]Kaushik, N., & Bagga, T. (2020). Internet of Things (IOT): Implications in Society. Available at SSRN 3563104.
[44]Kennedy, J., & Eberhart, R. (1995, November). Particle swarm optimization. In Proceedings of ICNN''95-International Conference on Neural Networks (Vol. 4, pp. 1942-1948). IEEE.
[45]Khalil, E. A., & Bara’a, A. A. (2011). Energy-aware evolutionary routing protocol for dynamic clustering of wireless sensor networks. Swarm and Evolutionary Computation, 1(4), 195-203.
[46]Kharkongor, C., Chithralekha, T., & Varghese, R. (2017). Trust and Energy-Efficient Routing for Internet of Things—Energy Evaluation Model. In Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications (pp. 585-597). Springer, Singapore.
[47]Kim, S., Cho, C., Park, K. J., & Lim, H. (2017). Increasing network lifetime using data compression in wireless sensor networks with energy harvesting. International Journal of Distributed Sensor Networks, 13(1), 1550147716689682.
[48]Kishor, A., Chandra, M., & Singh, P. K. (2017). An astute artificial bee colony algorithm. In Proceedings of Sixth International Conference on Soft Computing for Problem Solving (pp. 153-162). Springer, Singapore.
[49]Kobo, H. I., Abu-Mahfouz, A. M., & Hancke, G. P. (2017). A survey on software-defined wireless sensor networks: Challenges and design requirements. IEEE access, 5, 1872-1899.
[50]Kocakulak, M., & Butun, I. (2017, January). An overview of Wireless Sensor Networks towards internet of things. In 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC) (pp. 1-6). IEEE.
[51]Kumar, D., & Mishra, K. K. (2017). Artificial bee colony as a frontier in evolutionary optimization: a survey. In Advances in Computer and Computational Sciences (pp. 541-548). Springer, Singapore.
[52]Kusek, M. (2018, May). Internet of things: Today and tomorrow. In 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 0335-0338). IEEE.
[53]Li, G., Cui, L., Fu, X., Wen, Z., Lu, N., & Lu, J. (2017). Artificial bee colony algorithm with gene recombination for numerical function optimization. Applied Soft Computing, 52, 146-159.
[54]Li, G., Guo, S., Yang, Y., & Yang, Y. (2018). Traffic load minimization in software defined wireless sensor networks. IEEE Internet of Things Journal, 5(3), 1370-1378.
[55]Li, X., & Yang, G. (2016). Artificial bee colony algorithm with memory. Applied Soft Computing, 41, 362-372.
[56]Li, Y., Lim, M. K., & Tseng, M. L. (2019). A green vehicle routing model based on modified particle swarm optimization for cold chain logistics. Industrial Management & Data Systems, 119(3), 473-494.
[57]Liu, D., Zhou, Q., Zhang, Z., & Liu, B. (2016, April). Cluster-based energy-efficient transmission using a new hybrid compressed sensing in WSN. In 2016 IEEE conference on computer communications workshops (INFOCOM WKSHPS) (pp. 372-376). IEEE.
[58]Maksimovic, M. (2018). Greening the future: Green Internet of Things (G-IoT) as a key technological enabler of sustainable development. In Internet of things and big data analytics toward next-generation intelligence (pp. 283-313). Springer, Cham.
[59]Mann, P. S., & Singh, S. (2017). Artificial bee colony metaheuristic for energy-efficient clustering and routing in wireless sensor networks. Soft Computing, 21(22), 6699-6712.
[60]Marinakis, Y., Marinaki, M., & Migdalas, A. (2019). A multi-adaptive particle swarm optimization for the vehicle routing problem with time windows. Information Sciences, 481, 311-329.
[61]Masoudi, R., & Ghaffari, A. (2016). Software defined networks: A survey. Journal of Network and computer Applications, 67, 1-25.
[62]Maystre, L. Y., Pictet, J., & Simos, J. (1994). Méthodes multicritères ELECTRE: description, conseils pratiques et cas d''application à la gestion environnementale (Vol. 8). PPUR presses polytechniques.
[63]Mazinani, A., Mazinani, S. M., & Mirzaie, M. (2019). FMCR-CT: An energy-efficient fuzzy multi cluster-based routing with a constant threshold in wireless sensor network. Alexandria Engineering Journal, 58(1), 127-141.
[64]McKeown, Nick, et al. "OpenFlow: enabling innovation in campus networks." ACM SIGCOMM Computer Communication Review 38.2 (2008): 69-74.
[65]Mehta, D., & Saxena, S. (2018, August). A Comparative Analysis of Energy Efficient Hierarchical Routing Protocols for Wireless Sensor Networks. In 2018 4th International Conference on Computing Sciences (ICCS) (pp. 53-58). IEEE.
[66]Mostafaei, H., & Menth, M. (2018). Software-defined wireless sensor networks: A survey. Journal of Network and Computer Applications, 119, 42-56.
[67]Mulla, M. M., Khot, A., Patil, A., & Chandani, D. G. (2019). Dynamic Routing in Software-Defined Networks. In Emerging Research in Electronics, Computer Science and Technology (pp. 1027-1037). Springer, Singapore.
[68]Nabaei, A., Hamian, M., Parsaei, M. R., Safdari, R., Samad-Soltani, T., Zarrabi, H., & Ghassemi, A. (2018). Topologies and performance of intelligent algorithms: a comprehensive review. Artificial Intelligence Review, 49(1), 79-103.
[69]Nayyar, A., & Singh, R. (2017). Ant colony optimization (ACO) based routing protocols for wireless sensor networks (WSN): A survey. Int. J. Adv. Comput. Sci. Appl, 8(2), 148-155.
[70]Ng, K. K. H., Lee, C. K. M., Zhang, S. Z., Wu, K., & Ho, W. (2017). A multiple colonies artificial bee colony algorithm for a capacitated vehicle routing problem and re-routing strategies under time-dependent traffic congestion. Computers & Industrial Engineering, 109, 151-168.
[71]Nguyen, T. D., Khan, J. Y., & Ngo, D. T. (2017, May). An effective energy-harvesting-aware routing algorithm for WSN-based IoT applications. In 2017 IEEE International Conference on Communications (ICC) (pp. 1-6). IEEE.
[72]Olivier, Flauzac, Gonzalez Carlos, and Nolot Florent. "SDN based architecture for clustered WSN." 2015 9th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing. IEEE, 2015.
[73]Pan, T. S., Dao, T. K., & Pan, J. S. (2017). An Unmanned Aerial Vehicle Optimal Route Planning Based on Compact Artificial Bee Colony. In Advances in Intelligent Information Hiding and Multimedia Signal Processing (pp. 361-369). Springer, Cham.
[74]Panag, T. S., & Dhillon, J. S. (2018). Dual head static clustering algorithm for wireless sensor networks. AEU-International Journal of Electronics and Communications, 88, 148-156.
[75]Rao, P. S., Jana, P. K., & Banka, H. (2017). A particle swarm optimization based energy efficient cluster head selection algorithm for wireless sensor networks. Wireless networks, 23(7), 2005-2020.
[76]Ray, P. P. (2018). A survey on Internet of Things architectures. Journal of King Saud University-Computer and Information Sciences, 30(3), 291-319.
[77]Riley, G. F., & Henderson, T. R. (2010). The ns-3 network simulator. In Modeling and tools for network simulation (pp. 15-34). Springer, Berlin, Heidelberg.
[78]Robinson, Y. H., Julie, E. G., Balaji, S., & Ayyasamy, A. (2017). Energy aware clustering scheme in wireless sensor network using neuro-fuzzy approach. Wireless Personal Communications, 95(2), 703-721.
[79]Roy, S. S., Puthal, D., Sharma, S., Mohanty, S. P., & Zomaya, A. Y. (2018). Building a sustainable Internet of Things: Energy-efficient routing using low-power sensors will meet the need. IEEE Consumer Electronics Magazine, 7(2), 42-49.
[80]Saaty, T. L. (2004). Decision making—the analytic hierarchy and network processes (AHP/ANP). Journal of systems science and systems engineering, 13(1), 1-35.
[81]Salehi_Panahi, M., & Abbaszadeh, M. (2018). Proposing a method to solve energy hole problem in wireless sensor networks. Alexandria engineering journal, 57(3), 1585-1590.
[82]Sarkar, A., & Murugan, T. S. (2019). Cluster head selection for energy efficient and delay-less routing in wireless sensor network. Wireless Networks, 25(1), 303-320.
[83]Shahraki, A., Taherkordi, A., Haugen, Ø., & Eliassen, F. (2020). Clustering Objectives in Wireless Sensor Networks: A Survey and Research Direction Analysis. Computer Networks, 107376.
[84]Shen, J., Wang, A., Wang, C., Hung, P. C., & Lai, C. F. (2017). An efficient centroid-based routing protocol for energy management in WSN-assisted IoT. IEEE Access, 5, 18469-18479.
[85]Sisodia, A., & Kundu, S. (2019, November). Enrichment of Performance of Operation based Routing Protocols of WSN using Data Compression. In 2019 8th International Conference System Modeling and Advancement in Research Trends (SMART) (pp. 193-199). IEEE.
[86]Srikanth, N., Neha, N., Mamatha, K., Adithya, P., & Rutvik, P. (2020). Enhanced Sleep/Awake Schedule with Multi-Hop Hierarchical Routing Algorithm for Wireless Sensor Networks. K and Adithya, P and Rutvik, P, Enhanced Sleep/Awake Schedule with Multi-Hop Hierarchical Routing Algorithm for Wireless Sensor Networks (January 19, 2020).
[87]Tabibi, S., & Ghaffari, A. (2019). Energy-Efficient Routing Mechanism for Mobile Sink in Wireless Sensor Networks Using Particle Swarm Optimization Algorithm. Wireless Personal Communications, 104(1), 199-216.
[88]Tayyaba, S. K., Shah, M. A., Khan, O. A., & Ahmed, A. W. (2017, July). Software defined network (SDN) based Internet of Things (IoT): A road ahead. In Proceedings of the International Conference on Future Networks and Distributed Systems (p. 15). ACM.
[89]Thanka, M. R., Maheswari, P. U., & Edwin, E. B. (2019). An improved efficient: artificial bee colony algorithm for security and QoS aware scheduling in cloud computing environment. Cluster Computing, 22(5), 10905-10913.
[90]Triantaphyllou, E. (2000). Multi-criteria decision making methods. In Multi-criteria decision making methods: A comparative study (pp. 5-21). Springer, Boston, MA.
[91]Valdez, F., Vazquez, J. C., Melin, P., & Castillo, O. (2017). Comparative study of the use of fuzzy logic in improving particle swarm optimization variants for mathematical functions using co-evolution. Applied Soft Computing, 52, 1070-1083.
[92]Verhoeven, M. G. A., Aarts, E. H., & Swinkels, P. C. J. (1995). A parallel 2-opt algorithm for the traveling salesman problem. Future Generation Computer Systems, 11(2), 175-182.
[93]Wang, D., Tan, D., & Liu, L. (2018). Particle swarm optimization algorithm: an overview. Soft Computing, 22(2), 387-408.
[94]Wang, J., Cao, Y., Li, B., Kim, H. J., & Lee, S. (2017). Particle swarm optimization based clustering algorithm with mobile sink for WSNs. Future Generation Computer Systems, 76, 452-457.
[95]Wang, J., Zhai, P., Zhang, Y., Shi, L., Wu, G., Shi, X., & Zhou, P. (2016). Software defined network routing in wireless sensor network. In Cloud Computing, Security, Privacy in New Computing Environments (pp. 3-11). Springer, Cham.
[96]Whitley, D. (1994). A genetic algorithm tutorial. Statistics and computing, 4(2), 65-85.
[97]Xiang, W. L., Meng, X. L., Li, Y. Z., He, R. C., & An, M. Q. (2018). An improved artificial bee colony algorithm based on the gravity model. Information Sciences, 429, 49-71.
[98]Xue, Y., Jiang, J., Zhao, B., & Ma, T. (2018). A self-adaptive artificial bee colony algorithm based on global best for global optimization. Soft Computing, 22(9), 2935-2952.
[99]Yang, C. M., Shih, K. P., & Chang, S. H. (2017, March). A priority-based energy replenishment scheme for wireless rechargeable sensor networks. In 2017 31st International Conference on Advanced Information Networking and Applications Workshops (WAINA) (pp. 547-552). IEEE.
[100]Yang, X. S., Deb, S., Zhao, Y. X., Fong, S., & He, X. (2018). Swarm intelligence: past, present and future. Soft Computing, 22(18), 5923-5933.
[101]Yassein, Muneer Bani, et al. "Combined software-defined network (SDN) and Internet of Things (IoT)." 2017 International Conference on Electrical and Computing Technologies and Applications (ICECTA). IEEE, 2017.
[102]Zanakis, S. H., Solomon, A., Wishart, N., & Dublish, S. (1998). Multi-attribute decision making: A simulation comparison of select methods. European journal of operational research, 107(3), 507-529.
[103]Zedadra, O., Guerrieri, A., Jouandeau, N., Spezzano, G., Seridi, H., & Fortino, G. (2018). Swarm intelligence-based algorithms within IoT-based systems: A review. Journal of Parallel and Distributed Computing, 122, 173-187.
[104]Zhong, Y., Lin, J., Wang, L., & Zhang, H. (2017). Hybrid discrete artificial bee colony algorithm with threshold acceptance criterion for traveling salesman problem. Information Sciences, 421, 70-84.
[105]Zhou, J., Yao, X., Chan, F. T., Lin, Y., Jin, H., Gao, L., & Wang, X. (2019). An individual dependent multi-colony artificial bee colony algorithm. Information Sciences, 485, 114-140.